Version 57.3 by Xiaoling on 2022/06/06 08:41

Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9 **Table of Contents:**
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
18
19 (((
20 (((
21 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 )))
23
24 (((
25 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 )))
27
28 (((
29 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 )))
31
32 (((
33 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34
35 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
36 )))
37 )))
38
39 [[image:1653267211009-519.png||height="419" width="724"]]
40
41
42 == 1.2 Specifications ==
43
44
45 **Hardware System:**
46
47 * STM32L072CZT6 MCU
48 * SX1276/78 Wireless Chip 
49 * Power Consumption (exclude RS485 device):
50 ** Idle: 32mA@12v
51 ** 20dB Transmit: 65mA@12v
52
53 **Interface for Model:**
54
55 * RS485
56 * Power Input 7~~ 24V DC. 
57
58 **LoRa Spec:**
59
60 * Frequency Range:
61 ** Band 1 (HF): 862 ~~ 1020 Mhz
62 ** Band 2 (LF): 410 ~~ 528 Mhz
63 * 168 dB maximum link budget.
64 * +20 dBm - 100 mW constant RF output vs.
65 * +14 dBm high efficiency PA.
66 * Programmable bit rate up to 300 kbps.
67 * High sensitivity: down to -148 dBm.
68 * Bullet-proof front end: IIP3 = -12.5 dBm.
69 * Excellent blocking immunity.
70 * Low RX current of 10.3 mA, 200 nA register retention.
71 * Fully integrated synthesizer with a resolution of 61 Hz.
72 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
73 * Built-in bit synchronizer for clock recovery.
74 * Preamble detection.
75 * 127 dB Dynamic Range RSSI.
76 * Automatic RF Sense and CAD with ultra-fast AFC.
77 * Packet engine up to 256 bytes with CRC
78
79
80
81 == 1.3 Features ==
82
83 * LoRaWAN Class A & Class C protocol (default Class C)
84 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
85 * AT Commands to change parameters
86 * Remote configure parameters via LoRa Downlink
87 * Firmware upgradable via program port
88 * Support multiply RS485 devices by flexible rules
89 * Support Modbus protocol
90 * Support Interrupt uplink (Since hardware version v1.2)
91
92
93
94 == 1.4 Applications ==
95
96 * Smart Buildings & Home Automation
97 * Logistics and Supply Chain Management
98 * Smart Metering
99 * Smart Agriculture
100 * Smart Cities
101 * Smart Factory
102
103 == 1.5 Firmware Change log ==
104
105 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
106
107
108 == 1.6 Hardware Change log ==
109
110 (((
111 (((
112 v1.2: Add External Interrupt Pin.
113
114 v1.0: Release
115
116
117 )))
118 )))
119
120 = 2. Power ON Device =
121
122 (((
123 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
124
125 * Power Source VIN to RS485-LN VIN+
126 * Power Source GND to RS485-LN VIN-
127
128 (((
129 Once there is power, the RS485-LN will be on.
130 )))
131
132 [[image:1653268091319-405.png]]
133
134
135 )))
136
137 = 3. Operation Mode =
138
139 == 3.1 How it works? ==
140
141 (((
142 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
143
144
145 )))
146
147 == 3.2 Example to join LoRaWAN network ==
148
149 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
150
151 [[image:1653268155545-638.png||height="334" width="724"]]
152
153
154 (((
155 (((
156 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
157 )))
158
159 (((
160 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
161 )))
162
163 [[image:1653268227651-549.png||height="592" width="720"]]
164
165 (((
166 The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
167 )))
168
169 (((
170 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
171 )))
172
173 (((
174 Each RS485-LN is shipped with a sticker with unique device EUI:
175 )))
176 )))
177
178 [[image:1652953462722-299.png]]
179
180 (((
181 (((
182 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
183 )))
184
185 (((
186 Add APP EUI in the application.
187 )))
188 )))
189
190 [[image:image-20220519174512-1.png]]
191
192 [[image:image-20220519174512-2.png||height="323" width="720"]]
193
194 [[image:image-20220519174512-3.png||height="556" width="724"]]
195
196 [[image:image-20220519174512-4.png]]
197
198 You can also choose to create the device manually.
199
200 [[image:1652953542269-423.png||height="710" width="723"]]
201
202 Add APP KEY and DEV EUI
203
204 [[image:1652953553383-907.png||height="514" width="724"]]
205
206
207 (((
208 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
209 )))
210
211 [[image:1652953568895-172.png||height="232" width="724"]]
212
213
214 == 3.3 Configure Commands to read data ==
215
216 (((
217 (((
218 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
219 )))
220
221 (((
222 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
223
224
225 )))
226 )))
227
228 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
229
230 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
231
232 (% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
233 |(% style="width:128px" %)(((
234 **AT Commands**
235 )))|(% style="width:305px" %)(((
236 **Description**
237 )))|(% style="width:346px" %)(((
238 **Example**
239 )))
240 |(% style="width:128px" %)(((
241 AT+BAUDR
242 )))|(% style="width:305px" %)(((
243 Set the baud rate (for RS485 connection). Default Value is: 9600.
244 )))|(% style="width:346px" %)(((
245 (((
246 AT+BAUDR=9600
247 )))
248
249 (((
250 Options: (1200,2400,4800,14400,19200,115200)
251 )))
252 )))
253 |(% style="width:128px" %)(((
254 AT+PARITY
255 )))|(% style="width:305px" %)(((
256 Set UART parity (for RS485 connection)
257 )))|(% style="width:346px" %)(((
258 (((
259 AT+PARITY=0
260 )))
261
262 (((
263 Option: 0: no parity, 1: odd parity, 2: even parity
264 )))
265 )))
266 |(% style="width:128px" %)(((
267 AT+STOPBIT
268 )))|(% style="width:305px" %)(((
269 (((
270 Set serial stopbit (for RS485 connection)
271 )))
272
273 (((
274
275 )))
276 )))|(% style="width:346px" %)(((
277 (((
278 AT+STOPBIT=0 for 1bit
279 )))
280
281 (((
282 AT+STOPBIT=1 for 1.5 bit
283 )))
284
285 (((
286 AT+STOPBIT=2 for 2 bits
287 )))
288 )))
289
290 === 3.3.2 Configure sensors ===
291
292 (((
293 (((
294 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
295 )))
296 )))
297
298 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
299 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
300 |AT+CFGDEV|(% style="width:418px" %)(((
301 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
302
303 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
304
305 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
306 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
307
308 === 3.3.3 Configure read commands for each sampling ===
309
310 (((
311 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
312
313 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
314
315 This section describes how to achieve above goals.
316
317 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
318
319
320 **Each RS485 commands include two parts:**
321
322 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
323
324 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
325
326 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
327
328
329 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
330
331
332 Below are examples for the how above AT Commands works.
333
334
335 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
336
337 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
338 |(% style="width:496px" %)(((
339 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
340
341 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
342
343 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
344 )))
345
346 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
347
348 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
349
350
351 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
352
353 (% border="1" style="background-color:#4bacc6; color:white; width:725px" %)
354 |(% style="width:722px" %)(((
355 **AT+DATACUTx=a,b,c**
356
357 * **a: length for the return of AT+COMMAND**
358 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
359 * **c: define the position for valid value.  **
360 )))
361
362 **Examples:**
363
364 * Grab bytes:
365
366 [[image:image-20220602153621-1.png]]
367
368
369 * Grab a section.
370
371 [[image:image-20220602153621-2.png]]
372
373
374 * Grab different sections.
375
376 [[image:image-20220602153621-3.png]]
377
378
379 )))
380
381 === 3.3.4 Compose the uplink payload ===
382
383 (((
384 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
385
386
387 )))
388
389 (((
390 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
391
392
393 )))
394
395 (((
396 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
397 )))
398
399 (((
400 Final Payload is
401 )))
402
403 (((
404 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
405 )))
406
407 (((
408 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
409 )))
410
411 [[image:1653269759169-150.png||height="513" width="716"]]
412
413
414 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
415
416
417 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
418
419 Final Payload is
420
421 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
422
423 1. PAYVER: Defined by AT+PAYVER
424 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
425 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
426 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
427
428 [[image:image-20220602155039-4.png]]
429
430
431 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
432
433 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
434
435 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
436
437 DATA3=the rest of Valid value of RETURN10= **30**
438
439
440 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
441
442 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
443
444 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
445
446 * For US915 band, max 11 bytes for each uplink.
447
448 ~* For all other bands: max 51 bytes for each uplink.
449
450
451 Below are the uplink payloads:
452
453 [[image:1654157178836-407.png]]
454
455
456 === 3.3.5 Uplink on demand ===
457
458 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
459
460 Downlink control command:
461
462 **0x08 command**: Poll an uplink with current command set in RS485-LN.
463
464 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
465
466
467
468 === 3.3.6 Uplink on Interrupt ===
469
470 RS485-LN support external Interrupt uplink since hardware v1.2 release.
471
472 [[image:1654157342174-798.png]]
473
474 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
475
476
477 == 3.4 Uplink Payload ==
478
479 (% border="1" style="background-color:#4bacc6; color:white; width:734px" %)
480 |**Size(bytes)**|(% style="width:120px" %)**2**|(% style="width:116px" %)**1**|(% style="width:386px" %)**Length depends on the return from the commands**
481 |Value|(% style="width:120px" %)(((
482 Battery(mV)
483
484 &
485
486 Interrupt _Flag
487 )))|(% style="width:116px" %)(((
488 PAYLOAD_VER
489
490
491 )))|(% style="width:386px" %)If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
492
493 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
494
495
496 == 3.5 Configure RS485-BL via AT or Downlink ==
497
498 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
499
500 There are two kinds of Commands:
501
502 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
503
504 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
505
506 === 3.5.1 Common Commands ===
507
508 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
509
510
511 === 3.5.2 Sensor related commands ===
512
513 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
514
515 [[image:image-20220602163333-5.png||height="263" width="1160"]]
516
517 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
518
519
520 === 3.5.3 Sensor related commands ===
521
522 ==== ====
523
524 ==== **RS485 Debug Command** ====
525
526 This command is used to configure the RS485 devices; they won’t be used during sampling.
527
528 * **AT Command**
529
530 (% class="box infomessage" %)
531 (((
532 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
533 )))
534
535 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
536
537 * **Downlink Payload**
538
539 Format: A8 MM NN XX XX XX XX YY
540
541 Where:
542
543 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
544 * NN: The length of RS485 command
545 * XX XX XX XX: RS485 command total NN bytes
546 * YY: How many bytes will be uplink from the return of this RS485 command,
547 ** if YY=0, RS485-LN will execute the downlink command without uplink;
548 ** if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
549 ** if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
550
551 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
552
553 To connect a Modbus Alarm with below commands.
554
555 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
556
557 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
558
559 So if user want to use downlink command to control to RS485 Alarm, he can use:
560
561 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
562
563 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
564
565 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
566
567
568 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
569
570 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
571
572
573 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
574
575 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
576
577 [[image:1654159460680-153.png]]
578
579
580
581 ==== **Set Payload version** ====
582
583 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
584
585 * **AT Command:**
586
587 (% class="box infomessage" %)
588 (((
589 **AT+PAYVER: Set PAYVER field = 1**
590 )))
591
592 * **Downlink Payload:**
593
594 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
595
596 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
597
598
599
600 ==== **Set RS485 Sampling Commands** ====
601
602 AT+COMMANDx or AT+DATACUTx
603
604 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
605
606
607 * **AT Command:**
608
609 (% class="box infomessage" %)
610 (((
611 **AT+COMMANDx: Configure RS485 read command to sensor.**
612 )))
613
614 (% class="box infomessage" %)
615 (((
616 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
617 )))
618
619
620 * **Downlink Payload:**
621
622 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
623
624 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
625
626 Format: AF MM NN LL XX XX XX XX YY
627
628 Where:
629
630 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
631 * NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
632 * LL:  The length of AT+COMMAND or AT+DATACUT command
633 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
634 * YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
635
636 **Example:**
637
638 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
639
640 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
641
642 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
643
644
645
646 ==== **Fast command to handle MODBUS device** ====
647
648 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
649
650 This command is valid since v1.3 firmware version
651
652 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
653
654
655 **Example:**
656
657 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
658 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
659 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
660
661 [[image:image-20220602165351-6.png]]
662
663 [[image:image-20220602165351-7.png]]
664
665
666
667 ==== **RS485 command timeout** ====
668
669 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
670
671 Default value: 0, range:  0 ~~ 65 seconds
672
673 * **AT Command:**
674
675 (% class="box infomessage" %)
676 (((
677 **AT+CMDDLaa=hex(bb cc)*1000**
678 )))
679
680 **Example:**
681
682 **AT+CMDDL1=1000** to send the open time to 1000ms
683
684
685 * **Downlink Payload:**
686
687 **0x AA aa bb cc**
688
689 Same as: AT+CMDDLaa=hex(bb cc)*1000
690
691 **Example:**
692
693 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
694
695
696
697 ==== **Uplink payload mode** ====
698
699 Define to use one uplink or multiple uplinks for the sampling.
700
701 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
702
703 * **AT Command:**
704
705 (% class="box infomessage" %)
706 (((
707 **AT+DATAUP=0**
708 )))
709
710 (% class="box infomessage" %)
711 (((
712 **AT+DATAUP=1**
713 )))
714
715
716 * **Downlink Payload:**
717
718 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
719
720 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
721
722
723
724 ==== **Manually trigger an Uplink** ====
725
726 Ask device to send an uplink immediately.
727
728 * **AT Command:**
729
730 No AT Command for this, user can press the [[ACT button>>path:#Button]] for 1 second for the same.
731
732
733 * **Downlink Payload:**
734
735 **0x08 FF**, RS485-LN will immediately send an uplink.
736
737
738 ==== ====
739
740 ==== **Clear RS485 Command** ====
741
742 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
743
744 * **AT Command:**
745
746 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
747
748 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
749
750 Example screen shot after clear all RS485 commands. 
751
752
753 The uplink screen shot is:
754
755 [[image:1654160691922-496.png]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]]
756
757
758 * **Downlink Payload:**
759
760 **0x09 aa bb** same as AT+CMDEAR=aa,bb
761
762
763
764 ==== **Set Serial Communication Parameters** ====
765
766 Set the Rs485 serial communication parameters:
767
768 * **AT Command:**
769
770 Set Baud Rate:
771
772 (% class="box infomessage" %)
773 (((
774 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
775 )))
776
777 Set UART Parity
778
779 (% class="box infomessage" %)
780 (((
781 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
782 )))
783
784 Set STOPBIT
785
786 (% class="box infomessage" %)
787 (((
788 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
789 )))
790
791
792 * **Downlink Payload:**
793
794 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
795
796 **Example:**
797
798 * A7 01 00 60   same as AT+BAUDR=9600
799 * A7 01 04 80  same as AT+BAUDR=115200
800
801 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
802
803 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
804
805
806 == 3.6 Listening mode for RS485 network ==
807
808 This feature support since firmware v1.4
809
810 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
811
812 [[image:image-20220602171200-8.png||height="567" width="1007"]]
813
814 To enable the listening mode, use can run the command AT+RXMODE.
815
816
817 (% border="1" style="background-color:#ffffcc; width:500px" %)
818 |=(% style="width: 161px;" %)**Command example:**|=(% style="width: 337px;" %)**Function**
819 |(% style="width:161px" %)AT+RXMODE=1,10 |(% style="width:337px" %)Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
820 |(% style="width:161px" %)AT+RXMODE=2,500|(% style="width:337px" %)Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
821 |(% style="width:161px" %)AT+RXMODE=0,0|(% style="width:337px" %)Disable listening mode. This is the default settings.
822 |(% style="width:161px" %) |(% style="width:337px" %)A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 ~| cc)
823
824 **Downlink Command:**
825
826 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
827
828
829 **Example**:
830
831 The RS485-LN is set to AT+RXMODE=2,1000
832
833 There is a two Modbus commands in the RS485 network as below:
834
835 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
836
837 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
838
839 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
840
841 [[image:image-20220602171200-9.png]]
842
843
844 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
845
846
847 == 3.7 Buttons ==
848
849
850 (% border="1" style="background-color:#f7faff; width:500px" %)
851 |=**Button**|=(% style="width: 1420px;" %)**Feature**
852 |**ACT**|(% style="width:1420px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
853 |**RST**|(% style="width:1420px" %)Reboot RS485
854 |**PRO**|(% style="width:1420px" %)Use for upload image, see [[How to Update Image>>path:#upgrade_image]]
855
856 == 3.8 LEDs ==
857
858 (% border="1" style="background-color:#f7faff; width:500px" %)
859 |=**LEDs**|=**Feature**
860 |**PWR**|Always on if there is power
861 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN** (%%)for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds**(%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
862
863 = 4. Case Study =
864
865 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
866
867
868 = 5. Use AT Command =
869
870 == 5.1 Access AT Command ==
871
872 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
873
874 [[image:1654162355560-817.png]]
875
876
877 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
878
879 [[image:1654162368066-342.png]]
880
881
882 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="3.5ConfigureRS485-BLviaATorDownlink"]]
883
884
885 == 5.2 Common AT Command Sequence ==
886
887 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
888
889 If device has not joined network yet:
890
891 (% class="box infomessage" %)
892 (((
893 **AT+FDR**
894 )))
895
896 (% class="box infomessage" %)
897 (((
898 **AT+NJM=0**
899 )))
900
901 (% class="box infomessage" %)
902 (((
903 **ATZ**
904 )))
905
906
907 If device already joined network:
908
909 (% class="box infomessage" %)
910 (((
911 **AT+NJM=0**
912 )))
913
914 (% class="box infomessage" %)
915 (((
916 **ATZ**
917 )))
918
919
920 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
921
922
923 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
924
925 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
926
927 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
928
929 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
930
931 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
932
933 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
934
935 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
936
937 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
938
939 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
940
941 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
942
943
944 (% style="color:red" %)**Note:**
945
946 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
947 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
948 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
949 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
950
951 [[image:1654162478620-421.png]]
952
953
954 = 6. FAQ =
955
956 == 6.1 How to upgrade the image? ==
957
958 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
959
960 * Support new features
961 * For bug fix
962 * Change LoRaWAN bands.
963
964 Below shows the hardware connection for how to upload an image to RS485-LN:
965
966 [[image:1654162535040-878.png]]
967
968 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
969
970 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
971
972 **Step3: **Open flashloader; choose the correct COM port to update.
973
974 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
975
976
977 [[image:image-20220602175818-12.png]]
978
979
980 [[image:image-20220602175848-13.png]]
981
982
983 [[image:image-20220602175912-14.png]]
984
985
986 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
987
988 [[image:image-20220602175638-10.png]]
989
990
991 == 6.2 How to change the LoRa Frequency Bands/Region? ==
992
993 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
994
995
996 == 6.3 How many RS485-Slave can RS485-BL connects? ==
997
998 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
999
1000
1001 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1002
1003 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1004
1005 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1006
1007
1008 = 7. Trouble Shooting =
1009
1010 == 7.1 Downlink doesn’t work, how to solve it? ==
1011
1012 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1013
1014
1015 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1016
1017 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1018
1019
1020 = 8. Order Info =
1021
1022 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1023
1024 (% style="color:blue" %)**XXX:**
1025
1026 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1027 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1028 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1029 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1030 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1031 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1032 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1033 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1034 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1035 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1036
1037 = 9.Packing Info =
1038
1039
1040 **Package Includes**:
1041
1042 * RS485-LN x 1
1043 * Stick Antenna for LoRa RF part x 1
1044 * Program cable x 1
1045
1046 **Dimension and weight**:
1047
1048 * Device Size: 13.5 x 7 x 3 cm
1049 * Device Weight: 105g
1050 * Package Size / pcs : 14.5 x 8 x 5 cm
1051 * Weight / pcs : 170g
1052
1053 = 10. FCC Caution for RS485LN-US915 =
1054
1055 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1056
1057 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1058
1059
1060 **IMPORTANT NOTE:**
1061
1062 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1063
1064 —Reorient or relocate the receiving antenna.
1065
1066 —Increase the separation between the equipment and receiver.
1067
1068 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1069
1070 —Consult the dealer or an experienced radio/TV technician for help.
1071
1072
1073 **FCC Radiation Exposure Statement:**
1074
1075 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1076
1077
1078 = 11. Support =
1079
1080 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1081 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].