Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9 **Table of Contents:**
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
18
19 (((
20 (((
21 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 )))
23
24 (((
25 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 )))
27
28 (((
29 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 )))
31
32 (((
33 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34
35 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
36 )))
37 )))
38
39 [[image:1653267211009-519.png||height="419" width="724"]]
40
41
42 == 1.2 Specifications ==
43
44
45 **Hardware System:**
46
47 * STM32L072CZT6 MCU
48 * SX1276/78 Wireless Chip 
49 * Power Consumption (exclude RS485 device):
50 ** Idle: 32mA@12v
51 ** 20dB Transmit: 65mA@12v
52
53 **Interface for Model:**
54
55 * RS485
56 * Power Input 7~~ 24V DC. 
57
58 **LoRa Spec:**
59
60 * Frequency Range:
61 ** Band 1 (HF): 862 ~~ 1020 Mhz
62 ** Band 2 (LF): 410 ~~ 528 Mhz
63 * 168 dB maximum link budget.
64 * +20 dBm - 100 mW constant RF output vs.
65 * +14 dBm high efficiency PA.
66 * Programmable bit rate up to 300 kbps.
67 * High sensitivity: down to -148 dBm.
68 * Bullet-proof front end: IIP3 = -12.5 dBm.
69 * Excellent blocking immunity.
70 * Low RX current of 10.3 mA, 200 nA register retention.
71 * Fully integrated synthesizer with a resolution of 61 Hz.
72 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
73 * Built-in bit synchronizer for clock recovery.
74 * Preamble detection.
75 * 127 dB Dynamic Range RSSI.
76 * Automatic RF Sense and CAD with ultra-fast AFC.
77 * Packet engine up to 256 bytes with CRC.
78
79
80
81 == 1.3 Features ==
82
83 * LoRaWAN Class A & Class C protocol (default Class C)
84 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
85 * AT Commands to change parameters
86 * Remote configure parameters via LoRa Downlink
87 * Firmware upgradable via program port
88 * Support multiply RS485 devices by flexible rules
89 * Support Modbus protocol
90 * Support Interrupt uplink (Since hardware version v1.2)
91
92
93
94 == 1.4 Applications ==
95
96 * Smart Buildings & Home Automation
97 * Logistics and Supply Chain Management
98 * Smart Metering
99 * Smart Agriculture
100 * Smart Cities
101 * Smart Factory
102
103
104
105 == 1.5 Firmware Change log ==
106
107 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
108
109
110 == 1.6 Hardware Change log ==
111
112 (((
113 (((
114 v1.2: Add External Interrupt Pin.
115
116 v1.0: Release
117
118
119 )))
120 )))
121
122 = 2. Power ON Device =
123
124 (((
125 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
126
127 * Power Source VIN to RS485-LN VIN+
128 * Power Source GND to RS485-LN VIN-
129
130 (((
131 Once there is power, the RS485-LN will be on.
132 )))
133
134 [[image:1653268091319-405.png]]
135
136
137 )))
138
139 = 3. Operation Mode =
140
141 == 3.1 How it works? ==
142
143 (((
144 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
145
146
147 )))
148
149 == 3.2 Example to join LoRaWAN network ==
150
151 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
152
153 [[image:1653268155545-638.png||height="334" width="724"]]
154
155 (((
156 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
157
158 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
159
160 [[image:1653268227651-549.png||height="592" width="720"]]
161
162 (((
163 The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
164 )))
165
166 (((
167 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
168 )))
169
170 (((
171 Each RS485-LN is shipped with a sticker with unique device EUI:
172 )))
173 )))
174
175 [[image:1652953462722-299.png]]
176
177 (((
178 (((
179 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
180 )))
181
182 (((
183 Add APP EUI in the application.
184 )))
185 )))
186
187 [[image:image-20220519174512-1.png]]
188
189 [[image:image-20220519174512-2.png||height="323" width="720"]]
190
191 [[image:image-20220519174512-3.png||height="556" width="724"]]
192
193 [[image:image-20220519174512-4.png]]
194
195 You can also choose to create the device manually.
196
197 [[image:1652953542269-423.png||height="710" width="723"]]
198
199 Add APP KEY and DEV EUI
200
201 [[image:1652953553383-907.png||height="514" width="724"]]
202
203
204 (((
205 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
206 )))
207
208 [[image:1652953568895-172.png||height="232" width="724"]]
209
210 == 3.3 Configure Commands to read data ==
211
212 (((
213 (((
214 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
215 )))
216
217 (((
218 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
219 )))
220 )))
221
222 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
223
224 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
225
226 (% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
227 |(((
228 **AT Commands**
229 )))|(% style="width:285px" %)(((
230 **Description**
231 )))|(% style="width:347px" %)(((
232 **Example**
233 )))
234 |(((
235 AT+BAUDR
236 )))|(% style="width:285px" %)(((
237 Set the baud rate (for RS485 connection). Default Value is: 9600.
238 )))|(% style="width:347px" %)(((
239 (((
240 AT+BAUDR=9600
241 )))
242
243 (((
244 Options: (1200,2400,4800,14400,19200,115200)
245 )))
246 )))
247 |(((
248 AT+PARITY
249 )))|(% style="width:285px" %)(((
250 Set UART parity (for RS485 connection)
251 )))|(% style="width:347px" %)(((
252 (((
253 AT+PARITY=0
254 )))
255
256 (((
257 Option: 0: no parity, 1: odd parity, 2: even parity
258 )))
259 )))
260 |(((
261 AT+STOPBIT
262 )))|(% style="width:285px" %)(((
263 (((
264 Set serial stopbit (for RS485 connection)
265 )))
266
267 (((
268
269 )))
270 )))|(% style="width:347px" %)(((
271 (((
272 AT+STOPBIT=0 for 1bit
273 )))
274
275 (((
276 AT+STOPBIT=1 for 1.5 bit
277 )))
278
279 (((
280 AT+STOPBIT=2 for 2 bits
281 )))
282 )))
283
284 === 3.3.2 Configure sensors ===
285
286 (((
287 (((
288 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
289 )))
290 )))
291
292 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
293 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
294 |AT+CFGDEV|(% style="width:418px" %)(((
295 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
296
297 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
298
299 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
300 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
301
302 === 3.3.3 Configure read commands for each sampling ===
303
304 (((
305 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
306 )))
307
308 (((
309 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
310 )))
311
312 (((
313 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
314 )))
315
316 (((
317 This section describes how to achieve above goals.
318 )))
319
320 (((
321 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
322 )))
323
324 (((
325 **Command from RS485-BL to Sensor:**
326 )))
327
328 (((
329 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
330 )))
331
332 (((
333 **Handle return from sensors to RS485-BL**:
334 )))
335
336 (((
337 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
338 )))
339
340 * (((
341 **AT+DATACUT**
342 )))
343
344 (((
345 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
346 )))
347
348 * (((
349 **AT+SEARCH**
350 )))
351
352 (((
353 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
354 )))
355
356 (((
357 **Define wait timeout:**
358 )))
359
360 (((
361 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
362 )))
363
364 (((
365 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
366 )))
367
368 **Examples:**
369
370 Below are examples for the how above AT Commands works.
371
372 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
373
374 (% border="1" class="table-bordered" %)
375 |(((
376 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
377
378 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
379
380 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
381 )))
382
383 (((
384 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
385 )))
386
387 (((
388 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
389 )))
390
391 (((
392 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
393 )))
394
395 (% border="1" class="table-bordered" %)
396 |(((
397 **AT+SEARCHx=aa,xx xx xx xx xx**
398
399 * **aa: 1: prefix match mode; 2: prefix and suffix match mode**
400 * **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
401
402
403 )))
404
405 **Examples:**
406
407 ~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
408
409 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
410
411 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
412
413 [[image:1653269403619-508.png]]
414
415 2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
416
417 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
418
419 Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
420
421 [[image:1653269438444-278.png]]
422
423 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
424
425 |(((
426 **AT+DATACUTx=a,b,c**
427
428 * **a: length for the return of AT+COMMAND**
429 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
430 * **c: define the position for valid value.  **
431 )))
432
433 Examples:
434
435 * Grab bytes:
436
437 [[image:1653269551753-223.png||height="311" width="717"]]
438
439 * Grab a section.
440
441 [[image:1653269568276-930.png||height="325" width="718"]]
442
443 * Grab different sections.
444
445 [[image:1653269593172-426.png||height="303" width="725"]]
446
447 (% style="color:red" %)**Note:**
448
449 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
450
451 Example:
452
453 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
454
455 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
456
457 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
458
459 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
460
461 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
462
463 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
464
465 [[image:1653269618463-608.png]]
466
467 === 3.3.4 Compose the uplink payload ===
468
469 (((
470 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
471 )))
472
473 (((
474 (% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
475 )))
476
477 (((
478 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
479 )))
480
481 (((
482 Final Payload is
483 )))
484
485 (((
486 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
487 )))
488
489 (((
490 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
491 )))
492
493 [[image:1653269759169-150.png||height="513" width="716"]]
494
495 (% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
496
497 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
498
499 Final Payload is
500
501 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
502
503 1. Battery Info (2 bytes): Battery voltage
504 1. PAYVER (1 byte): Defined by AT+PAYVER
505 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
506 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
507 1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
508
509 [[image:1653269916228-732.png||height="433" width="711"]]
510
511
512 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
513
514 DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
515
516 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
517
518 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
519
520 Below are the uplink payloads:
521
522 [[image:1653270130359-810.png]]
523
524
525 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
526
527 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
528
529 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
530
531 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
532
533 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
534
535 === 3.3.5 Uplink on demand ===
536
537 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
538
539 Downlink control command:
540
541 [[0x08 command>>path:#downlink_08]]: Poll an uplink with current command set in RS485-BL.
542
543 [[0xA8 command>>path:#downlink_A8]]: Send a command to RS485-BL and uplink the output from sensors.
544
545
546
547 1.
548 11.
549 111. Uplink on Interrupt
550
551 Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
552
553 AT+INTMOD=0  Disable Interrupt
554
555 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
556
557 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
558
559 AT+INTMOD=3  Interrupt trigger by rising edge.
560
561
562 1.
563 11. Uplink Payload
564
565 |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
566 |Value|(((
567 Battery(mV)
568
569 &
570
571 Interrupt _Flag
572 )))|(((
573 PAYLOAD_VER
574
575
576 )))|If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
577
578 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
579
580
581 function Decoder(bytes, port) {
582
583 ~/~/Payload Formats of RS485-BL Deceive
584
585 return {
586
587 ~/~/Battery,units:V
588
589 BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,
590
591 ~/~/GPIO_EXTI 
592
593 EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",
594
595 ~/~/payload of version
596
597 Pay_ver:bytes[2],
598
599 };
600
601 }
602
603
604
605
606
607
608
609 TTN V3 uplink screen shot.
610
611 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
612
613 1.
614 11. Configure RS485-BL via AT or Downlink
615
616 User can configure RS485-BL via [[AT Commands >>path:#_​Using_the_AT]]or LoRaWAN Downlink Commands
617
618 There are two kinds of Commands:
619
620 * **Common Commands**: They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: http:~/~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands
621
622 * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
623
624 1.
625 11.
626 111. Common Commands:
627
628 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
629
630
631 1.
632 11.
633 111. Sensor related commands:
634
635 ==== Choose Device Type (RS485 or TTL) ====
636
637 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
638
639 * AT Command
640
641 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
642
643 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
644
645
646 * Downlink Payload
647
648 **0A aa**     à same as AT+MOD=aa
649
650
651
652 ==== [[RS485 Debug Command>>path:#downlink_A8]] (AT+CFGDEV) ====
653
654 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
655
656 * AT Command
657
658 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
659
660 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
661
662
663
664 * Downlink Payload
665
666 Format: A8 MM NN XX XX XX XX YY
667
668 Where:
669
670 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
671 * NN: The length of RS485 command
672 * XX XX XX XX: RS485 command total NN bytes
673 * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
674
675 **Example 1:**
676
677 To connect a Modbus Alarm with below commands.
678
679 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
680
681 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
682
683 So if user want to use downlink command to control to RS485 Alarm, he can use:
684
685 **A8 01 06 0A 05 00 04 00 01 00**: to activate the RS485 Alarm
686
687 **A8 01 06 0A 05 00 04 00 00 00**: to deactivate the RS485 Alarm
688
689 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
690
691
692 **Example 2:**
693
694 Check TTL Sensor return:
695
696 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.png]]
697
698
699
700
701 ==== Set Payload version ====
702
703 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
704
705 * AT Command:
706
707 AT+PAYVER: Set PAYVER field = 1
708
709
710 * Downlink Payload:
711
712 0xAE 01   à Set PAYVER field =  0x01
713
714 0xAE 0F   à Set PAYVER field =  0x0F
715
716
717 ==== Set RS485 Sampling Commands ====
718
719 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
720
721 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>path:#polling_485]].
722
723
724 * AT Command:
725
726 AT+COMMANDx: Configure RS485 read command to sensor.
727
728 AT+DATACUTx: Configure how to handle return from RS485 devices.
729
730 AT+SEARCHx: Configure search command
731
732
733 * Downlink Payload:
734
735 0xAF downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
736
737 Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
738
739 Format: AF MM NN LL XX XX XX XX YY
740
741 Where:
742
743 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
744 * NN: 0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
745 * LL: The length of AT+COMMAND or AT+DATACUT command
746 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
747 * YY: If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
748
749 Example:
750
751 **AF 03 01 06 0A 05 00 04 00 01 00**: Same as AT+COMMAND3=0A 05 00 04 00 01,1
752
753 **AF 03 02 06 10 01 05 06 09 0A 00**: Same as AT+DATACUT3=**16**,**1**,**5+6+9+10**
754
755 **AF 03 02 06 0B 02 05 07 08 0A 00**: Same as AT+DATACUT3=**11**,**2**,**5~~7+8~~10**
756
757
758 0xAB downlink command can be used for set AT+SEARCHx
759
760 Example: **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
761
762 * AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
763 * AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
764
765 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
766
767
768 ==== Fast command to handle MODBUS device ====
769
770 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
771
772 This command is valid since v1.3 firmware version
773
774
775 AT+MBFUN has only two value:
776
777 * AT+MBFUN=1: Enable Modbus reading. And get response base on the MODBUS return
778
779 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
780
781 * AT+MBFUN=0: Disable Modbus fast reading.
782
783 Example:
784
785 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
786 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
787 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
788
789 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.png]]
790
791
792 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
793
794
795 * Downlink Commands:
796
797 A9 aa -à Same as AT+MBFUN=aa
798
799
800 ==== RS485 command timeout ====
801
802 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
803
804 Default value: 0, range:  0 ~~ 5 seconds
805
806
807 * AT Command:
808
809 AT+CMDDLaa=hex(bb cc)
810
811 Example:
812
813 **AT+CMDDL1=1000** to send the open time to 1000ms
814
815
816 * Downlink Payload:
817
818 0x AA aa bb cc
819
820 Same as: AT+CMDDLaa=hex(bb cc)
821
822 Example:
823
824 0xAA 01 03 E8  à Same as **AT+CMDDL1=1000 ms**
825
826
827 ==== [[Uplink>>path:#downlink_A8]] payload mode ====
828
829 Define to use one uplink or multiple uplinks for the sampling.
830
831 The use of this command please see: [[Compose Uplink payload>>path:#DataUP]]
832
833 * AT Command:
834
835 AT+DATAUP=0
836
837 AT+DATAUP=1
838
839
840 * Downlink Payload:
841
842 0xAD 00   à Same as AT+DATAUP=0
843
844 0xAD 01   à Same as AT+DATAUP=1
845
846
847 ==== Manually trigger an Uplink ====
848
849 Ask device to send an uplink immediately.
850
851 * Downlink Payload:
852
853 0x08 FF, RS485-BL will immediately send an uplink.
854
855
856 ==== Clear RS485 Command ====
857
858 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
859
860
861 * AT Command:
862
863 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
864
865 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
866
867 Example screen shot after clear all RS485 commands. 
868
869
870
871 The uplink screen shot is:
872
873 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
874
875
876 * Downlink Payload:
877
878 0x09 aa bb same as AT+CMDEAR=aa,bb
879
880
881 ==== Set Serial Communication Parameters ====
882
883 Set the Rs485 serial communication parameters:
884
885 * AT Command:
886
887 Set Baud Rate:
888
889 AT+BAUDR=9600    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
890
891
892 Set UART parity
893
894 AT+PARITY=0    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
895
896
897 Set STOPBIT
898
899 AT+STOPBIT=0    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
900
901
902 * Downlink Payload:
903
904 A7 01 aa bb: Same  AT+BAUDR=hex(aa bb)*100
905
906 Example:
907
908 * A7 01 00 60   same as AT+BAUDR=9600
909 * A7 01 04 80  same as AT+BAUDR=115200
910
911 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
912
913 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
914
915
916 ==== Control output power duration ====
917
918 User can set the output power duration before each sampling.
919
920 * AT Command:
921
922 Example:
923
924 AT+3V3T=1000 ~/~/ 3V3 output power will open 1s before each sampling.
925
926 AT+5VT=1000 ~/~/ +5V output power will open 1s before each sampling.
927
928
929 * LoRaWAN Downlink Command:
930
931 07 01 aa bb  Same as AT+5VT=(aa bb)
932
933 07 02 aa bb  Same as AT+3V3T=(aa bb)
934
935
936
937
938 1.
939 11. Buttons
940
941 |**Button**|**Feature**
942 |**RST**|Reboot RS485-BL
943
944 1.
945 11. +3V3 Output
946
947 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
948
949 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
950
951
952 The +3V3 output time can be controlled by AT Command.
953
954 **AT+3V3T=1000**
955
956 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
957
958
959 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
960
961
962 1.
963 11. +5V Output
964
965 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
966
967 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
968
969
970 The 5V output time can be controlled by AT Command.
971
972 **AT+5VT=1000**
973
974 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
975
976
977 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
978
979
980
981
982 1.
983 11. LEDs
984
985 |**LEDs**|**Feature**
986 |**LED1**|Blink when device transmit a packet.
987
988 1.
989 11. Switch Jumper
990
991 |**Switch Jumper**|**Feature**
992 |**SW1**|(((
993 ISP position: Upgrade firmware via UART
994
995 Flash position: Configure device, check running status.
996 )))
997 |**SW2**|(((
998 5V position: set to compatible with 5v I/O.
999
1000 3.3v position: set to compatible with 3.3v I/O.,
1001 )))
1002
1003 +3.3V: is always ON
1004
1005 +5V: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1006
1007 1. Case Study
1008
1009 User can check this URL for some case studies.
1010
1011 [[http:~~/~~/wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS>>url:http://wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS]]
1012
1013
1014
1015
1016 1. Use AT Command
1017 11. Access AT Command
1018
1019 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1020
1021 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
1022
1023
1024 In PC, User needs to set **serial tool**(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to **9600** to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1025
1026 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
1027
1028
1029
1030 More detail AT Command manual can be found at [[AT Command Manual>>path:#AT_COMMAND]]
1031
1032
1033
1034 1.
1035 11. Common AT Command Sequence
1036 111. Multi-channel ABP mode (Use with SX1301/LG308)
1037
1038 If device has not joined network yet:
1039
1040 AT+FDR
1041
1042 AT+NJM=0
1043
1044 ATZ
1045
1046
1047 If device already joined network:
1048
1049 AT+NJM=0
1050
1051 ATZ
1052
1053 1.
1054 11.
1055 111. Single-channel ABP mode (Use with LG01/LG02)
1056
1057 AT+FDR   Reset Parameters to Factory Default, Keys Reserve
1058
1059 AT+NJM=0 Set to ABP mode
1060
1061 AT+ADR=0 Set the Adaptive Data Rate Off
1062
1063 AT+DR=5  Set Data Rate
1064
1065 AT+TDC=60000  Set transmit interval to 60 seconds
1066
1067 AT+CHS=868400000 Set transmit frequency to 868.4Mhz
1068
1069 AT+RX2FQ=868400000 Set RX2Frequency to 868.4Mhz (according to the result from server)
1070
1071 AT+RX2DR=5  Set RX2DR to match the downlink DR from server. see below
1072
1073 AT+DADDR=26 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1074
1075 ATZ          Reset MCU
1076
1077 **Note:**
1078
1079 1. Make sure the device is set to ABP mode in the IoT Server.
1080 1. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1081 1. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1082 1. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1083
1084 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
1085
1086
1087 1. FAQ
1088 11. How to upgrade the image?
1089
1090 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1091
1092 * Support new features
1093 * For bug fix
1094 * Change LoRaWAN bands.
1095
1096 Below shows the hardware connection for how to upload an image to RS485-BL:
1097
1098 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1099
1100 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1101
1102 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1103
1104 **Step3: **Open flashloader; choose the correct COM port to update.
1105
1106
1107 |(((
1108 HOLD PRO then press the RST button, SYS will be ON, then click next
1109 )))
1110
1111 |(((
1112 Board detected
1113 )))
1114
1115 |(((
1116
1117 )))
1118
1119 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1120
1121
1122
1123 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.png]]
1124
1125
1126 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1127
1128
1129 1.
1130 11. How to change the LoRa Frequency Bands/Region?
1131
1132 User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
1133
1134
1135
1136 1.
1137 11. How many RS485-Slave can RS485-BL connects?
1138
1139 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
1140
1141
1142
1143
1144 1. Trouble Shooting     
1145 11. Downlink doesn’t work, how to solve it?
1146
1147 Please see this link for debug:
1148
1149 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug>>url:http://wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug]] 
1150
1151
1152
1153 1.
1154 11. Why I can’t join TTN V3 in US915 /AU915 bands?
1155
1156 It might about the channels mapping. Please see for detail.
1157
1158 [[http:~~/~~/wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band>>url:http://wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band]]
1159
1160
1161
1162 1. Order Info
1163
1164 **Part Number: RS485-BL-XXX**
1165
1166 **XXX:**
1167
1168 * **EU433**: frequency bands EU433
1169 * **EU868**: frequency bands EU868
1170 * **KR920**: frequency bands KR920
1171 * **CN470**: frequency bands CN470
1172 * **AS923**: frequency bands AS923
1173 * **AU915**: frequency bands AU915
1174 * **US915**: frequency bands US915
1175 * **IN865**: frequency bands IN865
1176 * **RU864**: frequency bands RU864
1177 * **KZ865: **frequency bands KZ865
1178
1179 1. Packing Info
1180
1181 **Package Includes**:
1182
1183 * RS485-BL x 1
1184 * Stick Antenna for LoRa RF part x 1
1185 * Program cable x 1
1186
1187 **Dimension and weight**:
1188
1189 * Device Size: 13.5 x 7 x 3 cm
1190 * Device Weight: 105g
1191 * Package Size / pcs : 14.5 x 8 x 5 cm
1192 * Weight / pcs : 170g
1193
1194 1. Support
1195
1196 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1197 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1198
1199 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0