<
From version < 18.1 >
edited by Xiaoling
on 2022/05/23 08:48
To version < 29.2 >
edited by Xiaoling
on 2022/05/23 09:37
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,12 +1,11 @@
1 1  (% style="text-align:center" %)
2 -[[image:1652947681187-144.png||height="385" width="385"]]
2 +[[image:1653266934636-343.png||height="385" width="385"]]
3 3  
4 4  
5 5  
6 +**RS485-LN – RS485 to LoRaWAN Converter User Manual**
6 6  
7 -**RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8 8  
9 -
10 10  **Table of Contents:**
11 11  
12 12  
... ... @@ -15,42 +15,28 @@
15 15  
16 16  = 1.Introduction =
17 17  
18 -== 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
17 +== 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
19 19  
20 20  (((
21 -
22 -)))
23 -
24 24  (((
25 -The Dragino RS485-BL is a **RS485 / UART to LoRaWAN Converter** for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
21 +The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
26 26  )))
27 27  
28 28  (((
29 -RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides **a 3.3v output** and** a 5v output** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
25 +RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
30 30  )))
31 31  
32 32  (((
33 -RS485-BL is IP67 **waterproof** and powered by **8500mAh Li-SOCI2 battery**, it is designed for long term use for several years.
29 +For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
34 34  )))
35 35  
36 36  (((
37 -RS485-BL runs standard **LoRaWAN 1.0.3 in Class A**. It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
33 +For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
38 38  )))
39 -
40 -(((
41 -For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
42 42  )))
43 43  
44 -(((
45 -For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
46 -)))
37 +[[image:1653267211009-519.png||height="419" width="724"]]
47 47  
48 -(((
49 -Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
50 -)))
51 -
52 -[[image:1652953304999-717.png||height="424" width="733"]]
53 -
54 54  == 1.2 Specifications ==
55 55  
56 56  **Hardware System:**
... ... @@ -58,19 +58,15 @@
58 58  * STM32L072CZT6 MCU
59 59  * SX1276/78 Wireless Chip 
60 60  * Power Consumption (exclude RS485 device):
61 -** Idle: 6uA@3.3v
46 +** Idle: 32mA@12v
62 62  
63 -*
64 -** 20dB Transmit: 130mA@3.3v
48 +*
49 +** 20dB Transmit: 65mA@12v
65 65  
66 66  **Interface for Model:**
67 67  
68 -* 1 x RS485 Interface
69 -* 1 x TTL Serial , 3.3v or 5v.
70 -* 1 x I2C Interface, 3.3v or 5v.
71 -* 1 x one wire interface
72 -* 1 x Interrupt Interface
73 -* 1 x Controllable 5V output, max
53 +* RS485
54 +* Power Input 7~~ 24V DC. 
74 74  
75 75  **LoRa Spec:**
76 76  
... ... @@ -79,27 +79,30 @@
79 79  ** Band 2 (LF): 410 ~~ 528 Mhz
80 80  * 168 dB maximum link budget.
81 81  * +20 dBm - 100 mW constant RF output vs.
63 +* +14 dBm high efficiency PA.
82 82  * Programmable bit rate up to 300 kbps.
83 83  * High sensitivity: down to -148 dBm.
84 84  * Bullet-proof front end: IIP3 = -12.5 dBm.
85 85  * Excellent blocking immunity.
68 +* Low RX current of 10.3 mA, 200 nA register retention.
86 86  * Fully integrated synthesizer with a resolution of 61 Hz.
87 -* LoRa modulation.
70 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
88 88  * Built-in bit synchronizer for clock recovery.
89 89  * Preamble detection.
90 90  * 127 dB Dynamic Range RSSI.
91 -* Automatic RF Sense and CAD with ultra-fast AFC. ​​​
74 +* Automatic RF Sense and CAD with ultra-fast AFC.
75 +* Packet engine up to 256 bytes with CRC.
92 92  
93 93  == 1.3 Features ==
94 94  
95 -* LoRaWAN Class A & Class C protocol (default Class A)
79 +* LoRaWAN Class A & Class C protocol (default Class C)
96 96  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
97 97  * AT Commands to change parameters
98 -* Remote configure parameters via LoRaWAN Downlink
82 +* Remote configure parameters via LoRa Downlink
99 99  * Firmware upgradable via program port
100 100  * Support multiply RS485 devices by flexible rules
101 101  * Support Modbus protocol
102 -* Support Interrupt uplink
86 +* Support Interrupt uplink (Since hardware version v1.2)
103 103  
104 104  == 1.4 Applications ==
105 105  
... ... @@ -112,53 +112,39 @@
112 112  
113 113  == 1.5 Firmware Change log ==
114 114  
115 -[[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
99 +[[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
116 116  
117 117  == 1.6 Hardware Change log ==
118 118  
119 119  (((
120 -v1.4
121 -)))
122 -
123 123  (((
124 -~1. Change Power IC to TPS22916
125 -)))
105 +v1.2: Add External Interrupt Pin.
126 126  
127 -
128 -(((
129 -v1.3
107 +v1.0: Release
130 130  )))
131 -
132 -(((
133 -~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
134 134  )))
135 135  
111 += 2. Power ON Device =
136 136  
137 137  (((
138 -v1.2
139 -)))
114 +The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
140 140  
116 +* Power Source VIN to RS485-LN VIN+
117 +* Power Source GND to RS485-LN VIN-
118 +
141 141  (((
142 -Release version ​​​​​
120 +Once there is power, the RS485-LN will be on.
143 143  )))
144 144  
145 -= 2. Pin mapping and Power ON Device =
146 -
147 -(((
148 -The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
123 +[[image:1653268091319-405.png]]
149 149  )))
150 150  
151 -[[image:1652953055962-143.png||height="387" width="728"]]
152 -
153 -
154 -The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
155 -
156 156  = 3. Operation Mode =
157 157  
158 158  == 3.1 How it works? ==
159 159  
160 160  (((
161 -The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
131 +The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
162 162  )))
163 163  
164 164  == 3.2 Example to join LoRaWAN network ==
... ... @@ -165,27 +165,32 @@
165 165  
166 166  Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
167 167  
168 -[[image:1652953414711-647.png||height="337" width="723"]]
138 +[[image:1653268155545-638.png||height="334" width="724"]]
169 169  
170 170  (((
171 -The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
172 -)))
141 +The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
173 173  
143 +485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
144 +
145 +[[image:1653268227651-549.png||height="592" width="720"]]
146 +
174 174  (((
175 -The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
148 +The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
176 176  )))
177 177  
178 178  (((
179 -**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
152 +**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
180 180  )))
181 181  
182 182  (((
183 -Each RS485-BL is shipped with a sticker with unique device EUI:
156 +Each RS485-LN is shipped with a sticker with unique device EUI:
184 184  )))
158 +)))
185 185  
186 186  [[image:1652953462722-299.png]]
187 187  
188 188  (((
163 +(((
189 189  User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
190 190  )))
191 191  
... ... @@ -192,13 +192,11 @@
192 192  (((
193 193  Add APP EUI in the application.
194 194  )))
170 +)))
195 195  
196 -
197 -
198 -
199 199  [[image:image-20220519174512-1.png]]
200 200  
201 -[[image:image-20220519174512-2.png||height="328" width="731"]]
174 +[[image:image-20220519174512-2.png||height="323" width="720"]]
202 202  
203 203  [[image:image-20220519174512-3.png||height="556" width="724"]]
204 204  
... ... @@ -214,7 +214,7 @@
214 214  
215 215  
216 216  (((
217 -**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
190 +**Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
218 218  )))
219 219  
220 220  [[image:1652953568895-172.png||height="232" width="724"]]
... ... @@ -222,23 +222,19 @@
222 222  == 3.3 Configure Commands to read data ==
223 223  
224 224  (((
225 -There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
198 +(((
199 +There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
226 226  )))
227 227  
202 +(((
203 +(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
204 +)))
205 +)))
206 +
228 228  === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
229 229  
230 -RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
209 +To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
231 231  
232 -**~1. RS485-MODBUS mode:**
233 -
234 -AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
235 -
236 -**2. TTL mode:**
237 -
238 -AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
239 -
240 -RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
241 -
242 242  (% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
243 243  |(((
244 244  **AT Commands**
... ... @@ -263,13 +263,7 @@
263 263  |(((
264 264  AT+PARITY
265 265  )))|(% style="width:285px" %)(((
266 -(((
267 267  Set UART parity (for RS485 connection)
268 -)))
269 -
270 -(((
271 -Default Value is: no parity.
272 -)))
273 273  )))|(% style="width:347px" %)(((
274 274  (((
275 275  AT+PARITY=0
... ... @@ -287,7 +287,7 @@
287 287  )))
288 288  
289 289  (((
290 -Default Value is: 1bit.
253 +
291 291  )))
292 292  )))|(% style="width:347px" %)(((
293 293  (((
... ... @@ -306,12 +306,10 @@
306 306  === 3.3.2 Configure sensors ===
307 307  
308 308  (((
309 -Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
310 -)))
311 -
312 312  (((
313 -When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
273 +Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
314 314  )))
275 +)))
315 315  
316 316  (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
317 317  |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
... ... @@ -323,8 +323,6 @@
323 323  mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
324 324  )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
325 325  
326 -Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
327 -
328 328  === 3.3.3 Configure read commands for each sampling ===
329 329  
330 330  (((
... ... @@ -406,11 +406,17 @@
406 406  **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
407 407  )))
408 408  
368 +(((
409 409  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
370 +)))
410 410  
372 +(((
411 411  In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
374 +)))
412 412  
376 +(((
413 413  **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
378 +)))
414 414  
415 415  (% border="1" class="table-bordered" %)
416 416  |(((
... ... @@ -422,26 +422,24 @@
422 422  
423 423  )))
424 424  
425 -Examples:
390 +**Examples:**
426 426  
427 -1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
392 +~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
428 428  
429 429  If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
430 430  
431 -The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
396 +The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
432 432  
433 -[[image:1652954654347-831.png]]
398 +[[image:1653269403619-508.png]]
434 434  
400 +2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
435 435  
436 -1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
437 -
438 438  If we set AT+SEARCH1=2, 1E 56 34+31 00 49
439 439  
440 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
404 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
441 441  
442 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
406 +[[image:1653269438444-278.png]]
443 443  
444 -
445 445  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
446 446  
447 447  |(((
... ... @@ -456,58 +456,63 @@
456 456  
457 457  * Grab bytes:
458 458  
459 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
422 +[[image:1653269551753-223.png||height="311" width="717"]]
460 460  
461 461  * Grab a section.
462 462  
463 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
426 +[[image:1653269568276-930.png||height="325" width="718"]]
464 464  
465 465  * Grab different sections.
466 466  
467 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
430 +[[image:1653269593172-426.png||height="303" width="725"]]
468 468  
432 +(% style="color:red" %)**Note:**
469 469  
470 -Note:
471 -
472 472  AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
473 473  
474 474  Example:
475 475  
476 -AT+COMMAND1=11 01 1E D0,0
438 +(% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
477 477  
478 -AT+SEARCH1=1,1E 56 34
440 +(% style="color:red" %)AT+SEARCH1=1,1E 56 34
479 479  
480 -AT+DATACUT1=0,2,1~~5
442 +(% style="color:red" %)AT+DATACUT1=0,2,1~~5
481 481  
482 -Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
444 +(% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
483 483  
484 -String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
446 +(% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
485 485  
486 -Valid payload after DataCUT command: 2e 30 58 5f 36
448 +(% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
487 487  
488 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
450 +[[image:1653269618463-608.png]]
489 489  
452 +=== 3.3.4 Compose the uplink payload ===
490 490  
491 -
492 -
493 -1.
494 -11.
495 -111. Compose the uplink payload
496 -
454 +(((
497 497  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
456 +)))
498 498  
458 +(((
459 +(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
460 +)))
499 499  
500 -**Examples: AT+DATAUP=0**
462 +(((
463 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
464 +)))
501 501  
502 -Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
503 -
466 +(((
504 504  Final Payload is
468 +)))
505 505  
506 -Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
470 +(((
471 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
472 +)))
507 507  
474 +(((
508 508  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
476 +)))
509 509  
510 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
478 +[[image:1653269759169-150.png]]
511 511  
512 512  
513 513  
... ... @@ -555,8 +555,8 @@
555 555  
556 556  
557 557  
558 -1.
559 -11.
526 +1.
527 +11.
560 560  111. Uplink on demand
561 561  
562 562  Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
... ... @@ -569,8 +569,8 @@
569 569  
570 570  
571 571  
572 -1.
573 -11.
540 +1.
541 +11.
574 574  111. Uplink on Interrupt
575 575  
576 576  Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
... ... @@ -584,7 +584,7 @@
584 584  AT+INTMOD=3  Interrupt trigger by rising edge.
585 585  
586 586  
587 -1.
555 +1.
588 588  11. Uplink Payload
589 589  
590 590  |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
... ... @@ -646,15 +646,15 @@
646 646  
647 647  * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
648 648  
649 -1.
650 -11.
617 +1.
618 +11.
651 651  111. Common Commands:
652 652  
653 653  They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
654 654  
655 655  
656 -1.
657 -11.
624 +1.
625 +11.
658 658  111. Sensor related commands:
659 659  
660 660  ==== Choose Device Type (RS485 or TTL) ====
... ... @@ -960,13 +960,13 @@
960 960  
961 961  
962 962  
963 -1.
931 +1.
964 964  11. Buttons
965 965  
966 966  |**Button**|**Feature**
967 967  |**RST**|Reboot RS485-BL
968 968  
969 -1.
937 +1.
970 970  11. +3V3 Output
971 971  
972 972  RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
... ... @@ -984,7 +984,7 @@
984 984  By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
985 985  
986 986  
987 -1.
955 +1.
988 988  11. +5V Output
989 989  
990 990  RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
... ... @@ -1004,13 +1004,13 @@
1004 1004  
1005 1005  
1006 1006  
1007 -1.
975 +1.
1008 1008  11. LEDs
1009 1009  
1010 1010  |**LEDs**|**Feature**
1011 1011  |**LED1**|Blink when device transmit a packet.
1012 1012  
1013 -1.
981 +1.
1014 1014  11. Switch Jumper
1015 1015  
1016 1016  |**Switch Jumper**|**Feature**
... ... @@ -1056,7 +1056,7 @@
1056 1056  
1057 1057  
1058 1058  
1059 -1.
1027 +1.
1060 1060  11. Common AT Command Sequence
1061 1061  111. Multi-channel ABP mode (Use with SX1301/LG308)
1062 1062  
... ... @@ -1075,8 +1075,8 @@
1075 1075  
1076 1076  ATZ
1077 1077  
1078 -1.
1079 -11.
1046 +1.
1047 +11.
1080 1080  111. Single-channel ABP mode (Use with LG01/LG02)
1081 1081  
1082 1082  AT+FDR   Reset Parameters to Factory Default, Keys Reserve
... ... @@ -1151,7 +1151,7 @@
1151 1151  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1152 1152  
1153 1153  
1154 -1.
1122 +1.
1155 1155  11. How to change the LoRa Frequency Bands/Region?
1156 1156  
1157 1157  User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
... ... @@ -1158,7 +1158,7 @@
1158 1158  
1159 1159  
1160 1160  
1161 -1.
1129 +1.
1162 1162  11. How many RS485-Slave can RS485-BL connects?
1163 1163  
1164 1164  The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
... ... @@ -1175,7 +1175,7 @@
1175 1175  
1176 1176  
1177 1177  
1178 -1.
1146 +1.
1179 1179  11. Why I can’t join TTN V3 in US915 /AU915 bands?
1180 1180  
1181 1181  It might about the channels mapping. Please see for detail.
1653267211009-519.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.7 KB
Content
1653268091319-405.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +399.3 KB
Content
1653268155545-638.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +113.7 KB
Content
1653268227651-549.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
1653269403619-508.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +294.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0