Changes for page RS485-LN – RS485 to LoRaWAN Converter User Manual
Last modified by Karry Zhuang on 2025/03/06 16:34
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 11 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -41,7 +41,7 @@ 41 41 **Hardware System:** 42 42 43 43 * STM32L072CZT6 MCU 44 -* SX1276/78 Wireless Chip 44 +* SX1276/78 Wireless Chip 45 45 * Power Consumption (exclude RS485 device): 46 46 ** Idle: 32mA@12v 47 47 ... ... @@ -51,7 +51,7 @@ 51 51 **Interface for Model:** 52 52 53 53 * RS485 54 -* Power Input 7~~ 24V DC. 54 +* Power Input 7~~ 24V DC. 55 55 56 56 **LoRa Spec:** 57 57 ... ... @@ -116,7 +116,9 @@ 116 116 * Power Source VIN to RS485-LN VIN+ 117 117 * Power Source GND to RS485-LN VIN- 118 118 119 +((( 119 119 Once there is power, the RS485-LN will be on. 121 +))) 120 120 121 121 [[image:1653268091319-405.png]] 122 122 ))) ... ... @@ -126,7 +126,7 @@ 126 126 == 3.1 How it works? == 127 127 128 128 ((( 129 -The RS485- BL is configured as LoRaWAN OTAA ClassAmode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.131 +The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA. 130 130 ))) 131 131 132 132 == 3.2 Example to join LoRaWAN network == ... ... @@ -133,27 +133,32 @@ 133 133 134 134 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 135 135 136 -[[image:1652 953414711-647.png||height="337" width="723"]]138 +[[image:1653268155545-638.png||height="334" width="724"]] 137 137 138 138 ((( 139 -The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. 140 -))) 141 +The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below: 141 141 143 +485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively. 144 + 145 +[[image:1653268227651-549.png||height="592" width="720"]] 146 + 142 142 ((( 143 -The LG308 is already set to connect to [[TTN V3 network >> url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:148 +The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3: 144 144 ))) 145 145 146 146 ((( 147 -**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485- BL.152 +**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN. 148 148 ))) 149 149 150 150 ((( 151 -Each RS485- BL is shipped with a sticker with unique device EUI:156 +Each RS485-LN is shipped with a sticker with unique device EUI: 152 152 ))) 158 +))) 153 153 154 154 [[image:1652953462722-299.png]] 155 155 156 156 ((( 163 +((( 157 157 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot: 158 158 ))) 159 159 ... ... @@ -160,13 +160,11 @@ 160 160 ((( 161 161 Add APP EUI in the application. 162 162 ))) 170 +))) 163 163 164 - 165 - 166 - 167 167 [[image:image-20220519174512-1.png]] 168 168 169 -[[image:image-20220519174512-2.png||height="32 8" width="731"]]174 +[[image:image-20220519174512-2.png||height="323" width="720"]] 170 170 171 171 [[image:image-20220519174512-3.png||height="556" width="724"]] 172 172 ... ... @@ -182,7 +182,7 @@ 182 182 183 183 184 184 ((( 185 -**Step 2**: Power on RS485- BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.190 +**Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel. 186 186 ))) 187 187 188 188 [[image:1652953568895-172.png||height="232" width="724"]] ... ... @@ -190,23 +190,19 @@ 190 190 == 3.3 Configure Commands to read data == 191 191 192 192 ((( 193 -There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors. 198 +((( 199 +There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices. 194 194 ))) 195 195 202 +((( 203 +(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1 204 +))) 205 +))) 206 + 196 196 === 3.3.1 onfigure UART settings for RS485 or TTL communication === 197 197 198 -RS485- BLcan connect to eitherRS485sensorsorTTLsensor.User need to specifywhattype ofsensorneedtoconnect.209 +To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are: 199 199 200 -**~1. RS485-MODBUS mode:** 201 - 202 -AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins. 203 - 204 -**2. TTL mode:** 205 - 206 -AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins. 207 - 208 -RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match. 209 - 210 210 (% border="1" style="background-color:#ffffcc; color:green; width:795px" %) 211 211 |((( 212 212 **AT Commands** ... ... @@ -231,13 +231,7 @@ 231 231 |((( 232 232 AT+PARITY 233 233 )))|(% style="width:285px" %)((( 234 -((( 235 235 Set UART parity (for RS485 connection) 236 -))) 237 - 238 -((( 239 -Default Value is: no parity. 240 -))) 241 241 )))|(% style="width:347px" %)((( 242 242 ((( 243 243 AT+PARITY=0 ... ... @@ -255,7 +255,7 @@ 255 255 ))) 256 256 257 257 ((( 258 - DefaultValue is: 1bit.253 + 259 259 ))) 260 260 )))|(% style="width:347px" %)((( 261 261 ((( ... ... @@ -274,12 +274,10 @@ 274 274 === 3.3.2 Configure sensors === 275 275 276 276 ((( 277 -Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**. 278 -))) 279 - 280 280 ((( 281 - When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%)command,Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%)the RS485 or TTLsensors. This command will only run when user input it and won’t run during each sampling.273 +Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling. 282 282 ))) 275 +))) 283 283 284 284 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %) 285 285 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example** ... ... @@ -291,8 +291,6 @@ 291 291 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command 292 292 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m 293 293 294 -Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]]. 295 - 296 296 === 3.3.3 Configure read commands for each sampling === 297 297 298 298 ((( ... ... @@ -374,11 +374,17 @@ 374 374 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command** 375 375 ))) 376 376 368 +((( 377 377 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually. 370 +))) 378 378 372 +((( 379 379 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same. 374 +))) 380 380 376 +((( 381 381 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx. 378 +))) 382 382 383 383 (% border="1" class="table-bordered" %) 384 384 |((( ... ... @@ -390,26 +390,24 @@ 390 390 391 391 ))) 392 392 393 -Examples: 390 +**Examples:** 394 394 395 -1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 392 +~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 396 396 397 397 If we set AT+SEARCH1=1,1E 56 34. (max 5 bytes for prefix) 398 398 399 -The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49 396 +The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49** 400 400 401 -[[image:16529 54654347-831.png]]398 +[[image:1653269403619-508.png]] 402 402 400 +2. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 403 403 404 -1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 405 - 406 406 If we set AT+SEARCH1=2, 1E 56 34+31 00 49 407 407 408 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30 404 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30** 409 409 410 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]406 +[[image:1653269438444-278.png]] 411 411 412 - 413 413 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes. 414 414 415 415 |((( ... ... @@ -424,94 +424,95 @@ 424 424 425 425 * Grab bytes: 426 426 427 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]422 +[[image:1653269551753-223.png||height="311" width="717"]] 428 428 429 429 * Grab a section. 430 430 431 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]426 +[[image:1653269568276-930.png||height="325" width="718"]] 432 432 433 433 * Grab different sections. 434 434 435 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]430 +[[image:1653269593172-426.png||height="303" width="725"]] 436 436 432 +(% style="color:red" %)**Note:** 437 437 438 -Note: 439 - 440 440 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0. 441 441 442 442 Example: 443 443 444 -AT+COMMAND1=11 01 1E D0,0 438 +(% style="color:red" %)AT+COMMAND1=11 01 1E D0,0 445 445 446 -AT+SEARCH1=1,1E 56 34 440 +(% style="color:red" %)AT+SEARCH1=1,1E 56 34 447 447 448 -AT+DATACUT1=0,2,1~~5 442 +(% style="color:red" %)AT+DATACUT1=0,2,1~~5 449 449 450 -Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 444 +(% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 451 451 452 -String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49 446 +(% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49 453 453 454 -Valid payload after DataCUT command: 2e 30 58 5f 36 448 +(% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36 455 455 456 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]450 +[[image:1653269618463-608.png]] 457 457 452 +=== 3.3.4 Compose the uplink payload === 458 458 459 - 460 - 461 -1. 462 -11. 463 -111. Compose the uplink payload 464 - 454 +((( 465 465 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.** 456 +))) 466 466 458 +((( 459 +(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0** 460 +))) 467 467 468 -**Examples: AT+DATAUP=0** 462 +((( 463 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**. 464 +))) 469 469 470 -Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**. 471 - 466 +((( 472 472 Final Payload is 468 +))) 473 473 474 -Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx 470 +((( 471 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx** 472 +))) 475 475 474 +((( 476 476 Where PAYVER is defined by AT+PAYVER, below is an example screen shot. 476 +))) 477 477 478 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]478 +[[image:1653269759169-150.png||height="513" width="716"]] 479 479 480 +(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1** 480 480 482 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**. 481 481 482 -**Examples: AT+DATAUP=1** 483 - 484 -Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**. 485 - 486 486 Final Payload is 487 487 488 -Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA 486 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA** 489 489 490 490 1. Battery Info (2 bytes): Battery voltage 491 491 1. PAYVER (1 byte): Defined by AT+PAYVER 492 492 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling. 493 493 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT) 494 -1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes492 +1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes 495 495 496 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]494 +[[image:1653269916228-732.png||height="433" width="711"]] 497 497 498 498 499 499 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA 500 500 501 -DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41 499 +DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41 502 502 503 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20 501 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20 504 504 505 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30 503 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30 506 506 507 - 508 - 509 509 Below are the uplink payloads: 510 510 511 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]507 +[[image:1653270130359-810.png]] 512 512 513 513 514 -Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below: 510 +(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:** 515 515 516 516 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date) 517 517
- 1653268155545-638.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +113.7 KB - Content
- 1653268227651-549.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.3 MB - Content
- 1653269403619-508.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +27.8 KB - Content
- 1653269438444-278.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +26.6 KB - Content
- 1653269551753-223.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.7 KB - Content
- 1653269568276-930.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +131.4 KB - Content
- 1653269593172-426.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +142.6 KB - Content
- 1653269618463-608.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +27.7 KB - Content
- 1653269759169-150.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +294.0 KB - Content
- 1653269916228-732.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +143.3 KB - Content
- 1653270130359-810.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +197.8 KB - Content