Version 60.14 by Xiaoling on 2022/06/14 11:26

Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1.Introduction =
21
22 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
23
24 (((
25 (((
26 (((
27
28
29 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
30 )))
31 )))
32
33 (((
34 (((
35 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
36 )))
37 )))
38
39 (((
40 (((
41 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
42 )))
43 )))
44
45 (((
46 (((
47 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
48 )))
49
50 (((
51 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
52
53
54 )))
55 )))
56 )))
57
58 [[image:1653267211009-519.png||height="419" width="724"]]
59
60
61 == 1.2 Specifications ==
62
63
64 **Hardware System:**
65
66 * STM32L072CZT6 MCU
67 * SX1276/78 Wireless Chip 
68 * Power Consumption (exclude RS485 device):
69 ** Idle: 32mA@12v
70 ** 20dB Transmit: 65mA@12v
71
72 **Interface for Model:**
73
74 * RS485
75 * Power Input 7~~ 24V DC. 
76
77 **LoRa Spec:**
78
79 * Frequency Range:
80 ** Band 1 (HF): 862 ~~ 1020 Mhz
81 ** Band 2 (LF): 410 ~~ 528 Mhz
82 * 168 dB maximum link budget.
83 * +20 dBm - 100 mW constant RF output vs.
84 * +14 dBm high efficiency PA.
85 * Programmable bit rate up to 300 kbps.
86 * High sensitivity: down to -148 dBm.
87 * Bullet-proof front end: IIP3 = -12.5 dBm.
88 * Excellent blocking immunity.
89 * Low RX current of 10.3 mA, 200 nA register retention.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC.
96 * Packet engine up to 256 bytes with CRC
97
98
99
100
101 == 1.3 Features ==
102
103 * LoRaWAN Class A & Class C protocol (default Class C)
104 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
105 * AT Commands to change parameters
106 * Remote configure parameters via LoRa Downlink
107 * Firmware upgradable via program port
108 * Support multiply RS485 devices by flexible rules
109 * Support Modbus protocol
110 * Support Interrupt uplink (Since hardware version v1.2)
111
112
113
114
115 == 1.4 Applications ==
116
117 * Smart Buildings & Home Automation
118 * Logistics and Supply Chain Management
119 * Smart Metering
120 * Smart Agriculture
121 * Smart Cities
122 * Smart Factory
123
124
125
126
127 == 1.5 Firmware Change log ==
128
129 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
130
131
132 == 1.6 Hardware Change log ==
133
134 (((
135 (((
136 (((
137 v1.2: Add External Interrupt Pin.
138 )))
139
140 (((
141 v1.0: Release
142 )))
143
144
145 )))
146 )))
147
148 = 2. Power ON Device =
149
150 (((
151 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
152
153 * Power Source VIN to RS485-LN VIN+
154 * Power Source GND to RS485-LN VIN-
155
156 (((
157 Once there is power, the RS485-LN will be on.
158 )))
159
160 [[image:1653268091319-405.png]]
161
162
163 )))
164
165 = 3. Operation Mode =
166
167 == 3.1 How it works? ==
168
169 (((
170 (((
171 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
172 )))
173
174
175 )))
176
177 == 3.2 Example to join LoRaWAN network ==
178
179 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
180
181 [[image:1653268155545-638.png||height="334" width="724"]]
182
183
184 (((
185 (((
186 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
187 )))
188
189 (((
190 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
191 )))
192
193 [[image:1653268227651-549.png||height="592" width="720"]]
194
195
196 (((
197 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
198 )))
199
200 (((
201 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-LN.
202 )))
203
204 (((
205 Each RS485-LN is shipped with a sticker with unique device EUI:
206 )))
207 )))
208
209 [[image:1652953462722-299.png]]
210
211
212 (((
213 (((
214 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
215 )))
216
217 (((
218 **Add APP EUI in the application.**
219 )))
220 )))
221
222 [[image:image-20220519174512-1.png]]
223
224 [[image:image-20220519174512-2.png||height="323" width="720"]]
225
226 [[image:image-20220519174512-3.png||height="556" width="724"]]
227
228 [[image:image-20220519174512-4.png]]
229
230 You can also choose to create the device manually.
231
232 [[image:1652953542269-423.png||height="710" width="723"]]
233
234
235
236 **Add APP KEY and DEV EUI**
237
238 [[image:1652953553383-907.png||height="514" width="724"]]
239
240
241 (((
242 (% style="color:blue" %)**Step 2**(%%): Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
243 )))
244
245 [[image:1652953568895-172.png||height="232" width="724"]]
246
247
248 == 3.3 Configure Commands to read data ==
249
250 (((
251 (((
252 (((
253 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-LNviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
254 )))
255 )))
256
257 (((
258 (((
259 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
260 )))
261
262
263 )))
264 )))
265
266 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
267
268 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
269
270 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
271 |=(% style="width: 110px;" %)(((
272 **AT Commands**
273 )))|=(% style="width: 190px;" %)(((
274 **Description**
275 )))|=(% style="width: 190px;" %)(((
276 **Example**
277 )))
278 |(% style="width:110px" %)(((
279 AT+BAUDR
280 )))|(% style="width:190px" %)(((
281 Set the baud rate (for RS485 connection). Default Value is: 9600.
282 )))|(% style="width:190px" %)(((
283 (((
284 AT+BAUDR=9600
285 )))
286
287 (((
288 Options: (1200,2400,4800,14400,19200,115200)
289 )))
290 )))
291 |(% style="width:110px" %)(((
292 AT+PARITY
293 )))|(% style="width:190px" %)(((
294 Set UART parity (for RS485 connection)
295 )))|(% style="width:190px" %)(((
296 (((
297 AT+PARITY=0
298 )))
299
300 (((
301 Option: 0: no parity, 1: odd parity, 2: even parity
302 )))
303 )))
304 |(% style="width:110px" %)(((
305 AT+STOPBIT
306 )))|(% style="width:190px" %)(((
307 (((
308 Set serial stopbit (for RS485 connection)
309 )))
310
311 (((
312
313 )))
314 )))|(% style="width:190px" %)(((
315 (((
316 AT+STOPBIT=0 for 1bit
317 )))
318
319 (((
320 AT+STOPBIT=1 for 1.5 bit
321 )))
322
323 (((
324 AT+STOPBIT=2 for 2 bits
325 )))
326 )))
327
328
329 === 3.3.2 Configure sensors ===
330
331 (((
332 (((
333 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
334 )))
335 )))
336
337 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
338 |=(% style="width: 110px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
339 |AT+CFGDEV|(% style="width:110px" %)(((
340 (((
341 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
342 )))
343
344 (((
345 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
346 )))
347
348 (((
349 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
350 )))
351 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
352
353
354 === 3.3.3 Configure read commands for each sampling ===
355
356 (((
357 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
358
359 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
360
361 This section describes how to achieve above goals.
362
363 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
364
365
366 (% style="color:#037691" %)**Each RS485 commands include two parts:**
367
368 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
369
370 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
371
372 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
373
374
375 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
376
377
378 Below are examples for the how above AT Commands works.
379
380
381 (% style="color:#037691" %)**AT+COMMANDx **(%%)**: **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
382
383 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
384 |(% style="width:496px" %)(((
385 (% style="color:#037691" %)**AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
386
387 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
388
389 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
390 )))
391
392 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
393
394 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
395
396
397 (% style="color:#037691" %)**AT+DATACUTx **(%%)**: **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
398
399 (% border="1" style="background-color:#4bacc6; color:white; width:510px" %)
400 |(% style="width:510px" %)(((
401 **AT+DATACUTx=a,b,c**
402
403 * **a: length for the return of AT+COMMAND**
404 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
405 * **c: define the position for valid value.  **
406 )))
407
408 **Examples:**
409
410 * (% style="color:#037691" %)**Grab bytes**
411
412 [[image:image-20220602153621-1.png]]
413
414
415 * (% style="color:#037691" %)**Grab a section**
416
417 [[image:image-20220602153621-2.png]]
418
419
420 * (% style="color:#037691" %)**Grab different sections**
421
422 [[image:image-20220602153621-3.png]]
423
424
425
426 )))
427
428 === 3.3.4 Compose the uplink payload ===
429
430 (((
431 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
432
433
434 )))
435
436 (((
437 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
438
439
440 )))
441
442 (((
443 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
444 )))
445
446 (((
447 Final Payload is
448 )))
449
450 (((
451 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
452 )))
453
454 (((
455 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
456 )))
457
458 [[image:1653269759169-150.png||height="513" width="716"]]
459
460
461 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
462
463
464 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
465
466 Final Payload is
467
468 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
469
470
471 1. PAYVER: Defined by AT+PAYVER
472 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
473 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
474 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
475
476 [[image:image-20220602155039-4.png]]
477
478
479 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
480
481 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
482
483 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
484
485 DATA3=the rest of Valid value of RETURN10= **30**
486
487
488 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
489
490 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
491
492 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
493
494 * For US915 band, max 11 bytes for each uplink.
495
496 ~* For all other bands: max 51 bytes for each uplink.
497
498
499 Below are the uplink payloads:
500
501 [[image:1654157178836-407.png]]
502
503
504 === 3.3.5 Uplink on demand ===
505
506 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
507
508 Downlink control command:
509
510 **0x08 command**: Poll an uplink with current command set in RS485-LN.
511
512 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
513
514
515
516 === 3.3.6 Uplink on Interrupt ===
517
518 RS485-LN support external Interrupt uplink since hardware v1.2 release.
519
520 [[image:1654157342174-798.png]]
521
522 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
523
524
525 == 3.4 Uplink Payload ==
526
527
528 [[image:image-20220606110929-1.png]]
529
530 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
531
532
533 == 3.5 Configure RS485-LN via AT or Downlink ==
534
535 (((
536 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
537 )))
538
539 (((
540 There are two kinds of Commands:
541 )))
542
543 * (((
544 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
545 )))
546
547 * (((
548 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
549 )))
550
551 (((
552
553 )))
554
555
556 === 3.5.1 Common Commands ===
557
558 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
559
560
561 === 3.5.2 Sensor related commands ===
562
563 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
564
565 [[image:image-20220602163333-5.png||height="263" width="1160"]]
566
567 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
568
569
570 === 3.5.3 Sensor related commands ===
571
572
573
574
575 ==== **RS485 Debug Command** ====
576
577 (((
578 This command is used to configure the RS485 devices; they won’t be used during sampling.
579 )))
580
581 * (((
582 **AT Command**
583 )))
584
585 (% class="box infomessage" %)
586 (((
587 (((
588 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
589 )))
590 )))
591
592 (((
593 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
594 )))
595
596 * (((
597 **Downlink Payload**
598 )))
599
600 (((
601 Format: A8 MM NN XX XX XX XX YY
602 )))
603
604 (((
605 Where:
606 )))
607
608 * (((
609 MM: 1: add CRC-16/MODBUS ; 0: no CRC
610 )))
611 * (((
612 NN: The length of RS485 command
613 )))
614 * (((
615 XX XX XX XX: RS485 command total NN bytes
616 )))
617 * (((
618 (((
619 YY: How many bytes will be uplink from the return of this RS485 command,
620 )))
621
622 * (((
623 if YY=0, RS485-LN will execute the downlink command without uplink;
624 )))
625 * (((
626 if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
627 )))
628 * (((
629 if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
630 )))
631 )))
632
633 (((
634 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
635 )))
636
637 (((
638 To connect a Modbus Alarm with below commands.
639 )))
640
641 * (((
642 The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
643 )))
644
645 * (((
646 The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
647 )))
648
649 (((
650 So if user want to use downlink command to control to RS485 Alarm, he can use:
651 )))
652
653 (((
654 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
655 )))
656
657 (((
658 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
659 )))
660
661 (((
662 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
663 )))
664
665 (((
666
667 )))
668
669 (((
670 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
671 )))
672
673 (((
674 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
675 )))
676
677 (((
678
679 )))
680
681 (((
682 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
683 )))
684
685 (((
686 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
687 )))
688
689 (((
690 [[image:1654159460680-153.png]]
691 )))
692
693
694
695
696 ==== **Set Payload version** ====
697
698 (((
699 This is the first byte of the uplink payload. RS485-LN can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
700 )))
701
702 * (((
703 **AT Command:**
704 )))
705
706 (% class="box infomessage" %)
707 (((
708 (((
709 **AT+PAYVER: Set PAYVER field = 1**
710 )))
711 )))
712
713 * (((
714 **Downlink Payload:**
715 )))
716
717 (((
718 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
719 )))
720
721 (((
722 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
723 )))
724
725
726
727
728 ==== **Set RS485 Sampling Commands** ====
729
730 (((
731 AT+COMMANDx or AT+DATACUTx
732 )))
733
734 (((
735 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
736 )))
737
738 (((
739
740 )))
741
742 * (((
743 **AT Command:**
744 )))
745
746 (% class="box infomessage" %)
747 (((
748 (((
749 **AT+COMMANDx: Configure RS485 read command to sensor.**
750 )))
751 )))
752
753 (% class="box infomessage" %)
754 (((
755 (((
756 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
757 )))
758 )))
759
760 (((
761
762 )))
763
764 * (((
765 **Downlink Payload:**
766 )))
767
768 (((
769 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
770 )))
771
772 (((
773 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
774 )))
775
776 (((
777 Format: AF MM NN LL XX XX XX XX YY
778 )))
779
780 (((
781 Where:
782 )))
783
784 * (((
785 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
786 )))
787 * (((
788 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
789 )))
790 * (((
791 LL:  The length of AT+COMMAND or AT+DATACUT command
792 )))
793 * (((
794 XX XX XX XX: AT+COMMAND or AT+DATACUT command
795 )))
796 * (((
797 YY:  If YY=0, RS485-LN will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
798 )))
799
800 (((
801 **Example:**
802 )))
803
804 (((
805 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
806 )))
807
808 (((
809 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
810 )))
811
812 (((
813 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
814 )))
815
816
817
818
819 ==== **Fast command to handle MODBUS device** ====
820
821 (((
822 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
823 )))
824
825 (((
826 This command is valid since v1.3 firmware version
827 )))
828
829 (((
830 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
831 )))
832
833 (((
834
835 )))
836
837 (((
838 **Example:**
839 )))
840
841 * (((
842 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
843 )))
844 * (((
845 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
846 )))
847 * (((
848 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
849 )))
850
851 [[image:image-20220602165351-6.png]]
852
853 [[image:image-20220602165351-7.png]]
854
855
856
857
858 ==== **RS485 command timeout** ====
859
860 (((
861 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
862 )))
863
864 (((
865 Default value: 0, range:  0 ~~ 65 seconds
866 )))
867
868 * (((
869 **AT Command:**
870 )))
871
872 (% class="box infomessage" %)
873 (((
874 (((
875 **AT+CMDDLaa=hex(bb cc)*1000**
876 )))
877 )))
878
879 (((
880 **Example:**
881 )))
882
883 (((
884 **AT+CMDDL1=1000** to send the open time to 1000ms
885 )))
886
887 (((
888
889 )))
890
891 * (((
892 **Downlink Payload:**
893 )))
894
895 (((
896 **0x AA aa bb cc**
897 )))
898
899 (((
900 Same as: AT+CMDDLaa=hex(bb cc)*1000
901 )))
902
903 (((
904 **Example:**
905 )))
906
907 (((
908 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
909 )))
910
911
912
913
914 ==== **Uplink payload mode** ====
915
916 (((
917 Define to use one uplink or multiple uplinks for the sampling.
918 )))
919
920 (((
921 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
922 )))
923
924 * (((
925 **AT Command:**
926 )))
927
928 (% class="box infomessage" %)
929 (((
930 (((
931 **AT+DATAUP=0**
932 )))
933 )))
934
935 (% class="box infomessage" %)
936 (((
937 (((
938 **AT+DATAUP=1**
939 )))
940 )))
941
942 (((
943
944 )))
945
946 * (((
947 **Downlink Payload:**
948 )))
949
950 (((
951 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
952 )))
953
954 (((
955 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
956 )))
957
958
959
960
961 ==== **Manually trigger an Uplink** ====
962
963 (((
964 Ask device to send an uplink immediately.
965 )))
966
967 * (((
968 **AT Command:**
969 )))
970
971 (((
972 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
973 )))
974
975 (((
976
977 )))
978
979 * (((
980 **Downlink Payload:**
981 )))
982
983 (((
984 **0x08 FF**, RS485-LN will immediately send an uplink.
985 )))
986
987
988
989
990 ==== **Clear RS485 Command** ====
991
992 (((
993 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
994 )))
995
996 * (((
997 **AT Command:**
998 )))
999
1000 (((
1001 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
1002 )))
1003
1004 (((
1005 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1006 )))
1007
1008 (((
1009 Example screen shot after clear all RS485 commands. 
1010 )))
1011
1012 (((
1013
1014 )))
1015
1016 (((
1017 The uplink screen shot is:
1018 )))
1019
1020 [[image:1654160691922-496.png]]
1021
1022
1023 * (((
1024 **Downlink Payload:**
1025 )))
1026
1027 (((
1028 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1029 )))
1030
1031
1032
1033
1034 ==== **Set Serial Communication Parameters** ====
1035
1036 (((
1037 Set the Rs485 serial communication parameters:
1038 )))
1039
1040 * (((
1041 **AT Command:**
1042 )))
1043
1044 (((
1045 Set Baud Rate:
1046 )))
1047
1048 (% class="box infomessage" %)
1049 (((
1050 (((
1051 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1052 )))
1053 )))
1054
1055 (((
1056 Set UART Parity
1057 )))
1058
1059 (% class="box infomessage" %)
1060 (((
1061 (((
1062 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1063 )))
1064 )))
1065
1066 (((
1067 Set STOPBIT
1068 )))
1069
1070 (% class="box infomessage" %)
1071 (((
1072 (((
1073 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1074 )))
1075 )))
1076
1077 (((
1078
1079 )))
1080
1081 * (((
1082 **Downlink Payload:**
1083 )))
1084
1085 (((
1086 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1087 )))
1088
1089 (((
1090 **Example:**
1091 )))
1092
1093 * (((
1094 A7 01 00 60   same as AT+BAUDR=9600
1095 )))
1096 * (((
1097 A7 01 04 80  same as AT+BAUDR=115200
1098 )))
1099
1100 (((
1101 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1102 )))
1103
1104 (((
1105 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1106 )))
1107
1108
1109
1110
1111 == 3.6 Listening mode for RS485 network ==
1112
1113 (((
1114 This feature support since firmware v1.4
1115 )))
1116
1117 (((
1118 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
1119 )))
1120
1121 [[image:image-20220602171200-8.png||height="567" width="1007"]]
1122
1123 (((
1124 To enable the listening mode, use can run the command AT+RXMODE.
1125 )))
1126
1127 (((
1128
1129 )))
1130
1131 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
1132 |=(% style="width: 100px;" %)(((
1133 **Command example**
1134 )))|=(% style="width: 400px;" %)(((
1135 **Function**
1136 )))
1137 |(% style="width:100px" %)(((
1138 AT+RXMODE=1,10
1139 )))|(% style="width:400px" %)(((
1140 Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
1141 )))
1142 |(% style="width:100px" %)(((
1143 AT+RXMODE=2,500
1144 )))|(% style="width:400px" %)(((
1145 Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
1146 )))
1147 |(% style="width:100px" %)(((
1148 AT+RXMODE=0,0
1149 )))|(% style="width:400px" %)(((
1150 Disable listening mode. This is the default settings.
1151 )))
1152 |(% style="width:100px" %)(((
1153
1154 )))|(% style="width:400px" %)(((
1155 A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 | cc)
1156 )))
1157
1158 (((
1159 **Downlink Command:**
1160 )))
1161
1162 (((
1163 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
1164 )))
1165
1166 (((
1167
1168 )))
1169
1170 (((
1171 **Example**:
1172 )))
1173
1174 (((
1175 The RS485-LN is set to AT+RXMODE=2,1000
1176 )))
1177
1178 (((
1179 There is a two Modbus commands in the RS485 network as below:
1180 )))
1181
1182 (((
1183 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
1184 )))
1185
1186 (((
1187 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1188 )))
1189
1190 (((
1191 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1192 )))
1193
1194 (((
1195 [[image:image-20220602171200-9.png]]
1196 )))
1197
1198 (((
1199
1200 )))
1201
1202 (((
1203 (((
1204 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
1205 )))
1206 )))
1207
1208
1209 == 3.7 Buttons ==
1210
1211
1212 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1213 |=(% style="width: 50px;" %)**Button**|=(% style="width: 361px;" %)**Feature**
1214 |(% style="width:50px" %)**ACT**|(% style="width:361px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
1215 |(% style="width:50px" %)**RST**|(% style="width:361px" %)Reboot RS485
1216 |(% style="width:50px" %)**PRO**|(% style="width:361px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
1217
1218 == 3.8 LEDs ==
1219
1220
1221 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1222 |=(% style="width: 50px;" %)**LEDs**|=(% style="width: 380px;" %)**Feature**
1223 |**PWR**|Always on if there is power
1224 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN**(%%) for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds** (%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
1225
1226 = 4. Case Study =
1227
1228 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1229
1230
1231 = 5. Use AT Command =
1232
1233 == 5.1 Access AT Command ==
1234
1235 (((
1236 RS485-LN supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-LN to use AT command, as below.
1237 )))
1238
1239 [[image:1654162355560-817.png]]
1240
1241
1242 (((
1243 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-LN. The default password is 123456. Below is the output for reference:
1244 )))
1245
1246 [[image:1654162368066-342.png]]
1247
1248
1249 (((
1250 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1251 )))
1252
1253
1254
1255 == 5.2 Common AT Command Sequence ==
1256
1257 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1258
1259 If device has not joined network yet:
1260
1261 (% class="box infomessage" %)
1262 (((
1263 **AT+FDR**
1264 )))
1265
1266 (% class="box infomessage" %)
1267 (((
1268 **AT+NJM=0**
1269 )))
1270
1271 (% class="box infomessage" %)
1272 (((
1273 **ATZ**
1274 )))
1275
1276
1277 (((
1278 If device already joined network:
1279 )))
1280
1281 (% class="box infomessage" %)
1282 (((
1283 **AT+NJM=0**
1284 )))
1285
1286 (% class="box infomessage" %)
1287 (((
1288 **ATZ**
1289 )))
1290
1291
1292 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1293
1294
1295 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1296
1297 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1298
1299 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1300
1301 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
1302
1303 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1304
1305 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1306
1307 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1308
1309 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1310
1311 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1312
1313 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1314
1315
1316 (% style="color:red" %)**Note:**
1317
1318 (((
1319 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1320 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1321 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1322 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1323 )))
1324
1325 [[image:1654162478620-421.png]]
1326
1327
1328 = 6. FAQ =
1329
1330 == 6.1 How to upgrade the image? ==
1331
1332 (((
1333 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
1334 )))
1335
1336 * (((
1337 Support new features
1338 )))
1339 * (((
1340 For bug fix
1341 )))
1342 * (((
1343 Change LoRaWAN bands.
1344 )))
1345
1346 (((
1347 Below shows the hardware connection for how to upload an image to RS485-LN:
1348 )))
1349
1350 [[image:1654162535040-878.png]]
1351
1352 (((
1353 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1354 )))
1355
1356 (((
1357 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1358 )))
1359
1360 (((
1361 **Step3: **Open flashloader; choose the correct COM port to update.
1362 )))
1363
1364 (((
1365 (((
1366 (((
1367 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
1368 )))
1369 )))
1370 )))
1371
1372
1373 [[image:image-20220602175818-12.png]]
1374
1375
1376 [[image:image-20220602175848-13.png]]
1377
1378
1379 [[image:image-20220602175912-14.png]]
1380
1381
1382 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1383
1384 [[image:image-20220602175638-10.png]]
1385
1386
1387 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1388
1389 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1390
1391
1392 == 6.3 How many RS485-Slave can RS485-LN connects? ==
1393
1394 The RS485-LN can support max 32 RS485 devices. Each uplink command of RS485-LN can support max 16 different RS485 command. So RS485-LN can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1395
1396
1397 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1398
1399 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1400
1401 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1402
1403
1404 = 7. Trouble Shooting =
1405
1406 == 7.1 Downlink doesn’t work, how to solve it? ==
1407
1408 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1409
1410
1411 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1412
1413 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1414
1415
1416 = 8. Order Info =
1417
1418 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1419
1420 (% style="color:blue" %)**XXX:**
1421
1422 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1423 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1424 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1425 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1426 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1427 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1428 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1429 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1430 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1431 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1432
1433 = 9.Packing Info =
1434
1435
1436 **Package Includes**:
1437
1438 * RS485-LN x 1
1439 * Stick Antenna for LoRa RF part x 1
1440 * Program cable x 1
1441
1442 **Dimension and weight**:
1443
1444 * Device Size: 13.5 x 7 x 3 cm
1445 * Device Weight: 105g
1446 * Package Size / pcs : 14.5 x 8 x 5 cm
1447 * Weight / pcs : 170g
1448
1449 = 10. FCC Caution for RS485LN-US915 =
1450
1451 (((
1452 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1453 )))
1454
1455 (((
1456 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1457 )))
1458
1459 (((
1460
1461 )))
1462
1463 (((
1464 **IMPORTANT NOTE:**
1465 )))
1466
1467 (((
1468 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1469 )))
1470
1471 (((
1472 —Reorient or relocate the receiving antenna.
1473 )))
1474
1475 (((
1476 —Increase the separation between the equipment and receiver.
1477 )))
1478
1479 (((
1480 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1481 )))
1482
1483 (((
1484 —Consult the dealer or an experienced radio/TV technician for help.
1485 )))
1486
1487 (((
1488
1489 )))
1490
1491 (((
1492 **FCC Radiation Exposure Statement:**
1493 )))
1494
1495 (((
1496 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1497 )))
1498
1499
1500 = 11. Support =
1501
1502 * (((
1503 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1504 )))
1505 * (((
1506 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1507 )))