Last modified by Xiaoling on 2025/04/23 15:56

From version 15.5
edited by Xiaoling
on 2022/05/19 17:52
Change comment: There is no comment for this version
To version 35.5
edited by Xiaoling
on 2022/06/02 15:48
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -RS485-BL – Waterproof RS485 to LoRaWAN Converter
1 +RS485-LN – RS485 to LoRaWAN Converter
Content
... ... @@ -1,12 +1,11 @@
1 1  (% style="text-align:center" %)
2 -[[image:1652947681187-144.png||height="385" width="385"]]
2 +[[image:1653266934636-343.png||height="385" width="385"]]
3 3  
4 4  
5 5  
6 +**RS485-LN – RS485 to LoRaWAN Converter User Manual**
6 6  
7 -**RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8 8  
9 -
10 10  **Table of Contents:**
11 11  
12 12  
... ... @@ -15,62 +15,46 @@
15 15  
16 16  = 1.Introduction =
17 17  
18 -== 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
17 +== 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
19 19  
20 20  (((
21 -
22 -)))
23 -
24 24  (((
25 -The Dragino RS485-BL is a **RS485 / UART to LoRaWAN Converter** for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
21 +The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
26 26  )))
27 27  
28 28  (((
29 -RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides **a 3.3v output** and** a 5v output** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
25 +RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
30 30  )))
31 31  
32 32  (((
33 -RS485-BL is IP67 **waterproof** and powered by **8500mAh Li-SOCI2 battery**, it is designed for long term use for several years.
29 +(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
34 34  )))
35 35  
36 36  (((
37 -RS485-BL runs standard **LoRaWAN 1.0.3 in Class A**. It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
38 -)))
33 +(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
39 39  
40 -(((
41 -For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
35 +(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
42 42  )))
43 -
44 -(((
45 -For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
46 46  )))
47 47  
48 -(((
49 -Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
50 -)))
39 +[[image:1653267211009-519.png||height="419" width="724"]]
51 51  
52 -[[image:1652953304999-717.png||height="424" width="733"]]
53 53  
54 54  == 1.2 Specifications ==
55 55  
44 +
56 56  **Hardware System:**
57 57  
58 58  * STM32L072CZT6 MCU
59 59  * SX1276/78 Wireless Chip 
60 60  * Power Consumption (exclude RS485 device):
61 -** Idle: 6uA@3.3v
50 +** Idle: 32mA@12v
51 +** 20dB Transmit: 65mA@12v
62 62  
63 -*
64 -** 20dB Transmit: 130mA@3.3v
65 -
66 66  **Interface for Model:**
67 67  
68 -* 1 x RS485 Interface
69 -* 1 x TTL Serial , 3.3v or 5v.
70 -* 1 x I2C Interface, 3.3v or 5v.
71 -* 1 x one wire interface
72 -* 1 x Interrupt Interface
73 -* 1 x Controllable 5V output, max
55 +* RS485
56 +* Power Input 7~~ 24V DC. 
74 74  
75 75  **LoRa Spec:**
76 76  
... ... @@ -79,28 +79,33 @@
79 79  ** Band 2 (LF): 410 ~~ 528 Mhz
80 80  * 168 dB maximum link budget.
81 81  * +20 dBm - 100 mW constant RF output vs.
65 +* +14 dBm high efficiency PA.
82 82  * Programmable bit rate up to 300 kbps.
83 83  * High sensitivity: down to -148 dBm.
84 84  * Bullet-proof front end: IIP3 = -12.5 dBm.
85 85  * Excellent blocking immunity.
70 +* Low RX current of 10.3 mA, 200 nA register retention.
86 86  * Fully integrated synthesizer with a resolution of 61 Hz.
87 -* LoRa modulation.
72 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
88 88  * Built-in bit synchronizer for clock recovery.
89 89  * Preamble detection.
90 90  * 127 dB Dynamic Range RSSI.
91 -* Automatic RF Sense and CAD with ultra-fast AFC. ​​​
76 +* Automatic RF Sense and CAD with ultra-fast AFC.
77 +* Packet engine up to 256 bytes with CRC.
92 92  
79 +
93 93  == 1.3 Features ==
94 94  
95 -* LoRaWAN Class A & Class C protocol (default Class A)
82 +* LoRaWAN Class A & Class C protocol (default Class C)
96 96  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
97 97  * AT Commands to change parameters
98 -* Remote configure parameters via LoRaWAN Downlink
85 +* Remote configure parameters via LoRa Downlink
99 99  * Firmware upgradable via program port
100 100  * Support multiply RS485 devices by flexible rules
101 101  * Support Modbus protocol
102 -* Support Interrupt uplink
89 +* Support Interrupt uplink (Since hardware version v1.2)
103 103  
91 +
104 104  == 1.4 Applications ==
105 105  
106 106  * Smart Buildings & Home Automation
... ... @@ -110,55 +110,49 @@
110 110  * Smart Cities
111 111  * Smart Factory
112 112  
101 +
113 113  == 1.5 Firmware Change log ==
114 114  
115 -[[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
104 +[[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
116 116  
106 +
117 117  == 1.6 Hardware Change log ==
118 118  
119 119  (((
120 -v1.4
121 -)))
122 -
123 123  (((
124 -~1. Change Power IC to TPS22916
125 -)))
111 +v1.2: Add External Interrupt Pin.
126 126  
113 +v1.0: Release
127 127  
128 -(((
129 -v1.3
115 +
130 130  )))
131 -
132 -(((
133 -~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
134 134  )))
135 135  
119 += 2. Power ON Device =
136 136  
137 137  (((
138 -v1.2
139 -)))
122 +The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
140 140  
124 +* Power Source VIN to RS485-LN VIN+
125 +* Power Source GND to RS485-LN VIN-
126 +
141 141  (((
142 -Release version ​​​​​
128 +Once there is power, the RS485-LN will be on.
143 143  )))
144 144  
145 -= 2. Pin mapping and Power ON Device =
131 +[[image:1653268091319-405.png]]
146 146  
147 -(((
148 -The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
133 +
149 149  )))
150 150  
151 -[[image:1652953055962-143.png||height="387" width="728"]]
152 -
153 -
154 -The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
155 -
156 156  = 3. Operation Mode =
157 157  
158 158  == 3.1 How it works? ==
159 159  
160 160  (((
161 -The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
141 +The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
142 +
143 +
162 162  )))
163 163  
164 164  == 3.2 Example to join LoRaWAN network ==
... ... @@ -165,27 +165,37 @@
165 165  
166 166  Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
167 167  
168 -[[image:1652953414711-647.png||height="337" width="723"]]
150 +[[image:1653268155545-638.png||height="334" width="724"]]
169 169  
152 +
170 170  (((
171 -The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
154 +(((
155 +The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
172 172  )))
173 173  
174 174  (((
175 -The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
159 +485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
176 176  )))
177 177  
162 +[[image:1653268227651-549.png||height="592" width="720"]]
163 +
178 178  (((
179 -**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
165 +The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
180 180  )))
181 181  
182 182  (((
183 -Each RS485-BL is shipped with a sticker with unique device EUI:
169 +**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
184 184  )))
185 185  
172 +(((
173 +Each RS485-LN is shipped with a sticker with unique device EUI:
174 +)))
175 +)))
176 +
186 186  [[image:1652953462722-299.png]]
187 187  
188 188  (((
180 +(((
189 189  User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
190 190  )))
191 191  
... ... @@ -192,13 +192,11 @@
192 192  (((
193 193  Add APP EUI in the application.
194 194  )))
187 +)))
195 195  
196 -
197 -
198 -
199 199  [[image:image-20220519174512-1.png]]
200 200  
201 -[[image:image-20220519174512-2.png||height="328" width="731"]]
191 +[[image:image-20220519174512-2.png||height="323" width="720"]]
202 202  
203 203  [[image:image-20220519174512-3.png||height="556" width="724"]]
204 204  
... ... @@ -214,44 +214,43 @@
214 214  
215 215  
216 216  (((
217 -**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
207 +**Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
218 218  )))
219 219  
220 220  [[image:1652953568895-172.png||height="232" width="724"]]
221 221  
212 +
222 222  == 3.3 Configure Commands to read data ==
223 223  
224 224  (((
225 -There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
216 +(((
217 +There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
226 226  )))
227 227  
228 -=== 3.3.1 onfigure UART settings for RS485 or TTL communication ===
220 +(((
221 +(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
229 229  
230 -RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
223 +
224 +)))
225 +)))
231 231  
232 -**~1. RS485-MODBUS mode:**
227 +=== 3.3.1 onfigure UART settings for RS485 or TTL communication ===
233 233  
234 -AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
229 +To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
235 235  
236 -**2. TTL mode:**
237 -
238 -AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
239 -
240 -RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
241 -
242 -(% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
243 -|(((
231 +(% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
232 +|(% style="width:128px" %)(((
244 244  **AT Commands**
245 -)))|(% style="width:285px" %)(((
234 +)))|(% style="width:305px" %)(((
246 246  **Description**
247 -)))|(% style="width:347px" %)(((
236 +)))|(% style="width:346px" %)(((
248 248  **Example**
249 249  )))
250 -|(((
239 +|(% style="width:128px" %)(((
251 251  AT+BAUDR
252 -)))|(% style="width:285px" %)(((
241 +)))|(% style="width:305px" %)(((
253 253  Set the baud rate (for RS485 connection). Default Value is: 9600.
254 -)))|(% style="width:347px" %)(((
243 +)))|(% style="width:346px" %)(((
255 255  (((
256 256  AT+BAUDR=9600
257 257  )))
... ... @@ -260,18 +260,12 @@
260 260  Options: (1200,2400,4800,14400,19200,115200)
261 261  )))
262 262  )))
263 -|(((
252 +|(% style="width:128px" %)(((
264 264  AT+PARITY
265 -)))|(% style="width:285px" %)(((
266 -(((
254 +)))|(% style="width:305px" %)(((
267 267  Set UART parity (for RS485 connection)
268 -)))
269 -
256 +)))|(% style="width:346px" %)(((
270 270  (((
271 -Default Value is: no parity.
272 -)))
273 -)))|(% style="width:347px" %)(((
274 -(((
275 275  AT+PARITY=0
276 276  )))
277 277  
... ... @@ -279,17 +279,17 @@
279 279  Option: 0: no parity, 1: odd parity, 2: even parity
280 280  )))
281 281  )))
282 -|(((
265 +|(% style="width:128px" %)(((
283 283  AT+STOPBIT
284 -)))|(% style="width:285px" %)(((
267 +)))|(% style="width:305px" %)(((
285 285  (((
286 286  Set serial stopbit (for RS485 connection)
287 287  )))
288 288  
289 289  (((
290 -Default Value is: 1bit.
273 +
291 291  )))
292 -)))|(% style="width:347px" %)(((
275 +)))|(% style="width:346px" %)(((
293 293  (((
294 294  AT+STOPBIT=0 for 1bit
295 295  )))
... ... @@ -304,87 +304,56 @@
304 304  )))
305 305  
306 306  
290 +=== 3.3.2 Configure sensors ===
307 307  
292 +(((
293 +(((
294 +Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
295 +)))
296 +)))
308 308  
309 -1.
310 -11.
311 -111. Configure sensors
312 -
313 -Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands AT+CFGDEV.
314 -
315 -
316 -When user issue an AT+CFGDEV command, Each AT+CFGDEV equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
317 -
318 -|**AT Commands**|**Description**|**Example**
319 -|AT+CFGDEV|(((
298 +(% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
299 +|**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
300 +|AT+CFGDEV|(% style="width:418px" %)(((
320 320  This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
321 321  
322 -AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
303 +AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
323 323  
324 -m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
325 -)))|AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
305 +mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
306 +)))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
326 326  
327 -Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
328 328  
309 +=== 3.3.3 Configure read commands for each sampling ===
329 329  
311 +(((
312 +During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
330 330  
331 -
332 -
333 -1.
334 -11.
335 -111. Configure read commands for each sampling
336 -
337 -RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
338 -
339 -
340 -During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
341 -
342 -
343 343  To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
344 344  
345 -
346 346  This section describes how to achieve above goals.
347 347  
318 +During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
348 348  
349 -During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
350 350  
321 +**Each RS485 commands include two parts:**
351 351  
352 -**Command from RS485-BL to Sensor:**
323 +~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
353 353  
354 -RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
325 +2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
355 355  
327 +3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
356 356  
357 -**Handle return from sensors to RS485-BL**:
358 358  
359 -After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
360 -
361 -
362 -* **AT+DATACUT**
363 -
364 -When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
365 -
366 -
367 -* **AT+SEARCH**
368 -
369 -When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
370 -
371 -
372 -**Define wait timeout:**
373 -
374 -Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
375 -
376 -
377 377  After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
378 378  
379 379  
380 -**Examples:**
381 -
382 382  Below are examples for the how above AT Commands works.
383 383  
384 384  
385 -**AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
336 +**AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
386 386  
387 -|(((
338 +(% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
339 +|(% style="width:496px" %)(((
388 388  **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
389 389  
390 390  **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
... ... @@ -394,43 +394,13 @@
394 394  
395 395  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
396 396  
397 -In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
349 +In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
398 398  
399 399  
400 -**AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
401 -
402 -|(((
403 -**AT+SEARCHx=aa,xx xx xx xx xx**
404 -
405 -* **aa: 1: prefix match mode; 2: prefix and suffix match mode**
406 -* **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
407 -
408 -
409 -)))
410 -
411 -Examples:
412 -
413 -1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
414 -
415 -If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
416 -
417 -The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
418 -
419 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
420 -
421 -
422 -1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
423 -
424 -If we set AT+SEARCH1=2, 1E 56 34+31 00 49
425 -
426 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
427 -
428 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
429 -
430 -
431 431  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
432 432  
433 -|(((
354 +(% border="1" style="background-color:#4bacc6; color:white; width:725px" %)
355 +|(% style="width:722px" %)(((
434 434  **AT+DATACUTx=a,b,c**
435 435  
436 436  * **a: length for the return of AT+COMMAND**
... ... @@ -438,98 +438,90 @@
438 438  * **c: define the position for valid value.  **
439 439  )))
440 440  
441 -Examples:
363 +**Examples:**
442 442  
443 443  * Grab bytes:
444 444  
445 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
367 +[[image:image-20220602153621-1.png]]
446 446  
369 +
447 447  * Grab a section.
448 448  
449 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
372 +[[image:image-20220602153621-2.png]]
450 450  
374 +
451 451  * Grab different sections.
452 452  
453 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
377 +[[image:image-20220602153621-3.png]]
454 454  
379 +
380 +)))
455 455  
456 -Note:
382 +=== 3.3.4 Compose the uplink payload ===
457 457  
458 -AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
459 -
460 -Example:
461 -
462 -AT+COMMAND1=11 01 1E D0,0
463 -
464 -AT+SEARCH1=1,1E 56 34
465 -
466 -AT+DATACUT1=0,2,1~~5
467 -
468 -Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
469 -
470 -String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
471 -
472 -Valid payload after DataCUT command: 2e 30 58 5f 36
473 -
474 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
475 -
476 -
477 -
478 -
479 -1.
480 -11.
481 -111. Compose the uplink payload
482 -
384 +(((
483 483  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
484 484  
387 +
388 +)))
485 485  
486 -**Examples: AT+DATAUP=0**
390 +(((
391 +(% style="color:#037691" %)**Examples: AT+DATAUP=0**
487 487  
488 -Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
393 +
394 +)))
489 489  
396 +(((
397 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
398 +)))
399 +
400 +(((
490 490  Final Payload is
402 +)))
491 491  
492 -Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
404 +(((
405 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
406 +)))
493 493  
408 +(((
494 494  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
410 +)))
495 495  
496 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
412 +[[image:1653269759169-150.png||height="513" width="716"]]
497 497  
498 498  
415 +(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
499 499  
500 -**Examples: AT+DATAUP=1**
501 501  
502 -Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
418 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
503 503  
504 504  Final Payload is
505 505  
506 -Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
422 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
507 507  
508 508  1. Battery Info (2 bytes): Battery voltage
509 509  1. PAYVER (1 byte): Defined by AT+PAYVER
510 510  1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
511 511  1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
512 -1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
428 +1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
513 513  
514 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
430 +[[image:1653269916228-732.png||height="433" width="711"]]
515 515  
516 516  
517 517  So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
518 518  
519 -DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
435 +DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
520 520  
521 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
437 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
522 522  
523 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
439 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
524 524  
525 -
526 -
527 527  Below are the uplink payloads:
528 528  
529 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
443 +[[image:1653270130359-810.png]]
530 530  
531 531  
532 -Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
446 +(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
533 533  
534 534   ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
535 535  
... ... @@ -539,12 +539,8 @@
539 539  
540 540   ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
541 541  
456 +=== 3.3.5 Uplink on demand ===
542 542  
543 -
544 -1.
545 -11.
546 -111. Uplink on demand
547 -
548 548  Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
549 549  
550 550  Downlink control command:
1652954654347-831.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.7 KB
Content
1653266934636-343.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +176.5 KB
Content
1653267211009-519.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.7 KB
Content
1653268091319-405.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +399.3 KB
Content
1653268155545-638.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +113.7 KB
Content
1653268227651-549.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
1653269403619-508.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +294.0 KB
Content
1653269916228-732.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +143.3 KB
Content
1653270130359-810.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +197.8 KB
Content
image-20220602153621-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +23.4 KB
Content
image-20220602153621-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220602153621-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.3 KB
Content