Version 60.12 by Xiaoling on 2022/06/14 11:26

Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1.Introduction =
21
22 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
23
24 (((
25 (((
26 (((
27
28
29 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
30 )))
31 )))
32
33 (((
34 (((
35 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
36 )))
37 )))
38
39 (((
40 (((
41 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
42 )))
43 )))
44
45 (((
46 (((
47 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
48 )))
49
50 (((
51 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
52
53
54 )))
55 )))
56 )))
57
58 [[image:1653267211009-519.png||height="419" width="724"]]
59
60
61 == 1.2 Specifications ==
62
63
64 **Hardware System:**
65
66 * STM32L072CZT6 MCU
67 * SX1276/78 Wireless Chip 
68 * Power Consumption (exclude RS485 device):
69 ** Idle: 32mA@12v
70 ** 20dB Transmit: 65mA@12v
71
72 **Interface for Model:**
73
74 * RS485
75 * Power Input 7~~ 24V DC. 
76
77 **LoRa Spec:**
78
79 * Frequency Range:
80 ** Band 1 (HF): 862 ~~ 1020 Mhz
81 ** Band 2 (LF): 410 ~~ 528 Mhz
82 * 168 dB maximum link budget.
83 * +20 dBm - 100 mW constant RF output vs.
84 * +14 dBm high efficiency PA.
85 * Programmable bit rate up to 300 kbps.
86 * High sensitivity: down to -148 dBm.
87 * Bullet-proof front end: IIP3 = -12.5 dBm.
88 * Excellent blocking immunity.
89 * Low RX current of 10.3 mA, 200 nA register retention.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC.
96 * Packet engine up to 256 bytes with CRC
97
98
99
100
101 == 1.3 Features ==
102
103 * LoRaWAN Class A & Class C protocol (default Class C)
104 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
105 * AT Commands to change parameters
106 * Remote configure parameters via LoRa Downlink
107 * Firmware upgradable via program port
108 * Support multiply RS485 devices by flexible rules
109 * Support Modbus protocol
110 * Support Interrupt uplink (Since hardware version v1.2)
111
112 == 1.4 Applications ==
113
114 * Smart Buildings & Home Automation
115 * Logistics and Supply Chain Management
116 * Smart Metering
117 * Smart Agriculture
118 * Smart Cities
119 * Smart Factory
120
121 == 1.5 Firmware Change log ==
122
123 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
124
125
126 == 1.6 Hardware Change log ==
127
128 (((
129 (((
130 (((
131 v1.2: Add External Interrupt Pin.
132 )))
133
134 (((
135 v1.0: Release
136 )))
137
138
139 )))
140 )))
141
142 = 2. Power ON Device =
143
144 (((
145 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
146
147 * Power Source VIN to RS485-LN VIN+
148 * Power Source GND to RS485-LN VIN-
149
150 (((
151 Once there is power, the RS485-LN will be on.
152 )))
153
154 [[image:1653268091319-405.png]]
155
156
157 )))
158
159 = 3. Operation Mode =
160
161 == 3.1 How it works? ==
162
163 (((
164 (((
165 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
166 )))
167
168
169 )))
170
171 == 3.2 Example to join LoRaWAN network ==
172
173 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
174
175 [[image:1653268155545-638.png||height="334" width="724"]]
176
177
178 (((
179 (((
180 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
181 )))
182
183 (((
184 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
185 )))
186
187 [[image:1653268227651-549.png||height="592" width="720"]]
188
189
190 (((
191 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
192 )))
193
194 (((
195 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-LN.
196 )))
197
198 (((
199 Each RS485-LN is shipped with a sticker with unique device EUI:
200 )))
201 )))
202
203 [[image:1652953462722-299.png]]
204
205
206 (((
207 (((
208 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
209 )))
210
211 (((
212 **Add APP EUI in the application.**
213 )))
214 )))
215
216 [[image:image-20220519174512-1.png]]
217
218 [[image:image-20220519174512-2.png||height="323" width="720"]]
219
220 [[image:image-20220519174512-3.png||height="556" width="724"]]
221
222 [[image:image-20220519174512-4.png]]
223
224 You can also choose to create the device manually.
225
226 [[image:1652953542269-423.png||height="710" width="723"]]
227
228
229
230 **Add APP KEY and DEV EUI**
231
232 [[image:1652953553383-907.png||height="514" width="724"]]
233
234
235 (((
236 (% style="color:blue" %)**Step 2**(%%): Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
237 )))
238
239 [[image:1652953568895-172.png||height="232" width="724"]]
240
241
242 == 3.3 Configure Commands to read data ==
243
244 (((
245 (((
246 (((
247 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-LNviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
248 )))
249 )))
250
251 (((
252 (((
253 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
254 )))
255
256
257 )))
258 )))
259
260 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
261
262 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
263
264 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
265 |=(% style="width: 110px;" %)(((
266 **AT Commands**
267 )))|=(% style="width: 190px;" %)(((
268 **Description**
269 )))|=(% style="width: 190px;" %)(((
270 **Example**
271 )))
272 |(% style="width:110px" %)(((
273 AT+BAUDR
274 )))|(% style="width:190px" %)(((
275 Set the baud rate (for RS485 connection). Default Value is: 9600.
276 )))|(% style="width:190px" %)(((
277 (((
278 AT+BAUDR=9600
279 )))
280
281 (((
282 Options: (1200,2400,4800,14400,19200,115200)
283 )))
284 )))
285 |(% style="width:110px" %)(((
286 AT+PARITY
287 )))|(% style="width:190px" %)(((
288 Set UART parity (for RS485 connection)
289 )))|(% style="width:190px" %)(((
290 (((
291 AT+PARITY=0
292 )))
293
294 (((
295 Option: 0: no parity, 1: odd parity, 2: even parity
296 )))
297 )))
298 |(% style="width:110px" %)(((
299 AT+STOPBIT
300 )))|(% style="width:190px" %)(((
301 (((
302 Set serial stopbit (for RS485 connection)
303 )))
304
305 (((
306
307 )))
308 )))|(% style="width:190px" %)(((
309 (((
310 AT+STOPBIT=0 for 1bit
311 )))
312
313 (((
314 AT+STOPBIT=1 for 1.5 bit
315 )))
316
317 (((
318 AT+STOPBIT=2 for 2 bits
319 )))
320 )))
321
322
323 === 3.3.2 Configure sensors ===
324
325 (((
326 (((
327 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
328 )))
329 )))
330
331 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
332 |=(% style="width: 110px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
333 |AT+CFGDEV|(% style="width:110px" %)(((
334 (((
335 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
336 )))
337
338 (((
339 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
340 )))
341
342 (((
343 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
344 )))
345 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
346
347
348 === 3.3.3 Configure read commands for each sampling ===
349
350 (((
351 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
352
353 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
354
355 This section describes how to achieve above goals.
356
357 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
358
359
360 (% style="color:#037691" %)**Each RS485 commands include two parts:**
361
362 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
363
364 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
365
366 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
367
368
369 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
370
371
372 Below are examples for the how above AT Commands works.
373
374
375 (% style="color:#037691" %)**AT+COMMANDx **(%%)**: **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
376
377 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
378 |(% style="width:496px" %)(((
379 (% style="color:#037691" %)**AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
380
381 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
382
383 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
384 )))
385
386 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
387
388 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
389
390
391 (% style="color:#037691" %)**AT+DATACUTx **(%%)**: **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
392
393 (% border="1" style="background-color:#4bacc6; color:white; width:510px" %)
394 |(% style="width:510px" %)(((
395 **AT+DATACUTx=a,b,c**
396
397 * **a: length for the return of AT+COMMAND**
398 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
399 * **c: define the position for valid value.  **
400 )))
401
402 **Examples:**
403
404 * (% style="color:#037691" %)**Grab bytes**
405
406 [[image:image-20220602153621-1.png]]
407
408
409 * (% style="color:#037691" %)**Grab a section**
410
411 [[image:image-20220602153621-2.png]]
412
413
414 * (% style="color:#037691" %)**Grab different sections**
415
416 [[image:image-20220602153621-3.png]]
417
418
419
420 )))
421
422 === 3.3.4 Compose the uplink payload ===
423
424 (((
425 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
426
427
428 )))
429
430 (((
431 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
432
433
434 )))
435
436 (((
437 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
438 )))
439
440 (((
441 Final Payload is
442 )))
443
444 (((
445 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
446 )))
447
448 (((
449 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
450 )))
451
452 [[image:1653269759169-150.png||height="513" width="716"]]
453
454
455 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
456
457
458 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
459
460 Final Payload is
461
462 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
463
464
465 1. PAYVER: Defined by AT+PAYVER
466 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
467 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
468 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
469
470 [[image:image-20220602155039-4.png]]
471
472
473 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
474
475 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
476
477 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
478
479 DATA3=the rest of Valid value of RETURN10= **30**
480
481
482 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
483
484 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
485
486 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
487
488 * For US915 band, max 11 bytes for each uplink.
489
490 ~* For all other bands: max 51 bytes for each uplink.
491
492
493 Below are the uplink payloads:
494
495 [[image:1654157178836-407.png]]
496
497
498 === 3.3.5 Uplink on demand ===
499
500 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
501
502 Downlink control command:
503
504 **0x08 command**: Poll an uplink with current command set in RS485-LN.
505
506 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
507
508
509
510 === 3.3.6 Uplink on Interrupt ===
511
512 RS485-LN support external Interrupt uplink since hardware v1.2 release.
513
514 [[image:1654157342174-798.png]]
515
516 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
517
518
519 == 3.4 Uplink Payload ==
520
521
522 [[image:image-20220606110929-1.png]]
523
524 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
525
526
527 == 3.5 Configure RS485-LN via AT or Downlink ==
528
529 (((
530 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
531 )))
532
533 (((
534 There are two kinds of Commands:
535 )))
536
537 * (((
538 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
539 )))
540
541 * (((
542 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
543 )))
544
545 (((
546
547 )))
548
549
550 === 3.5.1 Common Commands ===
551
552 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
553
554
555 === 3.5.2 Sensor related commands ===
556
557 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
558
559 [[image:image-20220602163333-5.png||height="263" width="1160"]]
560
561 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
562
563
564 === 3.5.3 Sensor related commands ===
565
566
567
568
569 ==== **RS485 Debug Command** ====
570
571 (((
572 This command is used to configure the RS485 devices; they won’t be used during sampling.
573 )))
574
575 * (((
576 **AT Command**
577 )))
578
579 (% class="box infomessage" %)
580 (((
581 (((
582 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
583 )))
584 )))
585
586 (((
587 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
588 )))
589
590 * (((
591 **Downlink Payload**
592 )))
593
594 (((
595 Format: A8 MM NN XX XX XX XX YY
596 )))
597
598 (((
599 Where:
600 )))
601
602 * (((
603 MM: 1: add CRC-16/MODBUS ; 0: no CRC
604 )))
605 * (((
606 NN: The length of RS485 command
607 )))
608 * (((
609 XX XX XX XX: RS485 command total NN bytes
610 )))
611 * (((
612 (((
613 YY: How many bytes will be uplink from the return of this RS485 command,
614 )))
615
616 * (((
617 if YY=0, RS485-LN will execute the downlink command without uplink;
618 )))
619 * (((
620 if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
621 )))
622 * (((
623 if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
624 )))
625 )))
626
627 (((
628 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
629 )))
630
631 (((
632 To connect a Modbus Alarm with below commands.
633 )))
634
635 * (((
636 The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
637 )))
638
639 * (((
640 The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
641 )))
642
643 (((
644 So if user want to use downlink command to control to RS485 Alarm, he can use:
645 )))
646
647 (((
648 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
649 )))
650
651 (((
652 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
653 )))
654
655 (((
656 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
657 )))
658
659 (((
660
661 )))
662
663 (((
664 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
665 )))
666
667 (((
668 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
669 )))
670
671 (((
672
673 )))
674
675 (((
676 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
677 )))
678
679 (((
680 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
681 )))
682
683 (((
684 [[image:1654159460680-153.png]]
685 )))
686
687
688
689
690 ==== **Set Payload version** ====
691
692 (((
693 This is the first byte of the uplink payload. RS485-LN can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
694 )))
695
696 * (((
697 **AT Command:**
698 )))
699
700 (% class="box infomessage" %)
701 (((
702 (((
703 **AT+PAYVER: Set PAYVER field = 1**
704 )))
705 )))
706
707 * (((
708 **Downlink Payload:**
709 )))
710
711 (((
712 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
713 )))
714
715 (((
716 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
717 )))
718
719
720
721
722 ==== **Set RS485 Sampling Commands** ====
723
724 (((
725 AT+COMMANDx or AT+DATACUTx
726 )))
727
728 (((
729 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
730 )))
731
732 (((
733
734 )))
735
736 * (((
737 **AT Command:**
738 )))
739
740 (% class="box infomessage" %)
741 (((
742 (((
743 **AT+COMMANDx: Configure RS485 read command to sensor.**
744 )))
745 )))
746
747 (% class="box infomessage" %)
748 (((
749 (((
750 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
751 )))
752 )))
753
754 (((
755
756 )))
757
758 * (((
759 **Downlink Payload:**
760 )))
761
762 (((
763 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
764 )))
765
766 (((
767 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
768 )))
769
770 (((
771 Format: AF MM NN LL XX XX XX XX YY
772 )))
773
774 (((
775 Where:
776 )))
777
778 * (((
779 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
780 )))
781 * (((
782 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
783 )))
784 * (((
785 LL:  The length of AT+COMMAND or AT+DATACUT command
786 )))
787 * (((
788 XX XX XX XX: AT+COMMAND or AT+DATACUT command
789 )))
790 * (((
791 YY:  If YY=0, RS485-LN will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
792 )))
793
794 (((
795 **Example:**
796 )))
797
798 (((
799 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
800 )))
801
802 (((
803 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
804 )))
805
806 (((
807 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
808 )))
809
810
811
812
813 ==== **Fast command to handle MODBUS device** ====
814
815 (((
816 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
817 )))
818
819 (((
820 This command is valid since v1.3 firmware version
821 )))
822
823 (((
824 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
825 )))
826
827 (((
828
829 )))
830
831 (((
832 **Example:**
833 )))
834
835 * (((
836 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
837 )))
838 * (((
839 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
840 )))
841 * (((
842 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
843 )))
844
845 [[image:image-20220602165351-6.png]]
846
847 [[image:image-20220602165351-7.png]]
848
849
850
851
852 ==== **RS485 command timeout** ====
853
854 (((
855 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
856 )))
857
858 (((
859 Default value: 0, range:  0 ~~ 65 seconds
860 )))
861
862 * (((
863 **AT Command:**
864 )))
865
866 (% class="box infomessage" %)
867 (((
868 (((
869 **AT+CMDDLaa=hex(bb cc)*1000**
870 )))
871 )))
872
873 (((
874 **Example:**
875 )))
876
877 (((
878 **AT+CMDDL1=1000** to send the open time to 1000ms
879 )))
880
881 (((
882
883 )))
884
885 * (((
886 **Downlink Payload:**
887 )))
888
889 (((
890 **0x AA aa bb cc**
891 )))
892
893 (((
894 Same as: AT+CMDDLaa=hex(bb cc)*1000
895 )))
896
897 (((
898 **Example:**
899 )))
900
901 (((
902 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
903 )))
904
905
906
907
908 ==== **Uplink payload mode** ====
909
910 (((
911 Define to use one uplink or multiple uplinks for the sampling.
912 )))
913
914 (((
915 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
916 )))
917
918 * (((
919 **AT Command:**
920 )))
921
922 (% class="box infomessage" %)
923 (((
924 (((
925 **AT+DATAUP=0**
926 )))
927 )))
928
929 (% class="box infomessage" %)
930 (((
931 (((
932 **AT+DATAUP=1**
933 )))
934 )))
935
936 (((
937
938 )))
939
940 * (((
941 **Downlink Payload:**
942 )))
943
944 (((
945 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
946 )))
947
948 (((
949 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
950 )))
951
952
953
954
955 ==== **Manually trigger an Uplink** ====
956
957 (((
958 Ask device to send an uplink immediately.
959 )))
960
961 * (((
962 **AT Command:**
963 )))
964
965 (((
966 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
967 )))
968
969 (((
970
971 )))
972
973 * (((
974 **Downlink Payload:**
975 )))
976
977 (((
978 **0x08 FF**, RS485-LN will immediately send an uplink.
979 )))
980
981
982
983
984 ==== **Clear RS485 Command** ====
985
986 (((
987 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
988 )))
989
990 * (((
991 **AT Command:**
992 )))
993
994 (((
995 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
996 )))
997
998 (((
999 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1000 )))
1001
1002 (((
1003 Example screen shot after clear all RS485 commands. 
1004 )))
1005
1006 (((
1007
1008 )))
1009
1010 (((
1011 The uplink screen shot is:
1012 )))
1013
1014 [[image:1654160691922-496.png]]
1015
1016
1017 * (((
1018 **Downlink Payload:**
1019 )))
1020
1021 (((
1022 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1023 )))
1024
1025
1026
1027
1028 ==== **Set Serial Communication Parameters** ====
1029
1030 (((
1031 Set the Rs485 serial communication parameters:
1032 )))
1033
1034 * (((
1035 **AT Command:**
1036 )))
1037
1038 (((
1039 Set Baud Rate:
1040 )))
1041
1042 (% class="box infomessage" %)
1043 (((
1044 (((
1045 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1046 )))
1047 )))
1048
1049 (((
1050 Set UART Parity
1051 )))
1052
1053 (% class="box infomessage" %)
1054 (((
1055 (((
1056 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1057 )))
1058 )))
1059
1060 (((
1061 Set STOPBIT
1062 )))
1063
1064 (% class="box infomessage" %)
1065 (((
1066 (((
1067 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1068 )))
1069 )))
1070
1071 (((
1072
1073 )))
1074
1075 * (((
1076 **Downlink Payload:**
1077 )))
1078
1079 (((
1080 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1081 )))
1082
1083 (((
1084 **Example:**
1085 )))
1086
1087 * (((
1088 A7 01 00 60   same as AT+BAUDR=9600
1089 )))
1090 * (((
1091 A7 01 04 80  same as AT+BAUDR=115200
1092 )))
1093
1094 (((
1095 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1096 )))
1097
1098 (((
1099 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1100 )))
1101
1102
1103
1104
1105 == 3.6 Listening mode for RS485 network ==
1106
1107 (((
1108 This feature support since firmware v1.4
1109 )))
1110
1111 (((
1112 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
1113 )))
1114
1115 [[image:image-20220602171200-8.png||height="567" width="1007"]]
1116
1117 (((
1118 To enable the listening mode, use can run the command AT+RXMODE.
1119 )))
1120
1121 (((
1122
1123 )))
1124
1125 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
1126 |=(% style="width: 100px;" %)(((
1127 **Command example**
1128 )))|=(% style="width: 400px;" %)(((
1129 **Function**
1130 )))
1131 |(% style="width:100px" %)(((
1132 AT+RXMODE=1,10
1133 )))|(% style="width:400px" %)(((
1134 Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
1135 )))
1136 |(% style="width:100px" %)(((
1137 AT+RXMODE=2,500
1138 )))|(% style="width:400px" %)(((
1139 Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
1140 )))
1141 |(% style="width:100px" %)(((
1142 AT+RXMODE=0,0
1143 )))|(% style="width:400px" %)(((
1144 Disable listening mode. This is the default settings.
1145 )))
1146 |(% style="width:100px" %)(((
1147
1148 )))|(% style="width:400px" %)(((
1149 A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 | cc)
1150 )))
1151
1152 (((
1153 **Downlink Command:**
1154 )))
1155
1156 (((
1157 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
1158 )))
1159
1160 (((
1161
1162 )))
1163
1164 (((
1165 **Example**:
1166 )))
1167
1168 (((
1169 The RS485-LN is set to AT+RXMODE=2,1000
1170 )))
1171
1172 (((
1173 There is a two Modbus commands in the RS485 network as below:
1174 )))
1175
1176 (((
1177 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
1178 )))
1179
1180 (((
1181 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1182 )))
1183
1184 (((
1185 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1186 )))
1187
1188 (((
1189 [[image:image-20220602171200-9.png]]
1190 )))
1191
1192 (((
1193
1194 )))
1195
1196 (((
1197 (((
1198 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
1199 )))
1200 )))
1201
1202
1203 == 3.7 Buttons ==
1204
1205
1206 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1207 |=(% style="width: 50px;" %)**Button**|=(% style="width: 361px;" %)**Feature**
1208 |(% style="width:50px" %)**ACT**|(% style="width:361px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
1209 |(% style="width:50px" %)**RST**|(% style="width:361px" %)Reboot RS485
1210 |(% style="width:50px" %)**PRO**|(% style="width:361px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
1211
1212 == 3.8 LEDs ==
1213
1214
1215 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1216 |=(% style="width: 50px;" %)**LEDs**|=(% style="width: 380px;" %)**Feature**
1217 |**PWR**|Always on if there is power
1218 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN**(%%) for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds** (%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
1219
1220 = 4. Case Study =
1221
1222 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1223
1224
1225 = 5. Use AT Command =
1226
1227 == 5.1 Access AT Command ==
1228
1229 (((
1230 RS485-LN supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-LN to use AT command, as below.
1231 )))
1232
1233 [[image:1654162355560-817.png]]
1234
1235
1236 (((
1237 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-LN. The default password is 123456. Below is the output for reference:
1238 )))
1239
1240 [[image:1654162368066-342.png]]
1241
1242
1243 (((
1244 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1245 )))
1246
1247
1248
1249 == 5.2 Common AT Command Sequence ==
1250
1251 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1252
1253 If device has not joined network yet:
1254
1255 (% class="box infomessage" %)
1256 (((
1257 **AT+FDR**
1258 )))
1259
1260 (% class="box infomessage" %)
1261 (((
1262 **AT+NJM=0**
1263 )))
1264
1265 (% class="box infomessage" %)
1266 (((
1267 **ATZ**
1268 )))
1269
1270
1271 (((
1272 If device already joined network:
1273 )))
1274
1275 (% class="box infomessage" %)
1276 (((
1277 **AT+NJM=0**
1278 )))
1279
1280 (% class="box infomessage" %)
1281 (((
1282 **ATZ**
1283 )))
1284
1285
1286 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1287
1288
1289 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1290
1291 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1292
1293 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1294
1295 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
1296
1297 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1298
1299 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1300
1301 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1302
1303 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1304
1305 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1306
1307 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1308
1309
1310 (% style="color:red" %)**Note:**
1311
1312 (((
1313 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1314 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1315 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1316 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1317 )))
1318
1319 [[image:1654162478620-421.png]]
1320
1321
1322 = 6. FAQ =
1323
1324 == 6.1 How to upgrade the image? ==
1325
1326 (((
1327 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
1328 )))
1329
1330 * (((
1331 Support new features
1332 )))
1333 * (((
1334 For bug fix
1335 )))
1336 * (((
1337 Change LoRaWAN bands.
1338 )))
1339
1340 (((
1341 Below shows the hardware connection for how to upload an image to RS485-LN:
1342 )))
1343
1344 [[image:1654162535040-878.png]]
1345
1346 (((
1347 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1348 )))
1349
1350 (((
1351 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1352 )))
1353
1354 (((
1355 **Step3: **Open flashloader; choose the correct COM port to update.
1356 )))
1357
1358 (((
1359 (((
1360 (((
1361 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
1362 )))
1363 )))
1364 )))
1365
1366
1367 [[image:image-20220602175818-12.png]]
1368
1369
1370 [[image:image-20220602175848-13.png]]
1371
1372
1373 [[image:image-20220602175912-14.png]]
1374
1375
1376 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1377
1378 [[image:image-20220602175638-10.png]]
1379
1380
1381 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1382
1383 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1384
1385
1386 == 6.3 How many RS485-Slave can RS485-LN connects? ==
1387
1388 The RS485-LN can support max 32 RS485 devices. Each uplink command of RS485-LN can support max 16 different RS485 command. So RS485-LN can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1389
1390
1391 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1392
1393 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1394
1395 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1396
1397
1398 = 7. Trouble Shooting =
1399
1400 == 7.1 Downlink doesn’t work, how to solve it? ==
1401
1402 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1403
1404
1405 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1406
1407 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1408
1409
1410 = 8. Order Info =
1411
1412 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1413
1414 (% style="color:blue" %)**XXX:**
1415
1416 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1417 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1418 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1419 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1420 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1421 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1422 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1423 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1424 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1425 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1426
1427 = 9.Packing Info =
1428
1429
1430 **Package Includes**:
1431
1432 * RS485-LN x 1
1433 * Stick Antenna for LoRa RF part x 1
1434 * Program cable x 1
1435
1436 **Dimension and weight**:
1437
1438 * Device Size: 13.5 x 7 x 3 cm
1439 * Device Weight: 105g
1440 * Package Size / pcs : 14.5 x 8 x 5 cm
1441 * Weight / pcs : 170g
1442
1443 = 10. FCC Caution for RS485LN-US915 =
1444
1445 (((
1446 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1447 )))
1448
1449 (((
1450 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1451 )))
1452
1453 (((
1454
1455 )))
1456
1457 (((
1458 **IMPORTANT NOTE:**
1459 )))
1460
1461 (((
1462 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1463 )))
1464
1465 (((
1466 —Reorient or relocate the receiving antenna.
1467 )))
1468
1469 (((
1470 —Increase the separation between the equipment and receiver.
1471 )))
1472
1473 (((
1474 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1475 )))
1476
1477 (((
1478 —Consult the dealer or an experienced radio/TV technician for help.
1479 )))
1480
1481 (((
1482
1483 )))
1484
1485 (((
1486 **FCC Radiation Exposure Statement:**
1487 )))
1488
1489 (((
1490 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1491 )))
1492
1493
1494 = 11. Support =
1495
1496 * (((
1497 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1498 )))
1499 * (((
1500 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1501 )))