Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9 **Table of Contents:**
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
18
19 (((
20 (((
21 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 )))
23
24 (((
25 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 )))
27
28 (((
29 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 )))
31
32 (((
33 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34
35 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
36 )))
37 )))
38
39 [[image:1653267211009-519.png||height="419" width="724"]]
40
41
42 == 1.2 Specifications ==
43
44
45 **Hardware System:**
46
47 * STM32L072CZT6 MCU
48 * SX1276/78 Wireless Chip 
49 * Power Consumption (exclude RS485 device):
50 ** Idle: 32mA@12v
51 ** 20dB Transmit: 65mA@12v
52
53 **Interface for Model:**
54
55 * RS485
56 * Power Input 7~~ 24V DC. 
57
58 **LoRa Spec:**
59
60 * Frequency Range:
61 ** Band 1 (HF): 862 ~~ 1020 Mhz
62 ** Band 2 (LF): 410 ~~ 528 Mhz
63 * 168 dB maximum link budget.
64 * +20 dBm - 100 mW constant RF output vs.
65 * +14 dBm high efficiency PA.
66 * Programmable bit rate up to 300 kbps.
67 * High sensitivity: down to -148 dBm.
68 * Bullet-proof front end: IIP3 = -12.5 dBm.
69 * Excellent blocking immunity.
70 * Low RX current of 10.3 mA, 200 nA register retention.
71 * Fully integrated synthesizer with a resolution of 61 Hz.
72 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
73 * Built-in bit synchronizer for clock recovery.
74 * Preamble detection.
75 * 127 dB Dynamic Range RSSI.
76 * Automatic RF Sense and CAD with ultra-fast AFC.
77 * Packet engine up to 256 bytes with CRC.
78
79
80
81 == 1.3 Features ==
82
83 * LoRaWAN Class A & Class C protocol (default Class C)
84 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
85 * AT Commands to change parameters
86 * Remote configure parameters via LoRa Downlink
87 * Firmware upgradable via program port
88 * Support multiply RS485 devices by flexible rules
89 * Support Modbus protocol
90 * Support Interrupt uplink (Since hardware version v1.2)
91
92
93
94 == 1.4 Applications ==
95
96 * Smart Buildings & Home Automation
97 * Logistics and Supply Chain Management
98 * Smart Metering
99 * Smart Agriculture
100 * Smart Cities
101 * Smart Factory
102
103
104
105 == 1.5 Firmware Change log ==
106
107 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
108
109
110 == 1.6 Hardware Change log ==
111
112 (((
113 (((
114 v1.2: Add External Interrupt Pin.
115
116 v1.0: Release
117
118
119 )))
120 )))
121
122 = 2. Power ON Device =
123
124 (((
125 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
126
127 * Power Source VIN to RS485-LN VIN+
128 * Power Source GND to RS485-LN VIN-
129
130 (((
131 Once there is power, the RS485-LN will be on.
132 )))
133
134 [[image:1653268091319-405.png]]
135
136
137 )))
138
139 = 3. Operation Mode =
140
141 == 3.1 How it works? ==
142
143 (((
144 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
145
146
147 )))
148
149 == 3.2 Example to join LoRaWAN network ==
150
151 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
152
153 [[image:1653268155545-638.png||height="334" width="724"]]
154
155
156 (((
157 (((
158 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
159 )))
160
161 (((
162 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
163 )))
164
165 [[image:1653268227651-549.png||height="592" width="720"]]
166
167 (((
168 The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
169 )))
170
171 (((
172 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
173 )))
174
175 (((
176 Each RS485-LN is shipped with a sticker with unique device EUI:
177 )))
178 )))
179
180 [[image:1652953462722-299.png]]
181
182 (((
183 (((
184 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
185 )))
186
187 (((
188 Add APP EUI in the application.
189 )))
190 )))
191
192 [[image:image-20220519174512-1.png]]
193
194 [[image:image-20220519174512-2.png||height="323" width="720"]]
195
196 [[image:image-20220519174512-3.png||height="556" width="724"]]
197
198 [[image:image-20220519174512-4.png]]
199
200 You can also choose to create the device manually.
201
202 [[image:1652953542269-423.png||height="710" width="723"]]
203
204 Add APP KEY and DEV EUI
205
206 [[image:1652953553383-907.png||height="514" width="724"]]
207
208
209 (((
210 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
211 )))
212
213 [[image:1652953568895-172.png||height="232" width="724"]]
214
215
216 == 3.3 Configure Commands to read data ==
217
218 (((
219 (((
220 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
221 )))
222
223 (((
224 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
225
226
227 )))
228 )))
229
230 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
231
232 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
233
234 (% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
235 |(% style="width:128px" %)(((
236 **AT Commands**
237 )))|(% style="width:305px" %)(((
238 **Description**
239 )))|(% style="width:346px" %)(((
240 **Example**
241 )))
242 |(% style="width:128px" %)(((
243 AT+BAUDR
244 )))|(% style="width:305px" %)(((
245 Set the baud rate (for RS485 connection). Default Value is: 9600.
246 )))|(% style="width:346px" %)(((
247 (((
248 AT+BAUDR=9600
249 )))
250
251 (((
252 Options: (1200,2400,4800,14400,19200,115200)
253 )))
254 )))
255 |(% style="width:128px" %)(((
256 AT+PARITY
257 )))|(% style="width:305px" %)(((
258 Set UART parity (for RS485 connection)
259 )))|(% style="width:346px" %)(((
260 (((
261 AT+PARITY=0
262 )))
263
264 (((
265 Option: 0: no parity, 1: odd parity, 2: even parity
266 )))
267 )))
268 |(% style="width:128px" %)(((
269 AT+STOPBIT
270 )))|(% style="width:305px" %)(((
271 (((
272 Set serial stopbit (for RS485 connection)
273 )))
274
275 (((
276
277 )))
278 )))|(% style="width:346px" %)(((
279 (((
280 AT+STOPBIT=0 for 1bit
281 )))
282
283 (((
284 AT+STOPBIT=1 for 1.5 bit
285 )))
286
287 (((
288 AT+STOPBIT=2 for 2 bits
289 )))
290 )))
291
292
293 === 3.3.2 Configure sensors ===
294
295 (((
296 (((
297 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
298 )))
299 )))
300
301 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
302 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
303 |AT+CFGDEV|(% style="width:418px" %)(((
304 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
305
306 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
307
308 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
309 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
310
311
312
313 === 3.3.3 Configure read commands for each sampling ===
314
315 (((
316 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
317 )))
318
319 (((
320 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
321 )))
322
323 (((
324 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
325 )))
326
327 (((
328 This section describes how to achieve above goals.
329 )))
330
331 (((
332 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
333 )))
334
335 (((
336 **Command from RS485-BL to Sensor:**
337 )))
338
339 (((
340 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
341 )))
342
343 (((
344 **Handle return from sensors to RS485-BL**:
345 )))
346
347 (((
348 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
349 )))
350
351 * (((
352 **AT+DATACUT**
353 )))
354
355 (((
356 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
357 )))
358
359 * (((
360 **AT+SEARCH**
361 )))
362
363 (((
364 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
365 )))
366
367 (((
368 **Define wait timeout:**
369 )))
370
371 (((
372 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
373 )))
374
375 (((
376 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
377 )))
378
379 **Examples:**
380
381 Below are examples for the how above AT Commands works.
382
383 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
384
385 (% border="1" class="table-bordered" %)
386 |(((
387 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
388
389 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
390
391 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
392 )))
393
394 (((
395 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
396 )))
397
398 (((
399 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
400 )))
401
402 (((
403 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
404 )))
405
406 (% border="1" class="table-bordered" %)
407 |(((
408 **AT+SEARCHx=aa,xx xx xx xx xx**
409
410 * **aa: 1: prefix match mode; 2: prefix and suffix match mode**
411 * **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
412
413
414 )))
415
416 **Examples:**
417
418 ~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
419
420 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
421
422 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
423
424 [[image:1653269403619-508.png]]
425
426 2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
427
428 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
429
430 Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
431
432 [[image:1653269438444-278.png]]
433
434 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
435
436 |(((
437 **AT+DATACUTx=a,b,c**
438
439 * **a: length for the return of AT+COMMAND**
440 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
441 * **c: define the position for valid value.  **
442 )))
443
444 Examples:
445
446 * Grab bytes:
447
448 [[image:1653269551753-223.png||height="311" width="717"]]
449
450 * Grab a section.
451
452 [[image:1653269568276-930.png||height="325" width="718"]]
453
454 * Grab different sections.
455
456 [[image:1653269593172-426.png||height="303" width="725"]]
457
458 (% style="color:red" %)**Note:**
459
460 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
461
462 Example:
463
464 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
465
466 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
467
468 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
469
470 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
471
472 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
473
474 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
475
476 [[image:1653269618463-608.png]]
477
478 === 3.3.4 Compose the uplink payload ===
479
480 (((
481 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
482 )))
483
484 (((
485 (% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
486 )))
487
488 (((
489 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
490 )))
491
492 (((
493 Final Payload is
494 )))
495
496 (((
497 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
498 )))
499
500 (((
501 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
502 )))
503
504 [[image:1653269759169-150.png||height="513" width="716"]]
505
506 (% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
507
508 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
509
510 Final Payload is
511
512 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
513
514 1. Battery Info (2 bytes): Battery voltage
515 1. PAYVER (1 byte): Defined by AT+PAYVER
516 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
517 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
518 1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
519
520 [[image:1653269916228-732.png||height="433" width="711"]]
521
522
523 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
524
525 DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
526
527 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
528
529 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
530
531 Below are the uplink payloads:
532
533 [[image:1653270130359-810.png]]
534
535
536 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
537
538 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
539
540 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
541
542 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
543
544 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
545
546 === 3.3.5 Uplink on demand ===
547
548 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
549
550 Downlink control command:
551
552 [[0x08 command>>path:#downlink_08]]: Poll an uplink with current command set in RS485-BL.
553
554 [[0xA8 command>>path:#downlink_A8]]: Send a command to RS485-BL and uplink the output from sensors.
555
556
557
558 1.
559 11.
560 111. Uplink on Interrupt
561
562 Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
563
564 AT+INTMOD=0  Disable Interrupt
565
566 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
567
568 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
569
570 AT+INTMOD=3  Interrupt trigger by rising edge.
571
572
573 1.
574 11. Uplink Payload
575
576 |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
577 |Value|(((
578 Battery(mV)
579
580 &
581
582 Interrupt _Flag
583 )))|(((
584 PAYLOAD_VER
585
586
587 )))|If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
588
589 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
590
591
592 function Decoder(bytes, port) {
593
594 ~/~/Payload Formats of RS485-BL Deceive
595
596 return {
597
598 ~/~/Battery,units:V
599
600 BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,
601
602 ~/~/GPIO_EXTI 
603
604 EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",
605
606 ~/~/payload of version
607
608 Pay_ver:bytes[2],
609
610 };
611
612 }
613
614
615
616
617
618
619
620 TTN V3 uplink screen shot.
621
622 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
623
624 1.
625 11. Configure RS485-BL via AT or Downlink
626
627 User can configure RS485-BL via [[AT Commands >>path:#_​Using_the_AT]]or LoRaWAN Downlink Commands
628
629 There are two kinds of Commands:
630
631 * **Common Commands**: They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: http:~/~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands
632
633 * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
634
635 1.
636 11.
637 111. Common Commands:
638
639 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
640
641
642 1.
643 11.
644 111. Sensor related commands:
645
646 ==== Choose Device Type (RS485 or TTL) ====
647
648 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
649
650 * AT Command
651
652 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
653
654 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
655
656
657 * Downlink Payload
658
659 **0A aa**     à same as AT+MOD=aa
660
661
662
663 ==== [[RS485 Debug Command>>path:#downlink_A8]] (AT+CFGDEV) ====
664
665 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
666
667 * AT Command
668
669 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
670
671 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
672
673
674
675 * Downlink Payload
676
677 Format: A8 MM NN XX XX XX XX YY
678
679 Where:
680
681 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
682 * NN: The length of RS485 command
683 * XX XX XX XX: RS485 command total NN bytes
684 * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
685
686 **Example 1:**
687
688 To connect a Modbus Alarm with below commands.
689
690 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
691
692 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
693
694 So if user want to use downlink command to control to RS485 Alarm, he can use:
695
696 **A8 01 06 0A 05 00 04 00 01 00**: to activate the RS485 Alarm
697
698 **A8 01 06 0A 05 00 04 00 00 00**: to deactivate the RS485 Alarm
699
700 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
701
702
703 **Example 2:**
704
705 Check TTL Sensor return:
706
707 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.png]]
708
709
710
711
712 ==== Set Payload version ====
713
714 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
715
716 * AT Command:
717
718 AT+PAYVER: Set PAYVER field = 1
719
720
721 * Downlink Payload:
722
723 0xAE 01   à Set PAYVER field =  0x01
724
725 0xAE 0F   à Set PAYVER field =  0x0F
726
727
728 ==== Set RS485 Sampling Commands ====
729
730 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
731
732 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>path:#polling_485]].
733
734
735 * AT Command:
736
737 AT+COMMANDx: Configure RS485 read command to sensor.
738
739 AT+DATACUTx: Configure how to handle return from RS485 devices.
740
741 AT+SEARCHx: Configure search command
742
743
744 * Downlink Payload:
745
746 0xAF downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
747
748 Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
749
750 Format: AF MM NN LL XX XX XX XX YY
751
752 Where:
753
754 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
755 * NN: 0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
756 * LL: The length of AT+COMMAND or AT+DATACUT command
757 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
758 * YY: If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
759
760 Example:
761
762 **AF 03 01 06 0A 05 00 04 00 01 00**: Same as AT+COMMAND3=0A 05 00 04 00 01,1
763
764 **AF 03 02 06 10 01 05 06 09 0A 00**: Same as AT+DATACUT3=**16**,**1**,**5+6+9+10**
765
766 **AF 03 02 06 0B 02 05 07 08 0A 00**: Same as AT+DATACUT3=**11**,**2**,**5~~7+8~~10**
767
768
769 0xAB downlink command can be used for set AT+SEARCHx
770
771 Example: **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
772
773 * AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
774 * AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
775
776 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
777
778
779 ==== Fast command to handle MODBUS device ====
780
781 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
782
783 This command is valid since v1.3 firmware version
784
785
786 AT+MBFUN has only two value:
787
788 * AT+MBFUN=1: Enable Modbus reading. And get response base on the MODBUS return
789
790 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
791
792 * AT+MBFUN=0: Disable Modbus fast reading.
793
794 Example:
795
796 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
797 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
798 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
799
800 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.png]]
801
802
803 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
804
805
806 * Downlink Commands:
807
808 A9 aa -à Same as AT+MBFUN=aa
809
810
811 ==== RS485 command timeout ====
812
813 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
814
815 Default value: 0, range:  0 ~~ 5 seconds
816
817
818 * AT Command:
819
820 AT+CMDDLaa=hex(bb cc)
821
822 Example:
823
824 **AT+CMDDL1=1000** to send the open time to 1000ms
825
826
827 * Downlink Payload:
828
829 0x AA aa bb cc
830
831 Same as: AT+CMDDLaa=hex(bb cc)
832
833 Example:
834
835 0xAA 01 03 E8  à Same as **AT+CMDDL1=1000 ms**
836
837
838 ==== [[Uplink>>path:#downlink_A8]] payload mode ====
839
840 Define to use one uplink or multiple uplinks for the sampling.
841
842 The use of this command please see: [[Compose Uplink payload>>path:#DataUP]]
843
844 * AT Command:
845
846 AT+DATAUP=0
847
848 AT+DATAUP=1
849
850
851 * Downlink Payload:
852
853 0xAD 00   à Same as AT+DATAUP=0
854
855 0xAD 01   à Same as AT+DATAUP=1
856
857
858 ==== Manually trigger an Uplink ====
859
860 Ask device to send an uplink immediately.
861
862 * Downlink Payload:
863
864 0x08 FF, RS485-BL will immediately send an uplink.
865
866
867 ==== Clear RS485 Command ====
868
869 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
870
871
872 * AT Command:
873
874 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
875
876 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
877
878 Example screen shot after clear all RS485 commands. 
879
880
881
882 The uplink screen shot is:
883
884 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
885
886
887 * Downlink Payload:
888
889 0x09 aa bb same as AT+CMDEAR=aa,bb
890
891
892 ==== Set Serial Communication Parameters ====
893
894 Set the Rs485 serial communication parameters:
895
896 * AT Command:
897
898 Set Baud Rate:
899
900 AT+BAUDR=9600    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
901
902
903 Set UART parity
904
905 AT+PARITY=0    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
906
907
908 Set STOPBIT
909
910 AT+STOPBIT=0    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
911
912
913 * Downlink Payload:
914
915 A7 01 aa bb: Same  AT+BAUDR=hex(aa bb)*100
916
917 Example:
918
919 * A7 01 00 60   same as AT+BAUDR=9600
920 * A7 01 04 80  same as AT+BAUDR=115200
921
922 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
923
924 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
925
926
927 ==== Control output power duration ====
928
929 User can set the output power duration before each sampling.
930
931 * AT Command:
932
933 Example:
934
935 AT+3V3T=1000 ~/~/ 3V3 output power will open 1s before each sampling.
936
937 AT+5VT=1000 ~/~/ +5V output power will open 1s before each sampling.
938
939
940 * LoRaWAN Downlink Command:
941
942 07 01 aa bb  Same as AT+5VT=(aa bb)
943
944 07 02 aa bb  Same as AT+3V3T=(aa bb)
945
946
947
948
949 1.
950 11. Buttons
951
952 |**Button**|**Feature**
953 |**RST**|Reboot RS485-BL
954
955 1.
956 11. +3V3 Output
957
958 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
959
960 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
961
962
963 The +3V3 output time can be controlled by AT Command.
964
965 **AT+3V3T=1000**
966
967 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
968
969
970 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
971
972
973 1.
974 11. +5V Output
975
976 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
977
978 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
979
980
981 The 5V output time can be controlled by AT Command.
982
983 **AT+5VT=1000**
984
985 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
986
987
988 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
989
990
991
992
993 1.
994 11. LEDs
995
996 |**LEDs**|**Feature**
997 |**LED1**|Blink when device transmit a packet.
998
999 1.
1000 11. Switch Jumper
1001
1002 |**Switch Jumper**|**Feature**
1003 |**SW1**|(((
1004 ISP position: Upgrade firmware via UART
1005
1006 Flash position: Configure device, check running status.
1007 )))
1008 |**SW2**|(((
1009 5V position: set to compatible with 5v I/O.
1010
1011 3.3v position: set to compatible with 3.3v I/O.,
1012 )))
1013
1014 +3.3V: is always ON
1015
1016 +5V: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1017
1018 1. Case Study
1019
1020 User can check this URL for some case studies.
1021
1022 [[http:~~/~~/wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS>>url:http://wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS]]
1023
1024
1025
1026
1027 1. Use AT Command
1028 11. Access AT Command
1029
1030 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1031
1032 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
1033
1034
1035 In PC, User needs to set **serial tool**(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to **9600** to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1036
1037 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
1038
1039
1040
1041 More detail AT Command manual can be found at [[AT Command Manual>>path:#AT_COMMAND]]
1042
1043
1044
1045 1.
1046 11. Common AT Command Sequence
1047 111. Multi-channel ABP mode (Use with SX1301/LG308)
1048
1049 If device has not joined network yet:
1050
1051 AT+FDR
1052
1053 AT+NJM=0
1054
1055 ATZ
1056
1057
1058 If device already joined network:
1059
1060 AT+NJM=0
1061
1062 ATZ
1063
1064 1.
1065 11.
1066 111. Single-channel ABP mode (Use with LG01/LG02)
1067
1068 AT+FDR   Reset Parameters to Factory Default, Keys Reserve
1069
1070 AT+NJM=0 Set to ABP mode
1071
1072 AT+ADR=0 Set the Adaptive Data Rate Off
1073
1074 AT+DR=5  Set Data Rate
1075
1076 AT+TDC=60000  Set transmit interval to 60 seconds
1077
1078 AT+CHS=868400000 Set transmit frequency to 868.4Mhz
1079
1080 AT+RX2FQ=868400000 Set RX2Frequency to 868.4Mhz (according to the result from server)
1081
1082 AT+RX2DR=5  Set RX2DR to match the downlink DR from server. see below
1083
1084 AT+DADDR=26 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1085
1086 ATZ          Reset MCU
1087
1088 **Note:**
1089
1090 1. Make sure the device is set to ABP mode in the IoT Server.
1091 1. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1092 1. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1093 1. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1094
1095 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
1096
1097
1098 1. FAQ
1099 11. How to upgrade the image?
1100
1101 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1102
1103 * Support new features
1104 * For bug fix
1105 * Change LoRaWAN bands.
1106
1107 Below shows the hardware connection for how to upload an image to RS485-BL:
1108
1109 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1110
1111 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1112
1113 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1114
1115 **Step3: **Open flashloader; choose the correct COM port to update.
1116
1117
1118 |(((
1119 HOLD PRO then press the RST button, SYS will be ON, then click next
1120 )))
1121
1122 |(((
1123 Board detected
1124 )))
1125
1126 |(((
1127
1128 )))
1129
1130 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1131
1132
1133
1134 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.png]]
1135
1136
1137 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1138
1139
1140 1.
1141 11. How to change the LoRa Frequency Bands/Region?
1142
1143 User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
1144
1145
1146
1147 1.
1148 11. How many RS485-Slave can RS485-BL connects?
1149
1150 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
1151
1152
1153
1154
1155 1. Trouble Shooting     
1156 11. Downlink doesn’t work, how to solve it?
1157
1158 Please see this link for debug:
1159
1160 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug>>url:http://wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug]] 
1161
1162
1163
1164 1.
1165 11. Why I can’t join TTN V3 in US915 /AU915 bands?
1166
1167 It might about the channels mapping. Please see for detail.
1168
1169 [[http:~~/~~/wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band>>url:http://wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band]]
1170
1171
1172
1173 1. Order Info
1174
1175 **Part Number: RS485-BL-XXX**
1176
1177 **XXX:**
1178
1179 * **EU433**: frequency bands EU433
1180 * **EU868**: frequency bands EU868
1181 * **KR920**: frequency bands KR920
1182 * **CN470**: frequency bands CN470
1183 * **AS923**: frequency bands AS923
1184 * **AU915**: frequency bands AU915
1185 * **US915**: frequency bands US915
1186 * **IN865**: frequency bands IN865
1187 * **RU864**: frequency bands RU864
1188 * **KZ865: **frequency bands KZ865
1189
1190 1. Packing Info
1191
1192 **Package Includes**:
1193
1194 * RS485-BL x 1
1195 * Stick Antenna for LoRa RF part x 1
1196 * Program cable x 1
1197
1198 **Dimension and weight**:
1199
1200 * Device Size: 13.5 x 7 x 3 cm
1201 * Device Weight: 105g
1202 * Package Size / pcs : 14.5 x 8 x 5 cm
1203 * Weight / pcs : 170g
1204
1205 1. Support
1206
1207 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1208 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1209
1210 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0