Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21 = 1.Introduction =
22
23 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
24
25 (((
26 (((
27 (((
28 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
29 )))
30 )))
31
32 (((
33 (((
34 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
35 )))
36 )))
37
38 (((
39 (((
40 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42 )))
43
44 (((
45 (((
46 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
47 )))
48
49 (((
50 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
51 )))
52 )))
53 )))
54
55 [[image:1653267211009-519.png||height="419" width="724"]]
56
57
58 == 1.2 Specifications ==
59
60
61 **Hardware System:**
62
63 * STM32L072CZT6 MCU
64 * SX1276/78 Wireless Chip 
65 * Power Consumption (exclude RS485 device):
66 ** Idle: 32mA@12v
67 ** 20dB Transmit: 65mA@12v
68
69 **Interface for Model:**
70
71 * RS485
72 * Power Input 7~~ 24V DC. 
73
74 **LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC
94
95
96
97 == 1.3 Features ==
98
99 * LoRaWAN Class A & Class C protocol (default Class C)
100 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
101 * AT Commands to change parameters
102 * Remote configure parameters via LoRa Downlink
103 * Firmware upgradable via program port
104 * Support multiply RS485 devices by flexible rules
105 * Support Modbus protocol
106 * Support Interrupt uplink (Since hardware version v1.2)
107
108 == 1.4 Applications ==
109
110 * Smart Buildings & Home Automation
111 * Logistics and Supply Chain Management
112 * Smart Metering
113 * Smart Agriculture
114 * Smart Cities
115 * Smart Factory
116
117 == 1.5 Firmware Change log ==
118
119 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
120
121
122 == 1.6 Hardware Change log ==
123
124 (((
125 (((
126 (((
127 v1.2: Add External Interrupt Pin.
128 )))
129
130 (((
131 v1.0: Release
132 )))
133
134
135 )))
136 )))
137
138 = 2. Power ON Device =
139
140 (((
141 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
142
143 * Power Source VIN to RS485-LN VIN+
144 * Power Source GND to RS485-LN VIN-
145
146 (((
147 Once there is power, the RS485-LN will be on.
148 )))
149
150 [[image:1653268091319-405.png]]
151
152
153 )))
154
155 = 3. Operation Mode =
156
157 == 3.1 How it works? ==
158
159 (((
160 (((
161 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
162 )))
163
164
165 )))
166
167 == 3.2 Example to join LoRaWAN network ==
168
169 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
170
171 [[image:1653268155545-638.png||height="334" width="724"]]
172
173
174 (((
175 (((
176 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
177 )))
178
179 (((
180 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
181 )))
182
183 [[image:1653268227651-549.png||height="592" width="720"]]
184
185 (((
186 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
187 )))
188
189 (((
190 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
191 )))
192
193 (((
194 Each RS485-LN is shipped with a sticker with unique device EUI:
195 )))
196 )))
197
198 [[image:1652953462722-299.png]]
199
200 (((
201 (((
202 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
203 )))
204
205 (((
206 Add APP EUI in the application.
207 )))
208 )))
209
210 [[image:image-20220519174512-1.png]]
211
212 [[image:image-20220519174512-2.png||height="323" width="720"]]
213
214 [[image:image-20220519174512-3.png||height="556" width="724"]]
215
216 [[image:image-20220519174512-4.png]]
217
218 You can also choose to create the device manually.
219
220 [[image:1652953542269-423.png||height="710" width="723"]]
221
222 Add APP KEY and DEV EUI
223
224 [[image:1652953553383-907.png||height="514" width="724"]]
225
226
227 (((
228 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
229 )))
230
231 [[image:1652953568895-172.png||height="232" width="724"]]
232
233
234 == 3.3 Configure Commands to read data ==
235
236 (((
237 (((
238 (((
239 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
240 )))
241 )))
242
243 (((
244 (((
245 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
246 )))
247
248
249 )))
250 )))
251
252 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
253
254 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
255
256 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
257 |=(% style="width: 110px;" %)(((
258 **AT Commands**
259 )))|=(% style="width: 190px;" %)(((
260 **Description**
261 )))|=(% style="width: 190px;" %)(((
262 **Example**
263 )))
264 |(% style="width:110px" %)(((
265 AT+BAUDR
266 )))|(% style="width:190px" %)(((
267 Set the baud rate (for RS485 connection). Default Value is: 9600.
268 )))|(% style="width:190px" %)(((
269 (((
270 AT+BAUDR=9600
271 )))
272
273 (((
274 Options: (1200,2400,4800,14400,19200,115200)
275 )))
276 )))
277 |(% style="width:110px" %)(((
278 AT+PARITY
279 )))|(% style="width:190px" %)(((
280 Set UART parity (for RS485 connection)
281 )))|(% style="width:190px" %)(((
282 (((
283 AT+PARITY=0
284 )))
285
286 (((
287 Option: 0: no parity, 1: odd parity, 2: even parity
288 )))
289 )))
290 |(% style="width:110px" %)(((
291 AT+STOPBIT
292 )))|(% style="width:190px" %)(((
293 (((
294 Set serial stopbit (for RS485 connection)
295 )))
296
297 (((
298
299 )))
300 )))|(% style="width:190px" %)(((
301 (((
302 AT+STOPBIT=0 for 1bit
303 )))
304
305 (((
306 AT+STOPBIT=1 for 1.5 bit
307 )))
308
309 (((
310 AT+STOPBIT=2 for 2 bits
311 )))
312 )))
313
314 === 3.3.2 Configure sensors ===
315
316 (((
317 (((
318 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
319 )))
320 )))
321
322 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
323 |=(% style="width: 110px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
324 |AT+CFGDEV|(% style="width:110px" %)(((
325 (((
326 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
327 )))
328
329 (((
330 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
331 )))
332
333 (((
334 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
335 )))
336 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
337
338 === 3.3.3 Configure read commands for each sampling ===
339
340 (((
341 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
342
343 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
344
345 This section describes how to achieve above goals.
346
347 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
348
349
350 **Each RS485 commands include two parts:**
351
352 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
353
354 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
355
356 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
357
358
359 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
360
361
362 Below are examples for the how above AT Commands works.
363
364
365 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
366
367 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
368 |(% style="width:496px" %)(((
369 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
370
371 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
372
373 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
374 )))
375
376 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
377
378 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
379
380
381 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
382
383 (% border="1" style="background-color:#4bacc6; color:white; width:510px" %)
384 |(% style="width:510px" %)(((
385 **AT+DATACUTx=a,b,c**
386
387 * **a: length for the return of AT+COMMAND**
388 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
389 * **c: define the position for valid value.  **
390 )))
391
392 **Examples:**
393
394 * Grab bytes:
395
396 [[image:image-20220602153621-1.png]]
397
398
399 * Grab a section.
400
401 [[image:image-20220602153621-2.png]]
402
403
404 * Grab different sections.
405
406 [[image:image-20220602153621-3.png]]
407
408
409 )))
410
411 === 3.3.4 Compose the uplink payload ===
412
413 (((
414 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
415
416
417 )))
418
419 (((
420 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
421
422
423 )))
424
425 (((
426 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
427 )))
428
429 (((
430 Final Payload is
431 )))
432
433 (((
434 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
435 )))
436
437 (((
438 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
439 )))
440
441 [[image:1653269759169-150.png||height="513" width="716"]]
442
443
444 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
445
446
447 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
448
449 Final Payload is
450
451 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
452
453
454 1. PAYVER: Defined by AT+PAYVER
455 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
456 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
457 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
458
459 [[image:image-20220602155039-4.png]]
460
461
462 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
463
464 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
465
466 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
467
468 DATA3=the rest of Valid value of RETURN10= **30**
469
470
471 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
472
473 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
474
475 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
476
477 * For US915 band, max 11 bytes for each uplink.
478
479 ~* For all other bands: max 51 bytes for each uplink.
480
481
482 Below are the uplink payloads:
483
484 [[image:1654157178836-407.png]]
485
486
487 === 3.3.5 Uplink on demand ===
488
489 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
490
491 Downlink control command:
492
493 **0x08 command**: Poll an uplink with current command set in RS485-LN.
494
495 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
496
497
498
499 === 3.3.6 Uplink on Interrupt ===
500
501 RS485-LN support external Interrupt uplink since hardware v1.2 release.
502
503 [[image:1654157342174-798.png]]
504
505 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
506
507
508 == 3.4 Uplink Payload ==
509
510
511 [[image:image-20220606110929-1.png]]
512
513 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
514
515
516 == 3.5 Configure RS485-BL via AT or Downlink ==
517
518 (((
519 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
520 )))
521
522 (((
523 There are two kinds of Commands:
524 )))
525
526 * (((
527 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
528 )))
529
530 * (((
531 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
532 )))
533
534 (((
535
536 )))
537
538
539 === 3.5.1 Common Commands ===
540
541 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
542
543
544 === 3.5.2 Sensor related commands ===
545
546 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
547
548 [[image:image-20220602163333-5.png||height="263" width="1160"]]
549
550 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
551
552
553 === 3.5.3 Sensor related commands ===
554
555
556
557
558 ==== **RS485 Debug Command** ====
559
560 (((
561 This command is used to configure the RS485 devices; they won’t be used during sampling.
562 )))
563
564 * (((
565 **AT Command**
566 )))
567
568 (% class="box infomessage" %)
569 (((
570 (((
571 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
572 )))
573 )))
574
575 (((
576 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
577 )))
578
579 * (((
580 **Downlink Payload**
581 )))
582
583 (((
584 Format: A8 MM NN XX XX XX XX YY
585 )))
586
587 (((
588 Where:
589 )))
590
591 * (((
592 MM: 1: add CRC-16/MODBUS ; 0: no CRC
593 )))
594 * (((
595 NN: The length of RS485 command
596 )))
597 * (((
598 XX XX XX XX: RS485 command total NN bytes
599 )))
600 * (((
601 (((
602 YY: How many bytes will be uplink from the return of this RS485 command,
603 )))
604
605 * (((
606 if YY=0, RS485-LN will execute the downlink command without uplink;
607 )))
608 * (((
609 if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
610 )))
611 * (((
612 if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
613 )))
614 )))
615
616 (((
617 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
618 )))
619
620 (((
621 To connect a Modbus Alarm with below commands.
622 )))
623
624 * (((
625 The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
626 )))
627
628 * (((
629 The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
630 )))
631
632 (((
633 So if user want to use downlink command to control to RS485 Alarm, he can use:
634 )))
635
636 (((
637 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
638 )))
639
640 (((
641 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
642 )))
643
644 (((
645 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
646 )))
647
648 (((
649
650 )))
651
652 (((
653 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
654 )))
655
656 (((
657 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
658 )))
659
660 (((
661
662 )))
663
664 (((
665 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
666 )))
667
668 (((
669 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
670 )))
671
672 (((
673 [[image:1654159460680-153.png]]
674 )))
675
676
677
678
679 ==== **Set Payload version** ====
680
681 (((
682 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
683 )))
684
685 * (((
686 **AT Command:**
687 )))
688
689 (% class="box infomessage" %)
690 (((
691 (((
692 **AT+PAYVER: Set PAYVER field = 1**
693 )))
694 )))
695
696 * (((
697 **Downlink Payload:**
698 )))
699
700 (((
701 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
702 )))
703
704 (((
705 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
706 )))
707
708
709
710
711 ==== **Set RS485 Sampling Commands** ====
712
713 (((
714 AT+COMMANDx or AT+DATACUTx
715 )))
716
717 (((
718 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
719 )))
720
721 (((
722
723 )))
724
725 * (((
726 **AT Command:**
727 )))
728
729 (% class="box infomessage" %)
730 (((
731 (((
732 **AT+COMMANDx: Configure RS485 read command to sensor.**
733 )))
734 )))
735
736 (% class="box infomessage" %)
737 (((
738 (((
739 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
740 )))
741 )))
742
743 (((
744
745 )))
746
747 * (((
748 **Downlink Payload:**
749 )))
750
751 (((
752 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
753 )))
754
755 (((
756 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
757 )))
758
759 (((
760 Format: AF MM NN LL XX XX XX XX YY
761 )))
762
763 (((
764 Where:
765 )))
766
767 * (((
768 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
769 )))
770 * (((
771 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
772 )))
773 * (((
774 LL:  The length of AT+COMMAND or AT+DATACUT command
775 )))
776 * (((
777 XX XX XX XX: AT+COMMAND or AT+DATACUT command
778 )))
779 * (((
780 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
781 )))
782
783 (((
784 **Example:**
785 )))
786
787 (((
788 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
789 )))
790
791 (((
792 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
793 )))
794
795 (((
796 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
797 )))
798
799
800
801
802 ==== **Fast command to handle MODBUS device** ====
803
804 (((
805 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
806 )))
807
808 (((
809 This command is valid since v1.3 firmware version
810 )))
811
812 (((
813 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
814 )))
815
816 (((
817
818 )))
819
820 (((
821 **Example:**
822 )))
823
824 * (((
825 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
826 )))
827 * (((
828 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
829 )))
830 * (((
831 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
832 )))
833
834 [[image:image-20220602165351-6.png]]
835
836 [[image:image-20220602165351-7.png]]
837
838
839
840
841 ==== **RS485 command timeout** ====
842
843 (((
844 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
845 )))
846
847 (((
848 Default value: 0, range:  0 ~~ 65 seconds
849 )))
850
851 * (((
852 **AT Command:**
853 )))
854
855 (% class="box infomessage" %)
856 (((
857 (((
858 **AT+CMDDLaa=hex(bb cc)*1000**
859 )))
860 )))
861
862 (((
863 **Example:**
864 )))
865
866 (((
867 **AT+CMDDL1=1000** to send the open time to 1000ms
868 )))
869
870 (((
871
872 )))
873
874 * (((
875 **Downlink Payload:**
876 )))
877
878 (((
879 **0x AA aa bb cc**
880 )))
881
882 (((
883 Same as: AT+CMDDLaa=hex(bb cc)*1000
884 )))
885
886 (((
887 **Example:**
888 )))
889
890 (((
891 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
892 )))
893
894
895
896
897 ==== **Uplink payload mode** ====
898
899 (((
900 Define to use one uplink or multiple uplinks for the sampling.
901 )))
902
903 (((
904 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
905 )))
906
907 * (((
908 **AT Command:**
909 )))
910
911 (% class="box infomessage" %)
912 (((
913 (((
914 **AT+DATAUP=0**
915 )))
916 )))
917
918 (% class="box infomessage" %)
919 (((
920 (((
921 **AT+DATAUP=1**
922 )))
923 )))
924
925 (((
926
927 )))
928
929 * (((
930 **Downlink Payload:**
931 )))
932
933 (((
934 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
935 )))
936
937 (((
938 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
939 )))
940
941
942
943
944 ==== **Manually trigger an Uplink** ====
945
946 (((
947 Ask device to send an uplink immediately.
948 )))
949
950 * (((
951 **AT Command:**
952 )))
953
954 (((
955 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
956 )))
957
958 (((
959
960 )))
961
962 * (((
963 **Downlink Payload:**
964 )))
965
966 (((
967 **0x08 FF**, RS485-LN will immediately send an uplink.
968 )))
969
970
971
972
973 ==== **Clear RS485 Command** ====
974
975 (((
976 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
977 )))
978
979 * (((
980 **AT Command:**
981 )))
982
983 (((
984 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
985 )))
986
987 (((
988 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
989 )))
990
991 (((
992 Example screen shot after clear all RS485 commands. 
993 )))
994
995 (((
996
997 )))
998
999 (((
1000 The uplink screen shot is:
1001 )))
1002
1003 [[image:1654160691922-496.png]]
1004
1005
1006 * (((
1007 **Downlink Payload:**
1008 )))
1009
1010 (((
1011 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1012 )))
1013
1014
1015
1016
1017 ==== **Set Serial Communication Parameters** ====
1018
1019 (((
1020 Set the Rs485 serial communication parameters:
1021 )))
1022
1023 * (((
1024 **AT Command:**
1025 )))
1026
1027 (((
1028 Set Baud Rate:
1029 )))
1030
1031 (% class="box infomessage" %)
1032 (((
1033 (((
1034 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1035 )))
1036 )))
1037
1038 (((
1039 Set UART Parity
1040 )))
1041
1042 (% class="box infomessage" %)
1043 (((
1044 (((
1045 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1046 )))
1047 )))
1048
1049 (((
1050 Set STOPBIT
1051 )))
1052
1053 (% class="box infomessage" %)
1054 (((
1055 (((
1056 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1057 )))
1058 )))
1059
1060 (((
1061
1062 )))
1063
1064 * (((
1065 **Downlink Payload:**
1066 )))
1067
1068 (((
1069 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1070 )))
1071
1072 (((
1073 **Example:**
1074 )))
1075
1076 * (((
1077 A7 01 00 60   same as AT+BAUDR=9600
1078 )))
1079 * (((
1080 A7 01 04 80  same as AT+BAUDR=115200
1081 )))
1082
1083 (((
1084 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1085 )))
1086
1087 (((
1088 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1089 )))
1090
1091
1092
1093
1094 == 3.6 Listening mode for RS485 network ==
1095
1096 (((
1097 This feature support since firmware v1.4
1098 )))
1099
1100 (((
1101 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
1102 )))
1103
1104 [[image:image-20220602171200-8.png||height="567" width="1007"]]
1105
1106 (((
1107 To enable the listening mode, use can run the command AT+RXMODE.
1108 )))
1109
1110 (((
1111
1112 )))
1113
1114 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
1115 |=(% style="width: 100px;" %)(((
1116 **Command example**
1117 )))|=(% style="width: 400px;" %)(((
1118 **Function**
1119 )))
1120 |(% style="width:100px" %)(((
1121 AT+RXMODE=1,10
1122 )))|(% style="width:400px" %)(((
1123 Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
1124 )))
1125 |(% style="width:100px" %)(((
1126 AT+RXMODE=2,500
1127 )))|(% style="width:400px" %)(((
1128 Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
1129 )))
1130 |(% style="width:100px" %)(((
1131 AT+RXMODE=0,0
1132 )))|(% style="width:400px" %)(((
1133 Disable listening mode. This is the default settings.
1134 )))
1135 |(% style="width:100px" %)(((
1136
1137 )))|(% style="width:400px" %)(((
1138 A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 | cc)
1139 )))
1140
1141 (((
1142 **Downlink Command:**
1143 )))
1144
1145 (((
1146 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
1147 )))
1148
1149 (((
1150
1151 )))
1152
1153 (((
1154 **Example**:
1155 )))
1156
1157 (((
1158 The RS485-LN is set to AT+RXMODE=2,1000
1159 )))
1160
1161 (((
1162 There is a two Modbus commands in the RS485 network as below:
1163 )))
1164
1165 (((
1166 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
1167 )))
1168
1169 (((
1170 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1171 )))
1172
1173 (((
1174 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1175 )))
1176
1177 (((
1178 [[image:image-20220602171200-9.png]]
1179 )))
1180
1181 (((
1182
1183 )))
1184
1185 (((
1186 (((
1187 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
1188 )))
1189 )))
1190
1191
1192 == 3.7 Buttons ==
1193
1194
1195 (% border="1" cellspacing="10" style="background-color:#f7faff; width:400px" %)
1196 |=(% style="width: 50px;" %)**Button**|=(% style="width: 350px;" %)**Feature**
1197 |(% style="width:50px" %)**ACT**|(% style="width:350px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
1198 |(% style="width:50px" %)**RST**|(% style="width:350px" %)Reboot RS485
1199 |(% style="width:50px" %)**PRO**|(% style="width:350px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
1200
1201 == 3.8 LEDs ==
1202
1203
1204 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1205 |=(% style="width: 50px;" %)**LEDs**|=(% style="width: 380px;" %)**Feature**
1206 |**PWR**|Always on if there is power
1207 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN**(%%) for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds** (%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
1208
1209 = 4. Case Study =
1210
1211 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1212
1213
1214 = 5. Use AT Command =
1215
1216 == 5.1 Access AT Command ==
1217
1218 (((
1219 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1220 )))
1221
1222 [[image:1654162355560-817.png]]
1223
1224
1225 (((
1226 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1227 )))
1228
1229 [[image:1654162368066-342.png]]
1230
1231
1232 (((
1233 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1234 )))
1235
1236
1237
1238 == 5.2 Common AT Command Sequence ==
1239
1240 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1241
1242 If device has not joined network yet:
1243
1244 (% class="box infomessage" %)
1245 (((
1246 **AT+FDR**
1247 )))
1248
1249 (% class="box infomessage" %)
1250 (((
1251 **AT+NJM=0**
1252 )))
1253
1254 (% class="box infomessage" %)
1255 (((
1256 **ATZ**
1257 )))
1258
1259
1260 (((
1261 If device already joined network:
1262 )))
1263
1264 (% class="box infomessage" %)
1265 (((
1266 **AT+NJM=0**
1267 )))
1268
1269 (% class="box infomessage" %)
1270 (((
1271 **ATZ**
1272 )))
1273
1274
1275 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1276
1277
1278 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1279
1280 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1281
1282 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1283
1284 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
1285
1286 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1287
1288 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1289
1290 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1291
1292 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1293
1294 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1295
1296 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1297
1298
1299 (% style="color:red" %)**Note:**
1300
1301 (((
1302 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1303 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1304 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1305 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1306 )))
1307
1308 [[image:1654162478620-421.png]]
1309
1310
1311 = 6. FAQ =
1312
1313 == 6.1 How to upgrade the image? ==
1314
1315 (((
1316 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
1317 )))
1318
1319 * (((
1320 Support new features
1321 )))
1322 * (((
1323 For bug fix
1324 )))
1325 * (((
1326 Change LoRaWAN bands.
1327 )))
1328
1329 (((
1330 Below shows the hardware connection for how to upload an image to RS485-LN:
1331 )))
1332
1333 [[image:1654162535040-878.png]]
1334
1335 (((
1336 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1337 )))
1338
1339 (((
1340 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1341 )))
1342
1343 (((
1344 **Step3: **Open flashloader; choose the correct COM port to update.
1345 )))
1346
1347 (((
1348 (((
1349 (((
1350 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
1351 )))
1352 )))
1353 )))
1354
1355
1356 [[image:image-20220602175818-12.png]]
1357
1358
1359 [[image:image-20220602175848-13.png]]
1360
1361
1362 [[image:image-20220602175912-14.png]]
1363
1364
1365 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1366
1367 [[image:image-20220602175638-10.png]]
1368
1369
1370 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1371
1372 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1373
1374
1375 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1376
1377 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1378
1379
1380 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1381
1382 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1383
1384 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1385
1386
1387 = 7. Trouble Shooting =
1388
1389 == 7.1 Downlink doesn’t work, how to solve it? ==
1390
1391 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1392
1393
1394 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1395
1396 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1397
1398
1399 = 8. Order Info =
1400
1401 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1402
1403 (% style="color:blue" %)**XXX:**
1404
1405 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1406 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1407 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1408 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1409 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1410 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1411 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1412 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1413 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1414 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1415
1416 = 9.Packing Info =
1417
1418
1419 **Package Includes**:
1420
1421 * RS485-LN x 1
1422 * Stick Antenna for LoRa RF part x 1
1423 * Program cable x 1
1424
1425 **Dimension and weight**:
1426
1427 * Device Size: 13.5 x 7 x 3 cm
1428 * Device Weight: 105g
1429 * Package Size / pcs : 14.5 x 8 x 5 cm
1430 * Weight / pcs : 170g
1431
1432 = 10. FCC Caution for RS485LN-US915 =
1433
1434 (((
1435 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1436 )))
1437
1438 (((
1439 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1440 )))
1441
1442 (((
1443
1444 )))
1445
1446 (((
1447 **IMPORTANT NOTE:**
1448 )))
1449
1450 (((
1451 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1452 )))
1453
1454 (((
1455 —Reorient or relocate the receiving antenna.
1456 )))
1457
1458 (((
1459 —Increase the separation between the equipment and receiver.
1460 )))
1461
1462 (((
1463 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1464 )))
1465
1466 (((
1467 —Consult the dealer or an experienced radio/TV technician for help.
1468 )))
1469
1470 (((
1471
1472 )))
1473
1474 (((
1475 **FCC Radiation Exposure Statement:**
1476 )))
1477
1478 (((
1479 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1480 )))
1481
1482
1483 = 11. Support =
1484
1485 * (((
1486 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1487 )))
1488 * (((
1489 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1490 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0