Version 59.7 by Xiaoling on 2022/06/06 14:21

Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21 = 1.Introduction =
22
23 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
24
25 (((
26 (((
27 (((
28 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
29 )))
30 )))
31
32 (((
33 (((
34 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
35 )))
36 )))
37
38 (((
39 (((
40 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42 )))
43
44 (((
45 (((
46 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
47 )))
48
49 (((
50 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
51 )))
52 )))
53 )))
54
55 [[image:1653267211009-519.png||height="419" width="724"]]
56
57
58 == 1.2 Specifications ==
59
60
61 **Hardware System:**
62
63 * STM32L072CZT6 MCU
64 * SX1276/78 Wireless Chip 
65 * Power Consumption (exclude RS485 device):
66 ** Idle: 32mA@12v
67 ** 20dB Transmit: 65mA@12v
68
69 **Interface for Model:**
70
71 * RS485
72 * Power Input 7~~ 24V DC. 
73
74 **LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC
94
95
96
97 == 1.3 Features ==
98
99 * LoRaWAN Class A & Class C protocol (default Class C)
100 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
101 * AT Commands to change parameters
102 * Remote configure parameters via LoRa Downlink
103 * Firmware upgradable via program port
104 * Support multiply RS485 devices by flexible rules
105 * Support Modbus protocol
106 * Support Interrupt uplink (Since hardware version v1.2)
107
108
109
110 == 1.4 Applications ==
111
112 * Smart Buildings & Home Automation
113 * Logistics and Supply Chain Management
114 * Smart Metering
115 * Smart Agriculture
116 * Smart Cities
117 * Smart Factory
118
119
120
121 == 1.5 Firmware Change log ==
122
123 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
124
125
126 == 1.6 Hardware Change log ==
127
128 (((
129 (((
130 (((
131 v1.2: Add External Interrupt Pin.
132 )))
133
134 (((
135 v1.0: Release
136 )))
137
138
139 )))
140 )))
141
142 = 2. Power ON Device =
143
144 (((
145 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
146
147 * Power Source VIN to RS485-LN VIN+
148 * Power Source GND to RS485-LN VIN-
149
150 (((
151 Once there is power, the RS485-LN will be on.
152 )))
153
154 [[image:1653268091319-405.png]]
155
156
157 )))
158
159 = 3. Operation Mode =
160
161 == 3.1 How it works? ==
162
163 (((
164 (((
165 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
166 )))
167
168
169 )))
170
171 == 3.2 Example to join LoRaWAN network ==
172
173 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
174
175 [[image:1653268155545-638.png||height="334" width="724"]]
176
177
178 (((
179 (((
180 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
181 )))
182
183 (((
184 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
185 )))
186
187 [[image:1653268227651-549.png||height="592" width="720"]]
188
189 (((
190 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
191 )))
192
193 (((
194 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
195 )))
196
197 (((
198 Each RS485-LN is shipped with a sticker with unique device EUI:
199 )))
200 )))
201
202 [[image:1652953462722-299.png]]
203
204 (((
205 (((
206 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
207 )))
208
209 (((
210 Add APP EUI in the application.
211 )))
212 )))
213
214 [[image:image-20220519174512-1.png]]
215
216 [[image:image-20220519174512-2.png||height="323" width="720"]]
217
218 [[image:image-20220519174512-3.png||height="556" width="724"]]
219
220 [[image:image-20220519174512-4.png]]
221
222 You can also choose to create the device manually.
223
224 [[image:1652953542269-423.png||height="710" width="723"]]
225
226 Add APP KEY and DEV EUI
227
228 [[image:1652953553383-907.png||height="514" width="724"]]
229
230
231 (((
232 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
233 )))
234
235 [[image:1652953568895-172.png||height="232" width="724"]]
236
237
238 == 3.3 Configure Commands to read data ==
239
240 (((
241 (((
242 (((
243 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
244 )))
245 )))
246
247 (((
248 (((
249 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
250 )))
251
252
253 )))
254 )))
255
256 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
257
258 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
259
260 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
261 |=(% style="width: 110px;" %)(((
262 **AT Commands**
263 )))|=(% style="width: 190px;" %)(((
264 **Description**
265 )))|=(% style="width: 190px;" %)(((
266 **Example**
267 )))
268 |(% style="width:110px" %)(((
269 AT+BAUDR
270 )))|(% style="width:190px" %)(((
271 Set the baud rate (for RS485 connection). Default Value is: 9600.
272 )))|(% style="width:190px" %)(((
273 (((
274 AT+BAUDR=9600
275 )))
276
277 (((
278 Options: (1200,2400,4800,14400,19200,115200)
279 )))
280 )))
281 |(% style="width:110px" %)(((
282 AT+PARITY
283 )))|(% style="width:190px" %)(((
284 Set UART parity (for RS485 connection)
285 )))|(% style="width:190px" %)(((
286 (((
287 AT+PARITY=0
288 )))
289
290 (((
291 Option: 0: no parity, 1: odd parity, 2: even parity
292 )))
293 )))
294 |(% style="width:110px" %)(((
295 AT+STOPBIT
296 )))|(% style="width:190px" %)(((
297 (((
298 Set serial stopbit (for RS485 connection)
299 )))
300
301 (((
302
303 )))
304 )))|(% style="width:190px" %)(((
305 (((
306 AT+STOPBIT=0 for 1bit
307 )))
308
309 (((
310 AT+STOPBIT=1 for 1.5 bit
311 )))
312
313 (((
314 AT+STOPBIT=2 for 2 bits
315 )))
316 )))
317
318
319
320 === 3.3.2 Configure sensors ===
321
322 (((
323 (((
324 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
325 )))
326 )))
327
328 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
329 |=(% style="width: 110px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
330 |AT+CFGDEV|(% style="width:110px" %)(((
331 (((
332 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
333 )))
334
335 (((
336 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
337 )))
338
339 (((
340 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
341 )))
342 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
343
344
345 === 3.3.3 Configure read commands for each sampling ===
346
347 (((
348 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
349
350 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
351
352 This section describes how to achieve above goals.
353
354 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
355
356
357 **Each RS485 commands include two parts:**
358
359 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
360
361 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
362
363 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
364
365
366 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
367
368
369 Below are examples for the how above AT Commands works.
370
371
372 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
373
374 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
375 |(% style="width:496px" %)(((
376 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
377
378 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
379
380 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
381 )))
382
383 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
384
385 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
386
387
388 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
389
390 (% border="1" style="background-color:#4bacc6; color:white; width:510px" %)
391 |(% style="width:510px" %)(((
392 **AT+DATACUTx=a,b,c**
393
394 * **a: length for the return of AT+COMMAND**
395 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
396 * **c: define the position for valid value.  **
397 )))
398
399 **Examples:**
400
401 * Grab bytes:
402
403 [[image:image-20220602153621-1.png]]
404
405
406 * Grab a section.
407
408 [[image:image-20220602153621-2.png]]
409
410
411 * Grab different sections.
412
413 [[image:image-20220602153621-3.png]]
414
415
416 )))
417
418 === 3.3.4 Compose the uplink payload ===
419
420 (((
421 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
422
423
424 )))
425
426 (((
427 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
428
429
430 )))
431
432 (((
433 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
434 )))
435
436 (((
437 Final Payload is
438 )))
439
440 (((
441 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
442 )))
443
444 (((
445 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
446 )))
447
448 [[image:1653269759169-150.png||height="513" width="716"]]
449
450
451 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
452
453
454 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
455
456 Final Payload is
457
458 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
459
460
461 1. PAYVER: Defined by AT+PAYVER
462 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
463 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
464 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
465
466 [[image:image-20220602155039-4.png]]
467
468
469 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
470
471 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
472
473 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
474
475 DATA3=the rest of Valid value of RETURN10= **30**
476
477
478 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
479
480 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
481
482 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
483
484 * For US915 band, max 11 bytes for each uplink.
485
486 ~* For all other bands: max 51 bytes for each uplink.
487
488
489 Below are the uplink payloads:
490
491 [[image:1654157178836-407.png]]
492
493
494 === 3.3.5 Uplink on demand ===
495
496 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
497
498 Downlink control command:
499
500 **0x08 command**: Poll an uplink with current command set in RS485-LN.
501
502 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
503
504
505
506 === 3.3.6 Uplink on Interrupt ===
507
508 RS485-LN support external Interrupt uplink since hardware v1.2 release.
509
510 [[image:1654157342174-798.png]]
511
512 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
513
514
515 == 3.4 Uplink Payload ==
516
517
518 [[image:image-20220606110929-1.png]]
519
520 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
521
522
523 == 3.5 Configure RS485-BL via AT or Downlink ==
524
525 (((
526 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
527 )))
528
529 (((
530 There are two kinds of Commands:
531 )))
532
533 * (((
534 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
535 )))
536
537 * (((
538 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
539 )))
540
541 (((
542
543 )))
544
545
546 === 3.5.1 Common Commands ===
547
548 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
549
550
551 === 3.5.2 Sensor related commands ===
552
553 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
554
555 [[image:image-20220602163333-5.png||height="263" width="1160"]]
556
557 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
558
559
560 === 3.5.3 Sensor related commands ===
561
562
563
564
565 ==== **RS485 Debug Command** ====
566
567 (((
568 This command is used to configure the RS485 devices; they won’t be used during sampling.
569 )))
570
571 * (((
572 **AT Command**
573 )))
574
575 (% class="box infomessage" %)
576 (((
577 (((
578 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
579 )))
580 )))
581
582 (((
583 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
584 )))
585
586 * (((
587 **Downlink Payload**
588 )))
589
590 (((
591 Format: A8 MM NN XX XX XX XX YY
592 )))
593
594 (((
595 Where:
596 )))
597
598 * (((
599 MM: 1: add CRC-16/MODBUS ; 0: no CRC
600 )))
601 * (((
602 NN: The length of RS485 command
603 )))
604 * (((
605 XX XX XX XX: RS485 command total NN bytes
606 )))
607 * (((
608 (((
609 YY: How many bytes will be uplink from the return of this RS485 command,
610 )))
611
612 * (((
613 if YY=0, RS485-LN will execute the downlink command without uplink;
614 )))
615 * (((
616 if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
617 )))
618 * (((
619 if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
620 )))
621 )))
622
623 (((
624 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
625 )))
626
627 (((
628 To connect a Modbus Alarm with below commands.
629 )))
630
631 * (((
632 The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
633 )))
634
635 * (((
636 The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
637 )))
638
639 (((
640 So if user want to use downlink command to control to RS485 Alarm, he can use:
641 )))
642
643 (((
644 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
645 )))
646
647 (((
648 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
649 )))
650
651 (((
652 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
653 )))
654
655 (((
656
657 )))
658
659 (((
660 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
661 )))
662
663 (((
664 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
665 )))
666
667 (((
668
669 )))
670
671 (((
672 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
673 )))
674
675 (((
676 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
677 )))
678
679 (((
680 [[image:1654159460680-153.png]]
681 )))
682
683
684
685
686 ==== **Set Payload version** ====
687
688 (((
689 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
690 )))
691
692 * (((
693 **AT Command:**
694 )))
695
696 (% class="box infomessage" %)
697 (((
698 (((
699 **AT+PAYVER: Set PAYVER field = 1**
700 )))
701 )))
702
703 * (((
704 **Downlink Payload:**
705 )))
706
707 (((
708 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
709 )))
710
711 (((
712 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
713 )))
714
715
716
717
718 ==== **Set RS485 Sampling Commands** ====
719
720 (((
721 AT+COMMANDx or AT+DATACUTx
722 )))
723
724 (((
725 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
726 )))
727
728 (((
729
730 )))
731
732 * (((
733 **AT Command:**
734 )))
735
736 (% class="box infomessage" %)
737 (((
738 (((
739 **AT+COMMANDx: Configure RS485 read command to sensor.**
740 )))
741 )))
742
743 (% class="box infomessage" %)
744 (((
745 (((
746 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
747 )))
748 )))
749
750 (((
751
752 )))
753
754 * (((
755 **Downlink Payload:**
756 )))
757
758 (((
759 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
760 )))
761
762 (((
763 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
764 )))
765
766 (((
767 Format: AF MM NN LL XX XX XX XX YY
768 )))
769
770 (((
771 Where:
772 )))
773
774 * (((
775 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
776 )))
777 * (((
778 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
779 )))
780 * (((
781 LL:  The length of AT+COMMAND or AT+DATACUT command
782 )))
783 * (((
784 XX XX XX XX: AT+COMMAND or AT+DATACUT command
785 )))
786 * (((
787 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
788 )))
789
790 (((
791 **Example:**
792 )))
793
794 (((
795 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
796 )))
797
798 (((
799 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
800 )))
801
802 (((
803 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
804 )))
805
806
807
808
809 ==== **Fast command to handle MODBUS device** ====
810
811 (((
812 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
813 )))
814
815 (((
816 This command is valid since v1.3 firmware version
817 )))
818
819 (((
820 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
821 )))
822
823 (((
824
825 )))
826
827 (((
828 **Example:**
829 )))
830
831 * (((
832 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
833 )))
834 * (((
835 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
836 )))
837 * (((
838 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
839 )))
840
841 [[image:image-20220602165351-6.png]]
842
843 [[image:image-20220602165351-7.png]]
844
845
846
847
848 ==== **RS485 command timeout** ====
849
850 (((
851 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
852 )))
853
854 (((
855 Default value: 0, range:  0 ~~ 65 seconds
856 )))
857
858 * (((
859 **AT Command:**
860 )))
861
862 (% class="box infomessage" %)
863 (((
864 (((
865 **AT+CMDDLaa=hex(bb cc)*1000**
866 )))
867 )))
868
869 (((
870 **Example:**
871 )))
872
873 (((
874 **AT+CMDDL1=1000** to send the open time to 1000ms
875 )))
876
877 (((
878
879 )))
880
881 * (((
882 **Downlink Payload:**
883 )))
884
885 (((
886 **0x AA aa bb cc**
887 )))
888
889 (((
890 Same as: AT+CMDDLaa=hex(bb cc)*1000
891 )))
892
893 (((
894 **Example:**
895 )))
896
897 (((
898 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
899 )))
900
901
902
903
904 ==== **Uplink payload mode** ====
905
906 (((
907 Define to use one uplink or multiple uplinks for the sampling.
908 )))
909
910 (((
911 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
912 )))
913
914 * (((
915 **AT Command:**
916 )))
917
918 (% class="box infomessage" %)
919 (((
920 (((
921 **AT+DATAUP=0**
922 )))
923 )))
924
925 (% class="box infomessage" %)
926 (((
927 (((
928 **AT+DATAUP=1**
929 )))
930 )))
931
932 (((
933
934 )))
935
936 * (((
937 **Downlink Payload:**
938 )))
939
940 (((
941 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
942 )))
943
944 (((
945 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
946 )))
947
948
949
950
951 ==== **Manually trigger an Uplink** ====
952
953 (((
954 Ask device to send an uplink immediately.
955 )))
956
957 * (((
958 **AT Command:**
959 )))
960
961 (((
962 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
963 )))
964
965 (((
966
967 )))
968
969 * (((
970 **Downlink Payload:**
971 )))
972
973 (((
974 **0x08 FF**, RS485-LN will immediately send an uplink.
975 )))
976
977
978
979
980 ==== **Clear RS485 Command** ====
981
982 (((
983 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
984 )))
985
986 * (((
987 **AT Command:**
988 )))
989
990 (((
991 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
992 )))
993
994 (((
995 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
996 )))
997
998 (((
999 Example screen shot after clear all RS485 commands. 
1000 )))
1001
1002 (((
1003
1004 )))
1005
1006 (((
1007 The uplink screen shot is:
1008 )))
1009
1010 [[image:1654160691922-496.png]]
1011
1012
1013 * (((
1014 **Downlink Payload:**
1015 )))
1016
1017 (((
1018 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1019 )))
1020
1021
1022
1023
1024 ==== **Set Serial Communication Parameters** ====
1025
1026 (((
1027 Set the Rs485 serial communication parameters:
1028 )))
1029
1030 * (((
1031 **AT Command:**
1032 )))
1033
1034 (((
1035 Set Baud Rate:
1036 )))
1037
1038 (% class="box infomessage" %)
1039 (((
1040 (((
1041 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1042 )))
1043 )))
1044
1045 (((
1046 Set UART Parity
1047 )))
1048
1049 (% class="box infomessage" %)
1050 (((
1051 (((
1052 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1053 )))
1054 )))
1055
1056 (((
1057 Set STOPBIT
1058 )))
1059
1060 (% class="box infomessage" %)
1061 (((
1062 (((
1063 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1064 )))
1065 )))
1066
1067 (((
1068
1069 )))
1070
1071 * (((
1072 **Downlink Payload:**
1073 )))
1074
1075 (((
1076 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1077 )))
1078
1079 (((
1080 **Example:**
1081 )))
1082
1083 * (((
1084 A7 01 00 60   same as AT+BAUDR=9600
1085 )))
1086 * (((
1087 A7 01 04 80  same as AT+BAUDR=115200
1088 )))
1089
1090 (((
1091 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1092 )))
1093
1094 (((
1095 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1096 )))
1097
1098
1099
1100
1101 == 3.6 Listening mode for RS485 network ==
1102
1103 (((
1104 This feature support since firmware v1.4
1105 )))
1106
1107 (((
1108 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
1109 )))
1110
1111 [[image:image-20220602171200-8.png||height="567" width="1007"]]
1112
1113 (((
1114 To enable the listening mode, use can run the command AT+RXMODE.
1115 )))
1116
1117 (((
1118
1119 )))
1120
1121 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
1122 |=(% style="width: 100px;" %)(((
1123 **Command example**
1124 )))|=(% style="width: 400px;" %)(((
1125 **Function**
1126 )))
1127 |(% style="width:100px" %)(((
1128 AT+RXMODE=1,10
1129 )))|(% style="width:400px" %)(((
1130 Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
1131 )))
1132 |(% style="width:100px" %)(((
1133 AT+RXMODE=2,500
1134 )))|(% style="width:400px" %)(((
1135 Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
1136 )))
1137 |(% style="width:100px" %)(((
1138 AT+RXMODE=0,0
1139 )))|(% style="width:400px" %)(((
1140 Disable listening mode. This is the default settings.
1141 )))
1142 |(% style="width:100px" %)(((
1143
1144 )))|(% style="width:400px" %)(((
1145 A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 | cc)
1146 )))
1147
1148 (((
1149 **Downlink Command:**
1150 )))
1151
1152 (((
1153 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
1154 )))
1155
1156 (((
1157
1158 )))
1159
1160 (((
1161 **Example**:
1162 )))
1163
1164 (((
1165 The RS485-LN is set to AT+RXMODE=2,1000
1166 )))
1167
1168 (((
1169 There is a two Modbus commands in the RS485 network as below:
1170 )))
1171
1172 (((
1173 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
1174 )))
1175
1176 (((
1177 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1178 )))
1179
1180 (((
1181 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1182 )))
1183
1184 (((
1185 [[image:image-20220602171200-9.png]]
1186 )))
1187
1188 (((
1189
1190 )))
1191
1192 (((
1193 (((
1194 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
1195 )))
1196 )))
1197
1198
1199 == 3.7 Buttons ==
1200
1201
1202 (% border="1" cellspacing="10" style="background-color:#f7faff; width:400px" %)
1203 |=(% style="width: 50px;" %)**Button**|=(% style="width: 350px;" %)**Feature**
1204 |(% style="width:50px" %)**ACT**|(% style="width:350px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
1205 |(% style="width:50px" %)**RST**|(% style="width:350px" %)Reboot RS485
1206 |(% style="width:50px" %)**PRO**|(% style="width:350px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
1207
1208 == 3.8 LEDs ==
1209
1210
1211 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1212 |=(% style="width: 50px;" %)**LEDs**|=(% style="width: 380px;" %)**Feature**
1213 |**PWR**|Always on if there is power
1214 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN**(%%) for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds** (%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
1215
1216 = 4. Case Study =
1217
1218 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1219
1220
1221 = 5. Use AT Command =
1222
1223 == 5.1 Access AT Command ==
1224
1225 (((
1226 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1227 )))
1228
1229 [[image:1654162355560-817.png]]
1230
1231
1232 (((
1233 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1234 )))
1235
1236 [[image:1654162368066-342.png]]
1237
1238
1239 (((
1240 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1241 )))
1242
1243
1244
1245 == 5.2 Common AT Command Sequence ==
1246
1247 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1248
1249 If device has not joined network yet:
1250
1251 (% class="box infomessage" %)
1252 (((
1253 **AT+FDR**
1254 )))
1255
1256 (% class="box infomessage" %)
1257 (((
1258 **AT+NJM=0**
1259 )))
1260
1261 (% class="box infomessage" %)
1262 (((
1263 **ATZ**
1264 )))
1265
1266
1267 (((
1268 If device already joined network:
1269 )))
1270
1271 (% class="box infomessage" %)
1272 (((
1273 **AT+NJM=0**
1274 )))
1275
1276 (% class="box infomessage" %)
1277 (((
1278 **ATZ**
1279 )))
1280
1281
1282 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1283
1284
1285 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1286
1287 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1288
1289 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1290
1291 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
1292
1293 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1294
1295 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1296
1297 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1298
1299 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1300
1301 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1302
1303 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1304
1305
1306 (% style="color:red" %)**Note:**
1307
1308 (((
1309 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1310 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1311 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1312 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1313 )))
1314
1315 [[image:1654162478620-421.png]]
1316
1317
1318 = 6. FAQ =
1319
1320 == 6.1 How to upgrade the image? ==
1321
1322 (((
1323 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
1324 )))
1325
1326 * (((
1327 Support new features
1328 )))
1329 * (((
1330 For bug fix
1331 )))
1332 * (((
1333 Change LoRaWAN bands.
1334 )))
1335
1336 (((
1337 Below shows the hardware connection for how to upload an image to RS485-LN:
1338 )))
1339
1340 [[image:1654162535040-878.png]]
1341
1342 (((
1343 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1344 )))
1345
1346 (((
1347 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1348 )))
1349
1350 (((
1351 **Step3: **Open flashloader; choose the correct COM port to update.
1352 )))
1353
1354 (((
1355 (((
1356 (((
1357 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
1358 )))
1359 )))
1360 )))
1361
1362
1363 [[image:image-20220602175818-12.png]]
1364
1365
1366 [[image:image-20220602175848-13.png]]
1367
1368
1369 [[image:image-20220602175912-14.png]]
1370
1371
1372 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1373
1374 [[image:image-20220602175638-10.png]]
1375
1376
1377 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1378
1379 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1380
1381
1382 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1383
1384 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1385
1386
1387 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1388
1389 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1390
1391 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1392
1393
1394 = 7. Trouble Shooting =
1395
1396 == 7.1 Downlink doesn’t work, how to solve it? ==
1397
1398 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1399
1400
1401 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1402
1403 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1404
1405
1406 = 8. Order Info =
1407
1408 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1409
1410 (% style="color:blue" %)**XXX:**
1411
1412 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1413 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1414 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1415 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1416 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1417 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1418 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1419 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1420 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1421 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1422
1423 = 9.Packing Info =
1424
1425
1426 **Package Includes**:
1427
1428 * RS485-LN x 1
1429 * Stick Antenna for LoRa RF part x 1
1430 * Program cable x 1
1431
1432 **Dimension and weight**:
1433
1434 * Device Size: 13.5 x 7 x 3 cm
1435 * Device Weight: 105g
1436 * Package Size / pcs : 14.5 x 8 x 5 cm
1437 * Weight / pcs : 170g
1438
1439 = 10. FCC Caution for RS485LN-US915 =
1440
1441 (((
1442 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1443 )))
1444
1445 (((
1446 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1447 )))
1448
1449 (((
1450
1451 )))
1452
1453 (((
1454 **IMPORTANT NOTE:**
1455 )))
1456
1457 (((
1458 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1459 )))
1460
1461 (((
1462 —Reorient or relocate the receiving antenna.
1463 )))
1464
1465 (((
1466 —Increase the separation between the equipment and receiver.
1467 )))
1468
1469 (((
1470 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1471 )))
1472
1473 (((
1474 —Consult the dealer or an experienced radio/TV technician for help.
1475 )))
1476
1477 (((
1478
1479 )))
1480
1481 (((
1482 **FCC Radiation Exposure Statement:**
1483 )))
1484
1485 (((
1486 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1487 )))
1488
1489
1490 = 11. Support =
1491
1492 * (((
1493 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1494 )))
1495 * (((
1496 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1497 )))