Changes for page RS485-LN – RS485 to LoRaWAN Converter User Manual
Last modified by Xiaoling on 2025/04/23 15:56
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 18 added, 0 removed)
- 1652954654347-831.png
- 1653266934636-343.png
- 1653267211009-519.png
- 1653268091319-405.png
- 1653268155545-638.png
- 1653268227651-549.png
- 1653269403619-508.png
- 1653269438444-278.png
- 1653269551753-223.png
- 1653269568276-930.png
- 1653269593172-426.png
- 1653269618463-608.png
- 1653269759169-150.png
- 1653269916228-732.png
- 1653270130359-810.png
- image-20220602153621-1.png
- image-20220602153621-2.png
- image-20220602153621-3.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -RS485- BL –WaterproofRS485 to LoRaWAN Converter1 +RS485-LN – RS485 to LoRaWAN Converter - Content
-
... ... @@ -1,12 +1,11 @@ 1 1 (% style="text-align:center" %) 2 -[[image:165294 7681187-144.png||height="385" width="385"]]2 +[[image:1653266934636-343.png||height="385" width="385"]] 3 3 4 4 5 5 6 +**RS485-LN – RS485 to LoRaWAN Converter User Manual** 6 6 7 -**RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual** 8 8 9 - 10 10 **Table of Contents:** 11 11 12 12 ... ... @@ -15,62 +15,46 @@ 15 15 16 16 = 1.Introduction = 17 17 18 -== 1.1 What is RS485- BL RS485 to LoRaWAN Converter ==17 +== 1.1 What is RS485-LN RS485 to LoRaWAN Converter == 19 19 20 20 ((( 21 - 22 -))) 23 - 24 24 ((( 25 -The Dragino RS485- BL is a **RS485/ UARTto LoRaWAN Converter**forInternetof Things solutions.Usercan connectRS485or UARTsensortoRS485-BLconverter,andconfigureRS485-BLtoperiodicallyreadsensor dataand upload via LoRaWANnetworktoIoTserver.21 +The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost. 26 26 ))) 27 27 28 28 ((( 29 -RS485- BLcaninterfacetoRS485sensor, 3.3v/5v UART sensororinterrupt sensor.RS485-BLprovidesa3.3v output**and**a5voutput**topowerexternalsensors.Bothoutputvoltagesare controllableominimizethe total system powerconsumption.25 +RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 30 30 ))) 31 31 32 32 ((( 33 - RS485-BLisIP67**waterproof**andpoweredby**8500mAhLi-SOCI2battery**,itisdesignedforlong termuseforseveral years.29 +(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server. 34 34 ))) 35 35 36 36 ((( 37 -RS485-BL runs standard **LoRaWAN 1.0.3 in Class A**. It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server. 38 -))) 33 +(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices. 39 39 40 -((( 41 -For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server. 35 +(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]] 42 42 ))) 43 - 44 -((( 45 -For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices. 46 46 ))) 47 47 48 -((( 49 -Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on. 50 -))) 39 +[[image:1653267211009-519.png||height="419" width="724"]] 51 51 52 -[[image:1652953304999-717.png||height="424" width="733"]] 53 53 54 54 == 1.2 Specifications == 55 55 44 + 56 56 **Hardware System:** 57 57 58 58 * STM32L072CZT6 MCU 59 59 * SX1276/78 Wireless Chip 60 60 * Power Consumption (exclude RS485 device): 61 -** Idle: 6uA@3.3v 50 +** Idle: 32mA@12v 51 +** 20dB Transmit: 65mA@12v 62 62 63 -* 64 -** 20dB Transmit: 130mA@3.3v 65 - 66 66 **Interface for Model:** 67 67 68 -* 1 x RS485 Interface 69 -* 1 x TTL Serial , 3.3v or 5v. 70 -* 1 x I2C Interface, 3.3v or 5v. 71 -* 1 x one wire interface 72 -* 1 x Interrupt Interface 73 -* 1 x Controllable 5V output, max 55 +* RS485 56 +* Power Input 7~~ 24V DC. 74 74 75 75 **LoRa Spec:** 76 76 ... ... @@ -79,28 +79,33 @@ 79 79 ** Band 2 (LF): 410 ~~ 528 Mhz 80 80 * 168 dB maximum link budget. 81 81 * +20 dBm - 100 mW constant RF output vs. 65 +* +14 dBm high efficiency PA. 82 82 * Programmable bit rate up to 300 kbps. 83 83 * High sensitivity: down to -148 dBm. 84 84 * Bullet-proof front end: IIP3 = -12.5 dBm. 85 85 * Excellent blocking immunity. 70 +* Low RX current of 10.3 mA, 200 nA register retention. 86 86 * Fully integrated synthesizer with a resolution of 61 Hz. 87 -* LoRa modulation. 72 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation. 88 88 * Built-in bit synchronizer for clock recovery. 89 89 * Preamble detection. 90 90 * 127 dB Dynamic Range RSSI. 91 -* Automatic RF Sense and CAD with ultra-fast AFC. 76 +* Automatic RF Sense and CAD with ultra-fast AFC. 77 +* Packet engine up to 256 bytes with CRC. 92 92 79 + 93 93 == 1.3 Features == 94 94 95 -* LoRaWAN Class A & Class C protocol (default Class A)82 +* LoRaWAN Class A & Class C protocol (default Class C) 96 96 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864 97 97 * AT Commands to change parameters 98 -* Remote configure parameters via LoRa WANDownlink85 +* Remote configure parameters via LoRa Downlink 99 99 * Firmware upgradable via program port 100 100 * Support multiply RS485 devices by flexible rules 101 101 * Support Modbus protocol 102 -* Support Interrupt uplink 89 +* Support Interrupt uplink (Since hardware version v1.2) 103 103 91 + 104 104 == 1.4 Applications == 105 105 106 106 * Smart Buildings & Home Automation ... ... @@ -110,55 +110,49 @@ 110 110 * Smart Cities 111 111 * Smart Factory 112 112 101 + 113 113 == 1.5 Firmware Change log == 114 114 115 -[[RS485- BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]104 +[[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]] 116 116 106 + 117 117 == 1.6 Hardware Change log == 118 118 119 119 ((( 120 -v1.4 121 -))) 122 - 123 123 ((( 124 -~1. Change Power IC to TPS22916 125 -))) 111 +v1.2: Add External Interrupt Pin. 126 126 113 +v1.0: Release 127 127 128 -((( 129 -v1.3 115 + 130 130 ))) 131 - 132 -((( 133 -~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire 134 134 ))) 135 135 119 += 2. Power ON Device = 136 136 137 137 ((( 138 -v1.2 139 -))) 122 +The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below 140 140 124 +* Power Source VIN to RS485-LN VIN+ 125 +* Power Source GND to RS485-LN VIN- 126 + 141 141 ((( 142 - Releaseversion128 +Once there is power, the RS485-LN will be on. 143 143 ))) 144 144 145 - = 2. Pinmappingand Power ON Device =131 +[[image:1653268091319-405.png]] 146 146 147 -((( 148 -The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL. 133 + 149 149 ))) 150 150 151 -[[image:1652953055962-143.png||height="387" width="728"]] 152 - 153 - 154 -The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper. 155 - 156 156 = 3. Operation Mode = 157 157 158 158 == 3.1 How it works? == 159 159 160 160 ((( 161 -The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA. 141 +The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA. 142 + 143 + 162 162 ))) 163 163 164 164 == 3.2 Example to join LoRaWAN network == ... ... @@ -165,27 +165,37 @@ 165 165 166 166 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 167 167 168 -[[image:1652 953414711-647.png||height="337" width="723"]]150 +[[image:1653268155545-638.png||height="334" width="724"]] 169 169 152 + 170 170 ((( 171 -The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. 154 +((( 155 +The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below: 172 172 ))) 173 173 174 174 ((( 175 - The LG308isalreadysettoconnectto [[TTN V3 network>>url:https://www.thethingsnetwork.org/]].So what we need to nowisonly configureheTTN V3:159 +485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively. 176 176 ))) 177 177 162 +[[image:1653268227651-549.png||height="592" width="720"]] 163 + 178 178 ((( 179 - **Step1**:CreateadeviceinTTN V3 withOTAAkeys fromRS485-BL.165 +The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3: 180 180 ))) 181 181 182 182 ((( 183 - Each RS485-BLisshipped withastickerwithuniquedeviceEUI:169 +**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN. 184 184 ))) 185 185 172 +((( 173 +Each RS485-LN is shipped with a sticker with unique device EUI: 174 +))) 175 +))) 176 + 186 186 [[image:1652953462722-299.png]] 187 187 188 188 ((( 180 +((( 189 189 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot: 190 190 ))) 191 191 ... ... @@ -192,13 +192,11 @@ 192 192 ((( 193 193 Add APP EUI in the application. 194 194 ))) 187 +))) 195 195 196 - 197 - 198 - 199 199 [[image:image-20220519174512-1.png]] 200 200 201 -[[image:image-20220519174512-2.png||height="32 8" width="731"]]191 +[[image:image-20220519174512-2.png||height="323" width="720"]] 202 202 203 203 [[image:image-20220519174512-3.png||height="556" width="724"]] 204 204 ... ... @@ -214,44 +214,43 @@ 214 214 215 215 216 216 ((( 217 -**Step 2**: Power on RS485- BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.207 +**Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel. 218 218 ))) 219 219 220 220 [[image:1652953568895-172.png||height="232" width="724"]] 221 221 212 + 222 222 == 3.3 Configure Commands to read data == 223 223 224 224 ((( 225 -There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors. 216 +((( 217 +There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices. 226 226 ))) 227 227 228 -=== 3.3.1 onfigure UART settings for RS485 or TTL communication === 220 +((( 221 +(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1 229 229 230 -RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect. 223 + 224 +))) 225 +))) 231 231 232 - **~1. RS485-MODBUSmode:**227 +=== 3.3.1 onfigure UART settings for RS485 or TTL communication === 233 233 234 - AT+MOD=1~/~/Support RS485-MODBUStype sensors.Usercanconnect multiplyRS485,Modbus sensorstotheA/Bpins.229 +To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are: 235 235 236 -**2. TTL mode:** 237 - 238 -AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins. 239 - 240 -RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match. 241 - 242 -(% border="1" style="background-color:#ffffcc; color:green; width:795px" %) 243 -|((( 231 +(% border="1" style="background-color:#ffffcc; color:green; width:782px" %) 232 +|(% style="width:128px" %)((( 244 244 **AT Commands** 245 -)))|(% style="width: 285px" %)(((234 +)))|(% style="width:305px" %)((( 246 246 **Description** 247 -)))|(% style="width:34 7px" %)(((236 +)))|(% style="width:346px" %)((( 248 248 **Example** 249 249 ))) 250 -|((( 239 +|(% style="width:128px" %)((( 251 251 AT+BAUDR 252 -)))|(% style="width: 285px" %)(((241 +)))|(% style="width:305px" %)((( 253 253 Set the baud rate (for RS485 connection). Default Value is: 9600. 254 -)))|(% style="width:34 7px" %)(((243 +)))|(% style="width:346px" %)((( 255 255 ((( 256 256 AT+BAUDR=9600 257 257 ))) ... ... @@ -260,18 +260,12 @@ 260 260 Options: (1200,2400,4800,14400,19200,115200) 261 261 ))) 262 262 ))) 263 -|((( 252 +|(% style="width:128px" %)((( 264 264 AT+PARITY 265 -)))|(% style="width:285px" %)((( 266 -((( 254 +)))|(% style="width:305px" %)((( 267 267 Set UART parity (for RS485 connection) 268 -))) 269 - 256 +)))|(% style="width:346px" %)((( 270 270 ((( 271 -Default Value is: no parity. 272 -))) 273 -)))|(% style="width:347px" %)((( 274 -((( 275 275 AT+PARITY=0 276 276 ))) 277 277 ... ... @@ -279,17 +279,17 @@ 279 279 Option: 0: no parity, 1: odd parity, 2: even parity 280 280 ))) 281 281 ))) 282 -|((( 265 +|(% style="width:128px" %)((( 283 283 AT+STOPBIT 284 -)))|(% style="width: 285px" %)(((267 +)))|(% style="width:305px" %)((( 285 285 ((( 286 286 Set serial stopbit (for RS485 connection) 287 287 ))) 288 288 289 289 ((( 290 - DefaultValue is: 1bit.273 + 291 291 ))) 292 -)))|(% style="width:34 7px" %)(((275 +)))|(% style="width:346px" %)((( 293 293 ((( 294 294 AT+STOPBIT=0 for 1bit 295 295 ))) ... ... @@ -304,87 +304,56 @@ 304 304 ))) 305 305 306 306 290 +=== 3.3.2 Configure sensors === 307 307 292 +((( 293 +((( 294 +Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling. 295 +))) 296 +))) 308 308 309 -1. 310 -11. 311 -111. Configure sensors 312 - 313 -Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands AT+CFGDEV. 314 - 315 - 316 -When user issue an AT+CFGDEV command, Each AT+CFGDEV equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling. 317 - 318 -|**AT Commands**|**Description**|**Example** 319 -|AT+CFGDEV|((( 298 +(% border="1" style="background-color:#ffffcc; color:green; width:806px" %) 299 +|**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example** 300 +|AT+CFGDEV|(% style="width:418px" %)((( 320 320 This command is used to configure the RS485/TTL devices; they won’t be used during sampling. 321 321 322 -AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx, m303 +AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx, 323 323 324 -m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command 325 -)))|AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m 305 +mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command 306 +)))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m 326 326 327 -Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]]. 328 328 309 +=== 3.3.3 Configure read commands for each sampling === 329 329 311 +((( 312 +During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload. 330 330 331 - 332 - 333 -1. 334 -11. 335 -111. Configure read commands for each sampling 336 - 337 -RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink. 338 - 339 - 340 -During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload. 341 - 342 - 343 343 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload. 344 344 345 - 346 346 This section describes how to achieve above goals. 347 347 318 +During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads. 348 348 349 -During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads. 350 350 321 +**Each RS485 commands include two parts:** 351 351 352 - **CommandfromRS485-BL to Sensor:**323 +~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar. 353 353 354 -RS485 -BLcandoutpre-setmax15 stringsvia **AT+COMMAD1**,COMMAND2**,…,to**AT+COMMANDF** . All commands are of same grammar.325 +2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar. 355 355 327 +3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms 356 356 357 -**Handle return from sensors to RS485-BL**: 358 358 359 -After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands** 360 - 361 - 362 -* **AT+DATACUT** 363 - 364 -When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command. 365 - 366 - 367 -* **AT+SEARCH** 368 - 369 -When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string. 370 - 371 - 372 -**Define wait timeout:** 373 - 374 -Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms 375 - 376 - 377 377 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**. 378 378 379 379 380 -**Examples:** 381 - 382 382 Below are examples for the how above AT Commands works. 383 383 384 384 385 -**AT+COMMANDx : **This command will be sent to RS485 /TTLdevices during each sampling, Max command length is 14 bytes. The grammar is:336 +**AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is: 386 386 387 -|((( 338 +(% border="1" style="background-color:#4bacc6; color:white; width:499px" %) 339 +|(% style="width:496px" %)((( 388 388 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m** 389 389 390 390 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent** ... ... @@ -394,43 +394,13 @@ 394 394 395 395 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually. 396 396 397 -In the RS485- BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.349 +In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same. 398 398 399 399 400 -**AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx. 401 - 402 -|((( 403 -**AT+SEARCHx=aa,xx xx xx xx xx** 404 - 405 -* **aa: 1: prefix match mode; 2: prefix and suffix match mode** 406 -* **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix** 407 - 408 - 409 -))) 410 - 411 -Examples: 412 - 413 -1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 414 - 415 -If we set AT+SEARCH1=1,1E 56 34. (max 5 bytes for prefix) 416 - 417 -The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49 418 - 419 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]] 420 - 421 - 422 -1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 423 - 424 -If we set AT+SEARCH1=2, 1E 56 34+31 00 49 425 - 426 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30 427 - 428 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 429 - 430 - 431 431 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes. 432 432 433 -|((( 354 +(% border="1" style="background-color:#4bacc6; color:white; width:725px" %) 355 +|(% style="width:722px" %)((( 434 434 **AT+DATACUTx=a,b,c** 435 435 436 436 * **a: length for the return of AT+COMMAND** ... ... @@ -438,98 +438,90 @@ 438 438 * **c: define the position for valid value. ** 439 439 ))) 440 440 441 -Examples: 363 +**Examples:** 442 442 443 443 * Grab bytes: 444 444 445 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]367 +[[image:image-20220602153621-1.png]] 446 446 369 + 447 447 * Grab a section. 448 448 449 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]372 +[[image:image-20220602153621-2.png]] 450 450 374 + 451 451 * Grab different sections. 452 452 453 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]377 +[[image:image-20220602153621-3.png]] 454 454 379 + 380 +))) 455 455 456 - Note:382 +=== 3.3.4 Compose the uplink payload === 457 457 458 -AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0. 459 - 460 -Example: 461 - 462 -AT+COMMAND1=11 01 1E D0,0 463 - 464 -AT+SEARCH1=1,1E 56 34 465 - 466 -AT+DATACUT1=0,2,1~~5 467 - 468 -Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 469 - 470 -String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49 471 - 472 -Valid payload after DataCUT command: 2e 30 58 5f 36 473 - 474 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]] 475 - 476 - 477 - 478 - 479 -1. 480 -11. 481 -111. Compose the uplink payload 482 - 384 +((( 483 483 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.** 484 484 387 + 388 +))) 485 485 486 -**Examples: AT+DATAUP=0** 390 +((( 391 +(% style="color:#037691" %)**Examples: AT+DATAUP=0** 487 487 488 -Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**. 393 + 394 +))) 489 489 396 +((( 397 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**. 398 +))) 399 + 400 +((( 490 490 Final Payload is 402 +))) 491 491 492 -Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx 404 +((( 405 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx** 406 +))) 493 493 408 +((( 494 494 Where PAYVER is defined by AT+PAYVER, below is an example screen shot. 410 +))) 495 495 496 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]412 +[[image:1653269759169-150.png||height="513" width="716"]] 497 497 498 498 415 +(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1** 499 499 500 -**Examples: AT+DATAUP=1** 501 501 502 -Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**. 418 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**. 503 503 504 504 Final Payload is 505 505 506 -Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA 422 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA** 507 507 508 508 1. Battery Info (2 bytes): Battery voltage 509 509 1. PAYVER (1 byte): Defined by AT+PAYVER 510 510 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling. 511 511 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT) 512 -1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes428 +1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes 513 513 514 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]430 +[[image:1653269916228-732.png||height="433" width="711"]] 515 515 516 516 517 517 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA 518 518 519 -DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41 435 +DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41 520 520 521 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20 437 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20 522 522 523 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30 439 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30 524 524 525 - 526 - 527 527 Below are the uplink payloads: 528 528 529 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]443 +[[image:1653270130359-810.png]] 530 530 531 531 532 -Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below: 446 +(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:** 533 533 534 534 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date) 535 535 ... ... @@ -539,12 +539,8 @@ 539 539 540 540 ~* For all other bands: max 51 bytes for each uplink ( so 51 -5 = 46 max valid date). 541 541 456 +=== 3.3.5 Uplink on demand === 542 542 543 - 544 -1. 545 -11. 546 -111. Uplink on demand 547 - 548 548 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command. 549 549 550 550 Downlink control command:
- 1652954654347-831.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.7 KB - Content
- 1653266934636-343.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +176.5 KB - Content
- 1653267211009-519.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.7 KB - Content
- 1653268091319-405.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +399.3 KB - Content
- 1653268155545-638.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +113.7 KB - Content
- 1653268227651-549.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.3 MB - Content
- 1653269403619-508.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +27.8 KB - Content
- 1653269438444-278.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +26.6 KB - Content
- 1653269551753-223.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.7 KB - Content
- 1653269568276-930.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +131.4 KB - Content
- 1653269593172-426.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +142.6 KB - Content
- 1653269618463-608.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +27.7 KB - Content
- 1653269759169-150.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +294.0 KB - Content
- 1653269916228-732.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +143.3 KB - Content
- 1653270130359-810.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +197.8 KB - Content
- image-20220602153621-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +23.4 KB - Content
- image-20220602153621-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220602153621-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.3 KB - Content