Version 57.45 by Xiaoling on 2022/06/06 10:13

Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21 = 1.Introduction =
22
23 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
24
25 (((
26 (((
27 (((
28 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
29 )))
30 )))
31
32 (((
33 (((
34 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
35 )))
36 )))
37
38 (((
39 (((
40 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42 )))
43
44 (((
45 (((
46 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
47 )))
48
49 (((
50 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
51 )))
52 )))
53 )))
54
55 [[image:1653267211009-519.png||height="419" width="724"]]
56
57
58 == 1.2 Specifications ==
59
60
61 **Hardware System:**
62
63 * STM32L072CZT6 MCU
64 * SX1276/78 Wireless Chip 
65 * Power Consumption (exclude RS485 device):
66 ** Idle: 32mA@12v
67 ** 20dB Transmit: 65mA@12v
68
69 **Interface for Model:**
70
71 * RS485
72 * Power Input 7~~ 24V DC. 
73
74 **LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC
94
95 == 1.3 Features ==
96
97 * LoRaWAN Class A & Class C protocol (default Class C)
98 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
99 * AT Commands to change parameters
100 * Remote configure parameters via LoRa Downlink
101 * Firmware upgradable via program port
102 * Support multiply RS485 devices by flexible rules
103 * Support Modbus protocol
104 * Support Interrupt uplink (Since hardware version v1.2)
105
106
107
108 == 1.4 Applications ==
109
110 * Smart Buildings & Home Automation
111 * Logistics and Supply Chain Management
112 * Smart Metering
113 * Smart Agriculture
114 * Smart Cities
115 * Smart Factory
116
117
118
119 == 1.5 Firmware Change log ==
120
121 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
122
123
124 == 1.6 Hardware Change log ==
125
126 (((
127 (((
128 v1.2: Add External Interrupt Pin.
129
130 v1.0: Release
131
132
133 )))
134 )))
135
136 = 2. Power ON Device =
137
138 (((
139 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
140
141 * Power Source VIN to RS485-LN VIN+
142 * Power Source GND to RS485-LN VIN-
143
144 (((
145 Once there is power, the RS485-LN will be on.
146 )))
147
148 [[image:1653268091319-405.png]]
149
150
151 )))
152
153 = 3. Operation Mode =
154
155 == 3.1 How it works? ==
156
157 (((
158 (((
159 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
160 )))
161
162
163 )))
164
165 == 3.2 Example to join LoRaWAN network ==
166
167 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
168
169 [[image:1653268155545-638.png||height="334" width="724"]]
170
171
172 (((
173 (((
174 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
175 )))
176
177 (((
178 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
179 )))
180
181 [[image:1653268227651-549.png||height="592" width="720"]]
182
183 (((
184 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
185 )))
186
187 (((
188 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
189 )))
190
191 (((
192 Each RS485-LN is shipped with a sticker with unique device EUI:
193 )))
194 )))
195
196 [[image:1652953462722-299.png]]
197
198 (((
199 (((
200 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
201 )))
202
203 (((
204 Add APP EUI in the application.
205 )))
206 )))
207
208 [[image:image-20220519174512-1.png]]
209
210 [[image:image-20220519174512-2.png||height="323" width="720"]]
211
212 [[image:image-20220519174512-3.png||height="556" width="724"]]
213
214 [[image:image-20220519174512-4.png]]
215
216 You can also choose to create the device manually.
217
218 [[image:1652953542269-423.png||height="710" width="723"]]
219
220 Add APP KEY and DEV EUI
221
222 [[image:1652953553383-907.png||height="514" width="724"]]
223
224
225 (((
226 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
227 )))
228
229 [[image:1652953568895-172.png||height="232" width="724"]]
230
231
232 == 3.3 Configure Commands to read data ==
233
234 (((
235 (((
236 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
237 )))
238
239 (((
240 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
241
242
243 )))
244 )))
245
246 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
247
248 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
249
250 (% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
251 |(% style="width:128px" %)(((
252 **AT Commands**
253 )))|(% style="width:305px" %)(((
254 **Description**
255 )))|(% style="width:346px" %)(((
256 **Example**
257 )))
258 |(% style="width:128px" %)(((
259 AT+BAUDR
260 )))|(% style="width:305px" %)(((
261 Set the baud rate (for RS485 connection). Default Value is: 9600.
262 )))|(% style="width:346px" %)(((
263 (((
264 AT+BAUDR=9600
265 )))
266
267 (((
268 Options: (1200,2400,4800,14400,19200,115200)
269 )))
270 )))
271 |(% style="width:128px" %)(((
272 AT+PARITY
273 )))|(% style="width:305px" %)(((
274 Set UART parity (for RS485 connection)
275 )))|(% style="width:346px" %)(((
276 (((
277 AT+PARITY=0
278 )))
279
280 (((
281 Option: 0: no parity, 1: odd parity, 2: even parity
282 )))
283 )))
284 |(% style="width:128px" %)(((
285 AT+STOPBIT
286 )))|(% style="width:305px" %)(((
287 (((
288 Set serial stopbit (for RS485 connection)
289 )))
290
291 (((
292
293 )))
294 )))|(% style="width:346px" %)(((
295 (((
296 AT+STOPBIT=0 for 1bit
297 )))
298
299 (((
300 AT+STOPBIT=1 for 1.5 bit
301 )))
302
303 (((
304 AT+STOPBIT=2 for 2 bits
305 )))
306 )))
307
308 === 3.3.2 Configure sensors ===
309
310 (((
311 (((
312 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
313 )))
314 )))
315
316 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
317 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
318 |AT+CFGDEV|(% style="width:418px" %)(((
319 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
320
321 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
322
323 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
324 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
325
326 === 3.3.3 Configure read commands for each sampling ===
327
328 (((
329 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
330
331 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
332
333 This section describes how to achieve above goals.
334
335 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
336
337
338 **Each RS485 commands include two parts:**
339
340 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
341
342 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
343
344 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
345
346
347 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
348
349
350 Below are examples for the how above AT Commands works.
351
352
353 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
354
355 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
356 |(% style="width:496px" %)(((
357 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
358
359 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
360
361 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
362 )))
363
364 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
365
366 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
367
368
369 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
370
371 (% border="1" style="background-color:#4bacc6; color:white; width:725px" %)
372 |(% style="width:722px" %)(((
373 **AT+DATACUTx=a,b,c**
374
375 * **a: length for the return of AT+COMMAND**
376 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
377 * **c: define the position for valid value.  **
378 )))
379
380 **Examples:**
381
382 * Grab bytes:
383
384 [[image:image-20220602153621-1.png]]
385
386
387 * Grab a section.
388
389 [[image:image-20220602153621-2.png]]
390
391
392 * Grab different sections.
393
394 [[image:image-20220602153621-3.png]]
395
396
397 )))
398
399 === 3.3.4 Compose the uplink payload ===
400
401 (((
402 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
403
404
405 )))
406
407 (((
408 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
409
410
411 )))
412
413 (((
414 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
415 )))
416
417 (((
418 Final Payload is
419 )))
420
421 (((
422 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
423 )))
424
425 (((
426 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
427 )))
428
429 [[image:1653269759169-150.png||height="513" width="716"]]
430
431
432 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
433
434
435 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
436
437 Final Payload is
438
439 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
440
441
442 1. PAYVER: Defined by AT+PAYVER
443 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
444 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
445 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
446
447 [[image:image-20220602155039-4.png]]
448
449
450 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
451
452 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
453
454 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
455
456 DATA3=the rest of Valid value of RETURN10= **30**
457
458
459 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
460
461 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
462
463 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
464
465 * For US915 band, max 11 bytes for each uplink.
466
467 ~* For all other bands: max 51 bytes for each uplink.
468
469
470 Below are the uplink payloads:
471
472 [[image:1654157178836-407.png]]
473
474
475 === 3.3.5 Uplink on demand ===
476
477 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
478
479 Downlink control command:
480
481 **0x08 command**: Poll an uplink with current command set in RS485-LN.
482
483 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
484
485
486
487 === 3.3.6 Uplink on Interrupt ===
488
489 RS485-LN support external Interrupt uplink since hardware v1.2 release.
490
491 [[image:1654157342174-798.png]]
492
493 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
494
495
496 == 3.4 Uplink Payload ==
497
498 (% border="1" style="background-color:#4bacc6; color:white; width:734px" %)
499 |**Size(bytes)**|(% style="width:120px" %)**2**|(% style="width:116px" %)**1**|(% style="width:386px" %)**Length depends on the return from the commands**
500 |Value|(% style="width:120px" %)(((
501 Battery(mV)
502
503 &
504
505 Interrupt _Flag
506 )))|(% style="width:116px" %)(((
507 PAYLOAD_VER
508
509
510 )))|(% style="width:386px" %)If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
511
512 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
513
514
515 == 3.5 Configure RS485-BL via AT or Downlink ==
516
517 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
518
519 There are two kinds of Commands:
520
521 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
522
523 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
524
525 === 3.5.1 Common Commands ===
526
527 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
528
529
530 === 3.5.2 Sensor related commands ===
531
532 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
533
534 [[image:image-20220602163333-5.png||height="263" width="1160"]]
535
536 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
537
538
539 === 3.5.3 Sensor related commands ===
540
541
542
543 ==== **RS485 Debug Command** ====
544
545 This command is used to configure the RS485 devices; they won’t be used during sampling.
546
547 * **AT Command**
548
549 (% class="box infomessage" %)
550 (((
551 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
552 )))
553
554 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
555
556 * **Downlink Payload**
557
558 Format: A8 MM NN XX XX XX XX YY
559
560 Where:
561
562 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
563 * NN: The length of RS485 command
564 * XX XX XX XX: RS485 command total NN bytes
565 * YY: How many bytes will be uplink from the return of this RS485 command,
566 ** if YY=0, RS485-LN will execute the downlink command without uplink;
567 ** if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
568 ** if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
569
570 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
571
572 To connect a Modbus Alarm with below commands.
573
574 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
575
576 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
577
578 So if user want to use downlink command to control to RS485 Alarm, he can use:
579
580 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
581
582 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
583
584 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
585
586
587 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
588
589 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
590
591
592 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
593
594 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
595
596 [[image:1654159460680-153.png]]
597
598
599
600 ==== **Set Payload version** ====
601
602 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
603
604 * **AT Command:**
605
606 (% class="box infomessage" %)
607 (((
608 **AT+PAYVER: Set PAYVER field = 1**
609 )))
610
611 * **Downlink Payload:**
612
613 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
614
615 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
616
617
618
619 ==== **Set RS485 Sampling Commands** ====
620
621 AT+COMMANDx or AT+DATACUTx
622
623 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
624
625
626 * **AT Command:**
627
628 (% class="box infomessage" %)
629 (((
630 **AT+COMMANDx: Configure RS485 read command to sensor.**
631 )))
632
633 (% class="box infomessage" %)
634 (((
635 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
636 )))
637
638
639 * **Downlink Payload:**
640
641 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
642
643 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
644
645 Format: AF MM NN LL XX XX XX XX YY
646
647 Where:
648
649 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
650 * NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
651 * LL:  The length of AT+COMMAND or AT+DATACUT command
652 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
653 * YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
654
655 **Example:**
656
657 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
658
659 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
660
661 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
662
663
664
665 ==== **Fast command to handle MODBUS device** ====
666
667 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
668
669 This command is valid since v1.3 firmware version
670
671 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
672
673
674 **Example:**
675
676 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
677 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
678 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
679
680 [[image:image-20220602165351-6.png]]
681
682 [[image:image-20220602165351-7.png]]
683
684
685
686 ==== **RS485 command timeout** ====
687
688 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
689
690 Default value: 0, range:  0 ~~ 65 seconds
691
692 * **AT Command:**
693
694 (% class="box infomessage" %)
695 (((
696 **AT+CMDDLaa=hex(bb cc)*1000**
697 )))
698
699 **Example:**
700
701 **AT+CMDDL1=1000** to send the open time to 1000ms
702
703
704 * **Downlink Payload:**
705
706 **0x AA aa bb cc**
707
708 Same as: AT+CMDDLaa=hex(bb cc)*1000
709
710 **Example:**
711
712 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
713
714
715
716 ==== **Uplink payload mode** ====
717
718 Define to use one uplink or multiple uplinks for the sampling.
719
720 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
721
722 * **AT Command:**
723
724 (% class="box infomessage" %)
725 (((
726 **AT+DATAUP=0**
727 )))
728
729 (% class="box infomessage" %)
730 (((
731 **AT+DATAUP=1**
732 )))
733
734
735 * **Downlink Payload:**
736
737 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
738
739 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
740
741
742
743 ==== **Manually trigger an Uplink** ====
744
745 Ask device to send an uplink immediately.
746
747 * **AT Command:**
748
749 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
750
751
752 * **Downlink Payload:**
753
754 **0x08 FF**, RS485-LN will immediately send an uplink.
755
756
757
758 ==== **Clear RS485 Command** ====
759
760 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
761
762 * **AT Command:**
763
764 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
765
766 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
767
768 Example screen shot after clear all RS485 commands. 
769
770
771 The uplink screen shot is:
772
773 [[image:1654160691922-496.png]]
774
775
776 * **Downlink Payload:**
777
778 **0x09 aa bb** same as AT+CMDEAR=aa,bb
779
780
781
782 ==== **Set Serial Communication Parameters** ====
783
784 Set the Rs485 serial communication parameters:
785
786 * **AT Command:**
787
788 Set Baud Rate:
789
790 (% class="box infomessage" %)
791 (((
792 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
793 )))
794
795 Set UART Parity
796
797 (% class="box infomessage" %)
798 (((
799 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
800 )))
801
802 Set STOPBIT
803
804 (% class="box infomessage" %)
805 (((
806 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
807 )))
808
809
810 * **Downlink Payload:**
811
812 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
813
814 **Example:**
815
816 * A7 01 00 60   same as AT+BAUDR=9600
817 * A7 01 04 80  same as AT+BAUDR=115200
818
819 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
820
821 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
822
823
824 == 3.6 Listening mode for RS485 network ==
825
826 This feature support since firmware v1.4
827
828 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
829
830 [[image:image-20220602171200-8.png||height="567" width="1007"]]
831
832 To enable the listening mode, use can run the command AT+RXMODE.
833
834
835 (% border="1" style="background-color:#ffffcc; width:500px" %)
836 |=(% style="width: 161px;" %)**Command example:**|=(% style="width: 337px;" %)**Function**
837 |(% style="width:161px" %)AT+RXMODE=1,10 |(% style="width:337px" %)Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
838 |(% style="width:161px" %)AT+RXMODE=2,500|(% style="width:337px" %)Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
839 |(% style="width:161px" %)AT+RXMODE=0,0|(% style="width:337px" %)Disable listening mode. This is the default settings.
840 |(% style="width:161px" %) |(% style="width:337px" %)A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 ~| cc)
841
842 **Downlink Command:**
843
844 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
845
846
847 **Example**:
848
849 The RS485-LN is set to AT+RXMODE=2,1000
850
851 There is a two Modbus commands in the RS485 network as below:
852
853 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
854
855 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
856
857 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
858
859 [[image:image-20220602171200-9.png]]
860
861
862 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
863
864
865 == 3.7 Buttons ==
866
867
868 (% border="1" style="background-color:#f7faff; width:500px" %)
869 |=**Button**|=(% style="width: 1420px;" %)**Feature**
870 |**ACT**|(% style="width:1420px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
871 |**RST**|(% style="width:1420px" %)Reboot RS485
872 |**PRO**|(% style="width:1420px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
873
874
875 == 3.8 LEDs ==
876
877 (% border="1" style="background-color:#f7faff; width:500px" %)
878 |=**LEDs**|=**Feature**
879 |**PWR**|Always on if there is power
880 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN** (%%)for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds**(%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
881
882
883 = 4. Case Study =
884
885 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
886
887
888 = 5. Use AT Command =
889
890 == 5.1 Access AT Command ==
891
892 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
893
894 [[image:1654162355560-817.png]]
895
896
897 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
898
899 [[image:1654162368066-342.png]]
900
901
902 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
903
904
905 == 5.2 Common AT Command Sequence ==
906
907 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
908
909 If device has not joined network yet:
910
911 (% class="box infomessage" %)
912 (((
913 **AT+FDR**
914 )))
915
916 (% class="box infomessage" %)
917 (((
918 **AT+NJM=0**
919 )))
920
921 (% class="box infomessage" %)
922 (((
923 **ATZ**
924 )))
925
926
927 If device already joined network:
928
929 (% class="box infomessage" %)
930 (((
931 **AT+NJM=0**
932 )))
933
934 (% class="box infomessage" %)
935 (((
936 **ATZ**
937 )))
938
939
940 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
941
942
943 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
944
945 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
946
947 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
948
949 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
950
951 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
952
953 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
954
955 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
956
957 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
958
959 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
960
961 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
962
963
964 (% style="color:red" %)**Note:**
965
966 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
967 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
968 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
969 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
970
971 [[image:1654162478620-421.png]]
972
973
974 = 6. FAQ =
975
976 == 6.1 How to upgrade the image? ==
977
978 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
979
980 * Support new features
981 * For bug fix
982 * Change LoRaWAN bands.
983
984 Below shows the hardware connection for how to upload an image to RS485-LN:
985
986 [[image:1654162535040-878.png]]
987
988 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
989
990 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
991
992 **Step3: **Open flashloader; choose the correct COM port to update.
993
994 (((
995 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
996 )))
997
998
999 [[image:image-20220602175818-12.png]]
1000
1001
1002 [[image:image-20220602175848-13.png]]
1003
1004
1005 [[image:image-20220602175912-14.png]]
1006
1007
1008 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1009
1010 [[image:image-20220602175638-10.png]]
1011
1012
1013 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1014
1015 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1016
1017
1018 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1019
1020 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1021
1022
1023 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1024
1025 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1026
1027 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1028
1029
1030 = 7. Trouble Shooting =
1031
1032 == 7.1 Downlink doesn’t work, how to solve it? ==
1033
1034 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1035
1036
1037 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1038
1039 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1040
1041
1042 = 8. Order Info =
1043
1044 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1045
1046 (% style="color:blue" %)**XXX:**
1047
1048 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1049 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1050 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1051 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1052 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1053 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1054 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1055 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1056 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1057 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1058
1059
1060
1061 = 9.Packing Info =
1062
1063
1064 **Package Includes**:
1065
1066 * RS485-LN x 1
1067 * Stick Antenna for LoRa RF part x 1
1068 * Program cable x 1
1069
1070 **Dimension and weight**:
1071
1072 * Device Size: 13.5 x 7 x 3 cm
1073 * Device Weight: 105g
1074 * Package Size / pcs : 14.5 x 8 x 5 cm
1075 * Weight / pcs : 170g
1076
1077
1078
1079 = 10. FCC Caution for RS485LN-US915 =
1080
1081 (((
1082 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1083 )))
1084
1085 (((
1086 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1087 )))
1088
1089 (((
1090
1091 )))
1092
1093 (((
1094 **IMPORTANT NOTE:**
1095 )))
1096
1097 (((
1098 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1099 )))
1100
1101 (((
1102 —Reorient or relocate the receiving antenna.
1103 )))
1104
1105 (((
1106 —Increase the separation between the equipment and receiver.
1107 )))
1108
1109 (((
1110 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1111 )))
1112
1113 (((
1114 —Consult the dealer or an experienced radio/TV technician for help.
1115 )))
1116
1117 (((
1118
1119 )))
1120
1121 (((
1122 **FCC Radiation Exposure Statement:**
1123 )))
1124
1125 (((
1126 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1127 )))
1128
1129
1130 = 11. Support =
1131
1132 * (((
1133 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1134 )))
1135 * (((
1136 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1137 )))