Version 61.2 by Xiaoling on 2022/06/14 11:27

Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1.Introduction =
21
22 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
23
24 (((
25 (((
26 (((
27
28
29 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
30 )))
31 )))
32
33 (((
34 (((
35 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
36 )))
37 )))
38
39 (((
40 (((
41 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
42 )))
43 )))
44
45 (((
46 (((
47 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
48 )))
49
50 (((
51 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
52
53
54 )))
55 )))
56 )))
57
58 [[image:1653267211009-519.png||height="419" width="724"]]
59
60
61 == 1.2 Specifications ==
62
63
64 **Hardware System:**
65
66 * STM32L072CZT6 MCU
67 * SX1276/78 Wireless Chip 
68 * Power Consumption (exclude RS485 device):
69 ** Idle: 32mA@12v
70 ** 20dB Transmit: 65mA@12v
71
72 **Interface for Model:**
73
74 * RS485
75 * Power Input 7~~ 24V DC. 
76
77 **LoRa Spec:**
78
79 * Frequency Range:
80 ** Band 1 (HF): 862 ~~ 1020 Mhz
81 ** Band 2 (LF): 410 ~~ 528 Mhz
82 * 168 dB maximum link budget.
83 * +20 dBm - 100 mW constant RF output vs.
84 * +14 dBm high efficiency PA.
85 * Programmable bit rate up to 300 kbps.
86 * High sensitivity: down to -148 dBm.
87 * Bullet-proof front end: IIP3 = -12.5 dBm.
88 * Excellent blocking immunity.
89 * Low RX current of 10.3 mA, 200 nA register retention.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC.
96 * Packet engine up to 256 bytes with CRC
97
98
99
100 == 1.3 Features ==
101
102 * LoRaWAN Class A & Class C protocol (default Class C)
103 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
104 * AT Commands to change parameters
105 * Remote configure parameters via LoRa Downlink
106 * Firmware upgradable via program port
107 * Support multiply RS485 devices by flexible rules
108 * Support Modbus protocol
109 * Support Interrupt uplink (Since hardware version v1.2)
110
111
112
113 == 1.4 Applications ==
114
115 * Smart Buildings & Home Automation
116 * Logistics and Supply Chain Management
117 * Smart Metering
118 * Smart Agriculture
119 * Smart Cities
120 * Smart Factory
121
122
123
124 == 1.5 Firmware Change log ==
125
126 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
127
128
129 == 1.6 Hardware Change log ==
130
131 (((
132 (((
133 (((
134 v1.2: Add External Interrupt Pin.
135 )))
136
137 (((
138 v1.0: Release
139 )))
140
141
142 )))
143 )))
144
145 = 2. Power ON Device =
146
147 (((
148 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
149
150 * Power Source VIN to RS485-LN VIN+
151 * Power Source GND to RS485-LN VIN-
152
153 (((
154 Once there is power, the RS485-LN will be on.
155 )))
156
157 [[image:1653268091319-405.png]]
158
159
160 )))
161
162 = 3. Operation Mode =
163
164 == 3.1 How it works? ==
165
166 (((
167 (((
168 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
169 )))
170
171
172 )))
173
174 == 3.2 Example to join LoRaWAN network ==
175
176 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
177
178 [[image:1653268155545-638.png||height="334" width="724"]]
179
180
181 (((
182 (((
183 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
184 )))
185
186 (((
187 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
188 )))
189
190 [[image:1653268227651-549.png||height="592" width="720"]]
191
192
193 (((
194 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
195 )))
196
197 (((
198 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-LN.
199 )))
200
201 (((
202 Each RS485-LN is shipped with a sticker with unique device EUI:
203 )))
204 )))
205
206 [[image:1652953462722-299.png]]
207
208
209 (((
210 (((
211 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
212 )))
213
214 (((
215 **Add APP EUI in the application.**
216 )))
217 )))
218
219 [[image:image-20220519174512-1.png]]
220
221 [[image:image-20220519174512-2.png||height="323" width="720"]]
222
223 [[image:image-20220519174512-3.png||height="556" width="724"]]
224
225 [[image:image-20220519174512-4.png]]
226
227 You can also choose to create the device manually.
228
229 [[image:1652953542269-423.png||height="710" width="723"]]
230
231
232
233 **Add APP KEY and DEV EUI**
234
235 [[image:1652953553383-907.png||height="514" width="724"]]
236
237
238 (((
239 (% style="color:blue" %)**Step 2**(%%): Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
240 )))
241
242 [[image:1652953568895-172.png||height="232" width="724"]]
243
244
245 == 3.3 Configure Commands to read data ==
246
247 (((
248 (((
249 (((
250 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-LNviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
251 )))
252 )))
253
254 (((
255 (((
256 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
257 )))
258
259
260 )))
261 )))
262
263 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
264
265 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
266
267 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
268 |=(% style="width: 110px;" %)(((
269 **AT Commands**
270 )))|=(% style="width: 190px;" %)(((
271 **Description**
272 )))|=(% style="width: 190px;" %)(((
273 **Example**
274 )))
275 |(% style="width:110px" %)(((
276 AT+BAUDR
277 )))|(% style="width:190px" %)(((
278 Set the baud rate (for RS485 connection). Default Value is: 9600.
279 )))|(% style="width:190px" %)(((
280 (((
281 AT+BAUDR=9600
282 )))
283
284 (((
285 Options: (1200,2400,4800,14400,19200,115200)
286 )))
287 )))
288 |(% style="width:110px" %)(((
289 AT+PARITY
290 )))|(% style="width:190px" %)(((
291 Set UART parity (for RS485 connection)
292 )))|(% style="width:190px" %)(((
293 (((
294 AT+PARITY=0
295 )))
296
297 (((
298 Option: 0: no parity, 1: odd parity, 2: even parity
299 )))
300 )))
301 |(% style="width:110px" %)(((
302 AT+STOPBIT
303 )))|(% style="width:190px" %)(((
304 (((
305 Set serial stopbit (for RS485 connection)
306 )))
307
308 (((
309
310 )))
311 )))|(% style="width:190px" %)(((
312 (((
313 AT+STOPBIT=0 for 1bit
314 )))
315
316 (((
317 AT+STOPBIT=1 for 1.5 bit
318 )))
319
320 (((
321 AT+STOPBIT=2 for 2 bits
322 )))
323 )))
324
325
326
327
328 === 3.3.2 Configure sensors ===
329
330 (((
331 (((
332 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
333 )))
334 )))
335
336 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
337 |=(% style="width: 110px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
338 |AT+CFGDEV|(% style="width:110px" %)(((
339 (((
340 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
341 )))
342
343 (((
344 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
345 )))
346
347 (((
348 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
349 )))
350 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
351
352 === 3.3.3 Configure read commands for each sampling ===
353
354 (((
355 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
356
357 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
358
359 This section describes how to achieve above goals.
360
361 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
362
363
364 (% style="color:#037691" %)**Each RS485 commands include two parts:**
365
366 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
367
368 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
369
370 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
371
372
373 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
374
375
376 Below are examples for the how above AT Commands works.
377
378
379 (% style="color:#037691" %)**AT+COMMANDx **(%%)**: **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
380
381 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
382 |(% style="width:496px" %)(((
383 (% style="color:#037691" %)**AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
384
385 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
386
387 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
388 )))
389
390 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
391
392 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
393
394
395 (% style="color:#037691" %)**AT+DATACUTx **(%%)**: **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
396
397 (% border="1" style="background-color:#4bacc6; color:white; width:510px" %)
398 |(% style="width:510px" %)(((
399 **AT+DATACUTx=a,b,c**
400
401 * **a: length for the return of AT+COMMAND**
402 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
403 * **c: define the position for valid value.  **
404 )))
405
406 **Examples:**
407
408 * (% style="color:#037691" %)**Grab bytes**
409
410 [[image:image-20220602153621-1.png]]
411
412
413 * (% style="color:#037691" %)**Grab a section**
414
415 [[image:image-20220602153621-2.png]]
416
417
418 * (% style="color:#037691" %)**Grab different sections**
419
420 [[image:image-20220602153621-3.png]]
421
422
423
424 )))
425
426 === 3.3.4 Compose the uplink payload ===
427
428 (((
429 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
430
431
432 )))
433
434 (((
435 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
436
437
438 )))
439
440 (((
441 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
442 )))
443
444 (((
445 Final Payload is
446 )))
447
448 (((
449 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
450 )))
451
452 (((
453 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
454 )))
455
456 [[image:1653269759169-150.png||height="513" width="716"]]
457
458
459 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
460
461
462 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
463
464 Final Payload is
465
466 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
467
468
469 1. PAYVER: Defined by AT+PAYVER
470 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
471 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
472 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
473
474 [[image:image-20220602155039-4.png]]
475
476
477 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
478
479 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
480
481 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
482
483 DATA3=the rest of Valid value of RETURN10= **30**
484
485
486 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
487
488 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
489
490 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
491
492 * For US915 band, max 11 bytes for each uplink.
493
494 ~* For all other bands: max 51 bytes for each uplink.
495
496
497 Below are the uplink payloads:
498
499 [[image:1654157178836-407.png]]
500
501
502 === 3.3.5 Uplink on demand ===
503
504 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
505
506 Downlink control command:
507
508 **0x08 command**: Poll an uplink with current command set in RS485-LN.
509
510 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
511
512
513
514 === 3.3.6 Uplink on Interrupt ===
515
516 RS485-LN support external Interrupt uplink since hardware v1.2 release.
517
518 [[image:1654157342174-798.png]]
519
520 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
521
522
523 == 3.4 Uplink Payload ==
524
525
526 [[image:image-20220606110929-1.png]]
527
528 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
529
530
531 == 3.5 Configure RS485-LN via AT or Downlink ==
532
533 (((
534 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
535 )))
536
537 (((
538 There are two kinds of Commands:
539 )))
540
541 * (((
542 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
543 )))
544
545 * (((
546 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
547 )))
548
549 (((
550
551 )))
552
553
554 === 3.5.1 Common Commands ===
555
556 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
557
558
559 === 3.5.2 Sensor related commands ===
560
561 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
562
563 [[image:image-20220602163333-5.png||height="263" width="1160"]]
564
565 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
566
567
568 === 3.5.3 Sensor related commands ===
569
570
571
572
573 ==== **RS485 Debug Command** ====
574
575 (((
576 This command is used to configure the RS485 devices; they won’t be used during sampling.
577 )))
578
579 * (((
580 **AT Command**
581 )))
582
583 (% class="box infomessage" %)
584 (((
585 (((
586 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
587 )))
588 )))
589
590 (((
591 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
592 )))
593
594 * (((
595 **Downlink Payload**
596 )))
597
598 (((
599 Format: A8 MM NN XX XX XX XX YY
600 )))
601
602 (((
603 Where:
604 )))
605
606 * (((
607 MM: 1: add CRC-16/MODBUS ; 0: no CRC
608 )))
609 * (((
610 NN: The length of RS485 command
611 )))
612 * (((
613 XX XX XX XX: RS485 command total NN bytes
614 )))
615 * (((
616 (((
617 YY: How many bytes will be uplink from the return of this RS485 command,
618 )))
619
620 * (((
621 if YY=0, RS485-LN will execute the downlink command without uplink;
622 )))
623 * (((
624 if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
625 )))
626 * (((
627 if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
628 )))
629 )))
630
631 (((
632 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
633 )))
634
635 (((
636 To connect a Modbus Alarm with below commands.
637 )))
638
639 * (((
640 The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
641 )))
642
643 * (((
644 The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
645 )))
646
647 (((
648 So if user want to use downlink command to control to RS485 Alarm, he can use:
649 )))
650
651 (((
652 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
653 )))
654
655 (((
656 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
657 )))
658
659 (((
660 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
661 )))
662
663 (((
664
665 )))
666
667 (((
668 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
669 )))
670
671 (((
672 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
673 )))
674
675 (((
676
677 )))
678
679 (((
680 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
681 )))
682
683 (((
684 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
685 )))
686
687 (((
688 [[image:1654159460680-153.png]]
689 )))
690
691
692
693
694 ==== **Set Payload version** ====
695
696 (((
697 This is the first byte of the uplink payload. RS485-LN can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
698 )))
699
700 * (((
701 **AT Command:**
702 )))
703
704 (% class="box infomessage" %)
705 (((
706 (((
707 **AT+PAYVER: Set PAYVER field = 1**
708 )))
709 )))
710
711 * (((
712 **Downlink Payload:**
713 )))
714
715 (((
716 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
717 )))
718
719 (((
720 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
721 )))
722
723
724
725
726 ==== **Set RS485 Sampling Commands** ====
727
728 (((
729 AT+COMMANDx or AT+DATACUTx
730 )))
731
732 (((
733 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
734 )))
735
736 (((
737
738 )))
739
740 * (((
741 **AT Command:**
742 )))
743
744 (% class="box infomessage" %)
745 (((
746 (((
747 **AT+COMMANDx: Configure RS485 read command to sensor.**
748 )))
749 )))
750
751 (% class="box infomessage" %)
752 (((
753 (((
754 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
755 )))
756 )))
757
758 (((
759
760 )))
761
762 * (((
763 **Downlink Payload:**
764 )))
765
766 (((
767 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
768 )))
769
770 (((
771 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
772 )))
773
774 (((
775 Format: AF MM NN LL XX XX XX XX YY
776 )))
777
778 (((
779 Where:
780 )))
781
782 * (((
783 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
784 )))
785 * (((
786 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
787 )))
788 * (((
789 LL:  The length of AT+COMMAND or AT+DATACUT command
790 )))
791 * (((
792 XX XX XX XX: AT+COMMAND or AT+DATACUT command
793 )))
794 * (((
795 YY:  If YY=0, RS485-LN will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
796 )))
797
798 (((
799 **Example:**
800 )))
801
802 (((
803 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
804 )))
805
806 (((
807 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
808 )))
809
810 (((
811 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
812 )))
813
814
815
816
817 ==== **Fast command to handle MODBUS device** ====
818
819 (((
820 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
821 )))
822
823 (((
824 This command is valid since v1.3 firmware version
825 )))
826
827 (((
828 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
829 )))
830
831 (((
832
833 )))
834
835 (((
836 **Example:**
837 )))
838
839 * (((
840 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
841 )))
842 * (((
843 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
844 )))
845 * (((
846 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
847 )))
848
849 [[image:image-20220602165351-6.png]]
850
851 [[image:image-20220602165351-7.png]]
852
853
854
855
856 ==== **RS485 command timeout** ====
857
858 (((
859 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
860 )))
861
862 (((
863 Default value: 0, range:  0 ~~ 65 seconds
864 )))
865
866 * (((
867 **AT Command:**
868 )))
869
870 (% class="box infomessage" %)
871 (((
872 (((
873 **AT+CMDDLaa=hex(bb cc)*1000**
874 )))
875 )))
876
877 (((
878 **Example:**
879 )))
880
881 (((
882 **AT+CMDDL1=1000** to send the open time to 1000ms
883 )))
884
885 (((
886
887 )))
888
889 * (((
890 **Downlink Payload:**
891 )))
892
893 (((
894 **0x AA aa bb cc**
895 )))
896
897 (((
898 Same as: AT+CMDDLaa=hex(bb cc)*1000
899 )))
900
901 (((
902 **Example:**
903 )))
904
905 (((
906 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
907 )))
908
909
910
911
912 ==== **Uplink payload mode** ====
913
914 (((
915 Define to use one uplink or multiple uplinks for the sampling.
916 )))
917
918 (((
919 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
920 )))
921
922 * (((
923 **AT Command:**
924 )))
925
926 (% class="box infomessage" %)
927 (((
928 (((
929 **AT+DATAUP=0**
930 )))
931 )))
932
933 (% class="box infomessage" %)
934 (((
935 (((
936 **AT+DATAUP=1**
937 )))
938 )))
939
940 (((
941
942 )))
943
944 * (((
945 **Downlink Payload:**
946 )))
947
948 (((
949 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
950 )))
951
952 (((
953 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
954 )))
955
956
957
958
959 ==== **Manually trigger an Uplink** ====
960
961 (((
962 Ask device to send an uplink immediately.
963 )))
964
965 * (((
966 **AT Command:**
967 )))
968
969 (((
970 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
971 )))
972
973 (((
974
975 )))
976
977 * (((
978 **Downlink Payload:**
979 )))
980
981 (((
982 **0x08 FF**, RS485-LN will immediately send an uplink.
983 )))
984
985
986
987
988 ==== **Clear RS485 Command** ====
989
990 (((
991 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
992 )))
993
994 * (((
995 **AT Command:**
996 )))
997
998 (((
999 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
1000 )))
1001
1002 (((
1003 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1004 )))
1005
1006 (((
1007 Example screen shot after clear all RS485 commands. 
1008 )))
1009
1010 (((
1011
1012 )))
1013
1014 (((
1015 The uplink screen shot is:
1016 )))
1017
1018 [[image:1654160691922-496.png]]
1019
1020
1021 * (((
1022 **Downlink Payload:**
1023 )))
1024
1025 (((
1026 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1027 )))
1028
1029
1030
1031
1032 ==== **Set Serial Communication Parameters** ====
1033
1034 (((
1035 Set the Rs485 serial communication parameters:
1036 )))
1037
1038 * (((
1039 **AT Command:**
1040 )))
1041
1042 (((
1043 Set Baud Rate:
1044 )))
1045
1046 (% class="box infomessage" %)
1047 (((
1048 (((
1049 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1050 )))
1051 )))
1052
1053 (((
1054 Set UART Parity
1055 )))
1056
1057 (% class="box infomessage" %)
1058 (((
1059 (((
1060 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1061 )))
1062 )))
1063
1064 (((
1065 Set STOPBIT
1066 )))
1067
1068 (% class="box infomessage" %)
1069 (((
1070 (((
1071 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1072 )))
1073 )))
1074
1075 (((
1076
1077 )))
1078
1079 * (((
1080 **Downlink Payload:**
1081 )))
1082
1083 (((
1084 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1085 )))
1086
1087 (((
1088 **Example:**
1089 )))
1090
1091 * (((
1092 A7 01 00 60   same as AT+BAUDR=9600
1093 )))
1094 * (((
1095 A7 01 04 80  same as AT+BAUDR=115200
1096 )))
1097
1098 (((
1099 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1100 )))
1101
1102 (((
1103 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1104 )))
1105
1106
1107
1108
1109 == 3.6 Listening mode for RS485 network ==
1110
1111 (((
1112 This feature support since firmware v1.4
1113 )))
1114
1115 (((
1116 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
1117 )))
1118
1119 [[image:image-20220602171200-8.png||height="567" width="1007"]]
1120
1121 (((
1122 To enable the listening mode, use can run the command AT+RXMODE.
1123 )))
1124
1125 (((
1126
1127 )))
1128
1129 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
1130 |=(% style="width: 100px;" %)(((
1131 **Command example**
1132 )))|=(% style="width: 400px;" %)(((
1133 **Function**
1134 )))
1135 |(% style="width:100px" %)(((
1136 AT+RXMODE=1,10
1137 )))|(% style="width:400px" %)(((
1138 Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
1139 )))
1140 |(% style="width:100px" %)(((
1141 AT+RXMODE=2,500
1142 )))|(% style="width:400px" %)(((
1143 Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
1144 )))
1145 |(% style="width:100px" %)(((
1146 AT+RXMODE=0,0
1147 )))|(% style="width:400px" %)(((
1148 Disable listening mode. This is the default settings.
1149 )))
1150 |(% style="width:100px" %)(((
1151
1152 )))|(% style="width:400px" %)(((
1153 A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 | cc)
1154 )))
1155
1156 (((
1157 **Downlink Command:**
1158 )))
1159
1160 (((
1161 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
1162 )))
1163
1164 (((
1165
1166 )))
1167
1168 (((
1169 **Example**:
1170 )))
1171
1172 (((
1173 The RS485-LN is set to AT+RXMODE=2,1000
1174 )))
1175
1176 (((
1177 There is a two Modbus commands in the RS485 network as below:
1178 )))
1179
1180 (((
1181 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
1182 )))
1183
1184 (((
1185 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1186 )))
1187
1188 (((
1189 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1190 )))
1191
1192 (((
1193 [[image:image-20220602171200-9.png]]
1194 )))
1195
1196 (((
1197
1198 )))
1199
1200 (((
1201 (((
1202 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
1203 )))
1204 )))
1205
1206
1207 == 3.7 Buttons ==
1208
1209
1210 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1211 |=(% style="width: 50px;" %)**Button**|=(% style="width: 361px;" %)**Feature**
1212 |(% style="width:50px" %)**ACT**|(% style="width:361px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
1213 |(% style="width:50px" %)**RST**|(% style="width:361px" %)Reboot RS485
1214 |(% style="width:50px" %)**PRO**|(% style="width:361px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
1215
1216 == 3.8 LEDs ==
1217
1218
1219 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1220 |=(% style="width: 50px;" %)**LEDs**|=(% style="width: 380px;" %)**Feature**
1221 |**PWR**|Always on if there is power
1222 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN**(%%) for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds** (%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
1223
1224 = 4. Case Study =
1225
1226 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1227
1228
1229 = 5. Use AT Command =
1230
1231 == 5.1 Access AT Command ==
1232
1233 (((
1234 RS485-LN supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-LN to use AT command, as below.
1235 )))
1236
1237 [[image:1654162355560-817.png]]
1238
1239
1240 (((
1241 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-LN. The default password is 123456. Below is the output for reference:
1242 )))
1243
1244 [[image:1654162368066-342.png]]
1245
1246
1247 (((
1248 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1249 )))
1250
1251
1252
1253 == 5.2 Common AT Command Sequence ==
1254
1255 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1256
1257 If device has not joined network yet:
1258
1259 (% class="box infomessage" %)
1260 (((
1261 **AT+FDR**
1262 )))
1263
1264 (% class="box infomessage" %)
1265 (((
1266 **AT+NJM=0**
1267 )))
1268
1269 (% class="box infomessage" %)
1270 (((
1271 **ATZ**
1272 )))
1273
1274
1275 (((
1276 If device already joined network:
1277 )))
1278
1279 (% class="box infomessage" %)
1280 (((
1281 **AT+NJM=0**
1282 )))
1283
1284 (% class="box infomessage" %)
1285 (((
1286 **ATZ**
1287 )))
1288
1289
1290 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1291
1292
1293 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1294
1295 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1296
1297 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1298
1299 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
1300
1301 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1302
1303 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1304
1305 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1306
1307 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1308
1309 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1310
1311 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1312
1313
1314 (% style="color:red" %)**Note:**
1315
1316 (((
1317 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1318 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1319 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1320 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1321 )))
1322
1323 [[image:1654162478620-421.png]]
1324
1325
1326 = 6. FAQ =
1327
1328 == 6.1 How to upgrade the image? ==
1329
1330 (((
1331 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
1332 )))
1333
1334 * (((
1335 Support new features
1336 )))
1337 * (((
1338 For bug fix
1339 )))
1340 * (((
1341 Change LoRaWAN bands.
1342 )))
1343
1344 (((
1345 Below shows the hardware connection for how to upload an image to RS485-LN:
1346 )))
1347
1348 [[image:1654162535040-878.png]]
1349
1350 (((
1351 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1352 )))
1353
1354 (((
1355 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1356 )))
1357
1358 (((
1359 **Step3: **Open flashloader; choose the correct COM port to update.
1360 )))
1361
1362 (((
1363 (((
1364 (((
1365 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
1366 )))
1367 )))
1368 )))
1369
1370
1371 [[image:image-20220602175818-12.png]]
1372
1373
1374 [[image:image-20220602175848-13.png]]
1375
1376
1377 [[image:image-20220602175912-14.png]]
1378
1379
1380 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1381
1382 [[image:image-20220602175638-10.png]]
1383
1384
1385 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1386
1387 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1388
1389
1390 == 6.3 How many RS485-Slave can RS485-LN connects? ==
1391
1392 The RS485-LN can support max 32 RS485 devices. Each uplink command of RS485-LN can support max 16 different RS485 command. So RS485-LN can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1393
1394
1395 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1396
1397 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1398
1399 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1400
1401
1402 = 7. Trouble Shooting =
1403
1404 == 7.1 Downlink doesn’t work, how to solve it? ==
1405
1406 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1407
1408
1409 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1410
1411 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1412
1413
1414 = 8. Order Info =
1415
1416 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1417
1418 (% style="color:blue" %)**XXX:**
1419
1420 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1421 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1422 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1423 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1424 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1425 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1426 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1427 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1428 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1429 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1430
1431 = 9.Packing Info =
1432
1433
1434 **Package Includes**:
1435
1436 * RS485-LN x 1
1437 * Stick Antenna for LoRa RF part x 1
1438 * Program cable x 1
1439
1440 **Dimension and weight**:
1441
1442 * Device Size: 13.5 x 7 x 3 cm
1443 * Device Weight: 105g
1444 * Package Size / pcs : 14.5 x 8 x 5 cm
1445 * Weight / pcs : 170g
1446
1447 = 10. FCC Caution for RS485LN-US915 =
1448
1449 (((
1450 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1451 )))
1452
1453 (((
1454 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1455 )))
1456
1457 (((
1458
1459 )))
1460
1461 (((
1462 **IMPORTANT NOTE:**
1463 )))
1464
1465 (((
1466 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1467 )))
1468
1469 (((
1470 —Reorient or relocate the receiving antenna.
1471 )))
1472
1473 (((
1474 —Increase the separation between the equipment and receiver.
1475 )))
1476
1477 (((
1478 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1479 )))
1480
1481 (((
1482 —Consult the dealer or an experienced radio/TV technician for help.
1483 )))
1484
1485 (((
1486
1487 )))
1488
1489 (((
1490 **FCC Radiation Exposure Statement:**
1491 )))
1492
1493 (((
1494 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1495 )))
1496
1497
1498 = 11. Support =
1499
1500 * (((
1501 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1502 )))
1503 * (((
1504 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1505 )))