Show last authors
1
2
3
4 (% style="text-align:center" %)
5 [[image:image-20240109154731-4.png||height="546" width="769"]]
6
7
8
9
10
11
12
13 **Table of Contents :**
14
15 {{toc/}}
16
17
18
19
20
21
22 = 1. Introduction =
23
24 == 1.1 What is LoRaWAN Pressure Sensor ==
25
26
27 (((
28 The Dragino PS-LB/LS series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB/LS can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
29 )))
30
31 (((
32 The PS-LB/LS series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
33 )))
34
35 (((
36 The LoRa wireless technology used in PS-LB/LS allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
37 )))
38
39 (((
40 PS-LB/LS supports BLE configure and wireless OTA update which make user easy to use.
41 )))
42
43 (((
44 PS-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + Li-ion battery **(%%), it is designed for long term use up to 5 years.
45 )))
46
47 (((
48 Each PS-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
49 )))
50
51
52 == 1.2 ​Features ==
53
54
55 * LoRaWAN 1.0.3 Class A
56 * Ultra-low power consumption
57 * Measure air / gas or water pressure
58 * Different pressure range available
59 * Thread Installation Type or Immersion Type
60 * Monitor Battery Level
61 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
62 * Support Bluetooth v5.1 and LoRaWAN remote configure
63 * Support wireless OTA update firmware
64 * Uplink on periodically
65 * Downlink to change configure
66 * Controllable 3.3v,5v and 12v output to power external sensor
67 * 8500mAh Li/SOCl2 Battery (PS-LB)
68 * Solar panel + 3000mAh Li-ion battery (PS-LS)
69
70 == 1.3 Specification ==
71
72
73 (% style="color:#037691" %)**Micro Controller:**
74
75 * MCU: 48Mhz ARM
76 * Flash: 256KB
77 * RAM: 64KB
78
79 (% style="color:#037691" %)**Common DC Characteristics:**
80
81 * Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
82 * Operating Temperature: -40 ~~ 85°C
83
84 (% style="color:#037691" %)**LoRa Spec:**
85
86 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz,Band 2 (LF): 410 ~~ 528 Mhz
87 * Max +22 dBm constant RF output vs.
88 * RX sensitivity: down to -139 dBm.
89 * Excellent blocking immunity
90
91 (% style="color:#037691" %)**Current Input Measuring :**
92
93 * Range: 0 ~~ 20mA
94 * Accuracy: 0.02mA
95 * Resolution: 0.001mA
96
97 (% style="color:#037691" %)**Voltage Input Measuring:**
98
99 * Range: 0 ~~ 30v
100 * Accuracy: 0.02v
101 * Resolution: 0.001v
102
103 (% style="color:#037691" %)**Battery:**
104
105 * Li/SOCI2 un-chargeable battery
106 * Capacity: 8500mAh
107 * Self-Discharge: <1% / Year @ 25°C
108 * Max continuously current: 130mA
109 * Max boost current: 2A, 1 second
110
111 (% style="color:#037691" %)**Power Consumption**
112
113 * Sleep Mode: 5uA @ 3.3v
114 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
115
116 == 1.4 Probe Types ==
117
118 === 1.4.1 Thread Installation Type ===
119
120
121 [[image:1675071448299-229.png]]
122
123 * Hersman Pressure Transmitter
124 * Measuring Range: -0.1 ~~ 0 ~~ 60MPa, see order info.
125 * Accuracy: 0.2% F.S
126 * Long-Term Stability: 0.2% F.S ±0.05%
127 * Overload 200% F.S
128 * Zero Temperature Drift: 0.03% FS/℃(≤100Kpa), 0.02%FS/℃(>100Kpa)
129 * FS Temperature Drift: 0.003% FS/℃(≤100Kpa), 0.002%FS/℃(>100Kpa)
130 * Storage temperature: -30℃~~80℃
131 * Operating temperature: -20℃~~60℃
132 * Connector Type: Various Types, see order info
133
134 === 1.4.2 Immersion Type ===
135
136
137 [[image:image-20240109160445-5.png||height="199" width="150"]]
138
139 * Immersion Type, Probe IP Level: IP68
140 * Measuring Range: Measure range can be customized, up to 100m.
141 * Accuracy: 0.2% F.S
142 * Long-Term Stability: ±0.2% F.S / Year
143 * Storage temperature: -30°C~~80°C
144 * Operating temperature: 0°C~~50°C
145 * Material: 316 stainless steels
146
147 === 1.4.3 Wireless Differential Air Pressure Sensor ===
148
149 [[image:image-20240511174954-1.png||height="193" width="193"]]
150
151 * Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
152 * Accuracy: 0.5% F.S, resolution is 0.05%.
153 * Overload: 300% F.S
154 * Zero temperature drift: ±0.03%F.S/°C
155 * Operating temperature: -20°C~~60°C
156 * Storage temperature:  -20°C~~60°C
157 * Compensation temperature: 0~~50°C
158
159 == 1.5 Application and Installation ==
160
161 === 1.5.1 Thread Installation Type ===
162
163
164 (% style="color:blue" %)**Application:**
165
166 * Hydraulic Pressure
167 * Petrochemical Industry
168 * Health and Medical
169 * Food & Beverage Processing
170 * Auto-controlling house
171 * Constant Pressure Water Supply
172 * Liquid Pressure measuring
173
174 Order the suitable thread size and install to measure the air / liquid pressure
175
176 [[image:1675071670469-145.png]]
177
178
179 === 1.5.2 Immersion Type ===
180
181
182 (% style="color:blue" %)**Application:**
183
184 Liquid & Water Pressure / Level detect.
185
186 [[image:1675071725288-579.png]]
187
188
189 Below is the wiring to for connect the probe to the device.
190
191 The Immersion Type Sensor has different variant which defined by Ixx. For example, this means two points:
192
193 * Cable Length: 10 Meters
194 * Water Detect Range: 0 ~~ 10 Meters.
195
196 [[image:1675071736646-450.png]]
197
198
199 [[image:1675071776102-240.png]]
200
201 Size of immersion type water depth sensor:
202
203 [[image:image-20250401102131-1.png||height="268" width="707"]]
204
205
206 === 1.5.3 Wireless Differential Air Pressure Sensor ===
207
208
209 (% style="color:blue" %)**Application:**
210
211 Indoor Air Control & Filter clogging Detect.
212
213 [[image:image-20240513100129-6.png]]
214
215 [[image:image-20240513100135-7.png]]
216
217
218 Below is the wiring to for connect the probe to the device.
219
220 [[image:image-20240513093957-1.png]]
221
222
223 Size of wind pressure transmitter:
224
225 [[image:image-20240513094047-2.png||height="462" width="518"]]
226
227 (% style="color:red" %)**Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.**
228
229
230 == 1.6 Sleep mode and working mode ==
231
232
233 **Deep Sleep Mode:** Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
234
235 **Working Mode: **In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
236
237
238 == 1.7 Button & LEDs ==
239
240
241 [[image:image-20250419092225-1.jpeg]]
242
243 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
244 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action
245 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
246
247
248 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once.
249 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
250 )))
251 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
252
253
254 Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network.
255 Green led will solidly turn on for 5 seconds after joined in network.
256 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
257 )))
258 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
259
260 == 1.8 Pin Mapping ==
261
262
263 [[image:1675072568006-274.png]]
264
265
266 == 1.9 BLE connection ==
267
268
269 PS-LB/LS support BLE remote configure.
270
271
272 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
273
274 * Press button to send an uplink
275 * Press button to active device.
276 * Device Power on or reset.
277
278 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
279
280
281 == 1.10 Mechanical ==
282
283 === 1.10.1 for LB version ===
284
285
286 [[image:image-20250401163530-1.jpeg]]
287
288
289 === 1.10.2 for LS version ===
290
291
292 [[image:image-20250401163539-2.jpeg]]
293
294
295 = 2. Configure PS-LB/LS to connect to LoRaWAN network =
296
297 == 2.1 How it works ==
298
299
300 The PS-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
301
302
303 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
304
305
306 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
307
308 [[image:image-20250419162538-1.png]]
309
310
311 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
312
313
314 (% style="color:blue" %)**Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.**
315
316 Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
317
318 [[image:image-20230426085320-1.png||height="234" width="504"]]
319
320
321 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
322
323 **Create the application.**
324
325 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
326
327 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
328
329
330 **Add devices to the created Application.**
331
332 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
333
334 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
335
336
337 **Enter end device specifics manually.**
338
339 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
340
341
342 **Add DevEUI and AppKey. Customize a platform ID for the device.**
343
344 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
345
346
347 (% style="color:blue" %)**Step 2: Add decoder.**
348
349 In TTN, user can add a custom payload so it shows friendly reading.
350
351 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
352
353 Below is TTN screen shot:
354
355 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
356
357 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png" height="562" width="1168"]]
358
359
360 (% style="color:blue" %)**Step 3: Activate on PS-LB/LS**
361
362 Press the button for 5 seconds to activate the PS-LB/LS.
363
364 Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network.
365
366 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
367
368
369 == 2.3 ​Uplink Payload ==
370
371 === 2.3.1 Device Status, FPORT~=5 ===
372
373
374 Include device configure status. Once PS-LB/LS Joined the network, it will uplink this message to the server.
375
376 Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
377
378 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
379 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
380 |(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2
381 |(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
382
383 Example parse in TTNv3
384
385 [[image:1675144504430-490.png]]
386
387
388 Sensor Model: For PS-LB/LS, this value is 0x16
389
390 Firmware Version: 0x0100, Means: v1.0.0 version
391
392 Frequency Band:
393
394 *0x01: EU868
395
396 *0x02: US915
397
398 *0x03: IN865
399
400 *0x04: AU915
401
402 *0x05: KZ865
403
404 *0x06: RU864
405
406 *0x07: AS923
407
408 *0x08: AS923-1
409
410 *0x09: AS923-2
411
412 *0x0a: AS923-3
413
414 *0x0b: CN470
415
416 *0x0c: EU433
417
418 *0x0d: KR920
419
420 *0x0e: MA869
421
422
423 Sub-Band:
424
425 AU915 and US915:value 0x00 ~~ 0x08
426
427 CN470: value 0x0B ~~ 0x0C
428
429 Other Bands: Always 0x00
430
431
432 Battery Info:
433
434 Check the battery voltage.
435
436 Ex1: 0x0B45 = 2885mV
437
438 Ex2: 0x0B49 = 2889mV
439
440
441 === 2.3.2 Sensor value, FPORT~=2 ===
442
443
444 Uplink payload includes in total 9 bytes.
445
446
447 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
448 |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
449 **Size(bytes)**
450 )))|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
451 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
452
453 [[image:1675144608950-310.png]]
454
455
456 === 2.3.3 Battery Info ===
457
458
459 Check the battery voltage for PS-LB/LS.
460
461 Ex1: 0x0B45 = 2885mV
462
463 Ex2: 0x0B49 = 2889mV
464
465
466 === 2.3.4 Probe Model ===
467
468
469 PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
470
471 For example.
472
473 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
474 |(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
475 |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
476 |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
477 |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
478
479 The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
480
481
482 When connecting to current sensors sold by our company, you can convert current readings to corresponding values by simply configuring the [[AT+PROBE>>||anchor="H3.3.4SettheProbeModel"]] command. If you prefer not to configure this command on the sensor, you can uniformly handle the conversion in the payload decoder instead.
483
484 **Examples for decoder implementation:**
485
486 ~1. For AT+PROBE=0005, add the following processing in your decoder:
487
488 [[image:image-20250512144042-1.png]]
489
490 [[image:image-20250512144122-2.png]]
491
492 2. For AT+PROBE=0102, add the following processing in your decoder(Corresponding to the position shown in the above screenshot).
493
494 bytes[i]=0x01;bytes[1+i]=0x02;
495
496 bytes[2]=0x01;bytes[3]=0x02;
497
498
499 === 2.3.5 0~~20mA value (IDC_IN) ===
500
501
502 The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
503
504 Example:
505
506 27AE(H) = 10158 (D)/1000 = 10.158mA.
507
508
509 Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
510
511 [[image:image-20230225154759-1.png||height="408" width="741"]]
512
513
514 === 2.3.6 0~~30V value (pin VDC_IN) ===
515
516
517 Measure the voltage value. The range is 0 to 30V.
518
519 Example:
520
521 138E(H) = 5006(D)/1000= 5.006V
522
523
524 === 2.3.7 IN1&IN2&INT pin ===
525
526
527 IN1 and IN2 are used as digital input pins.
528
529 Example:
530
531 09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
532
533 09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
534
535
536 This data field shows if this packet is generated by Interrupt Pin or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
537
538 Example:
539
540 09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
541
542 09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
543
544 0x01: Interrupt Uplink Packet.
545
546
547 === 2.3.8 Sensor value, FPORT~=7 ===
548
549
550 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
551 |(% style="background-color:#4f81bd; color:white; width:65px" %)(((
552 **Size(bytes)**
553 )))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
554 |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
555
556
557 Voltage value, each 2 bytes is a set of voltage values.
558 )))
559
560 [[image:image-20230220171300-1.png||height="207" width="863"]]
561
562 Multiple sets of data collected are displayed in this form:
563
564 [voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
565
566
567 === 2.3.9 ​Decode payload in The Things Network ===
568
569
570 While using TTN network, you can add the payload format to decode the payload.
571
572 [[image:1675144839454-913.png]]
573
574
575 PS-LB/LS TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
576
577
578 == 2.4 Uplink Interval ==
579
580
581 The PS-LB/LS by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
582
583
584 == 2.5 Show Data in DataCake IoT Server ==
585
586
587 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
588
589 Step 1: Be sure that your device is programmed and properly connected to the network at this time.
590
591 Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
592
593 [[image:1675144951092-237.png]]
594
595
596 [[image:1675144960452-126.png]]
597
598
599 Step 3: Create an account or log in Datacake.
600
601 Step 4: Create PS-LB/LS product.
602
603 [[image:1675145004465-869.png]]
604
605
606 [[image:1675145018212-853.png]]
607
608
609 [[image:1675145029119-717.png]]
610
611
612 Step 5: add payload decode
613
614 [[image:1675145051360-659.png]]
615
616
617 [[image:1675145060812-420.png]]
618
619
620 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
621
622 [[image:1675145081239-376.png]]
623
624
625 == 2.6 Datalog Feature (Since V1.1) ==
626
627
628 When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot.
629
630
631 === 2.6.1 Unix TimeStamp ===
632
633
634 PS-LB uses Unix TimeStamp format based on
635
636 [[image:image-20250401163826-3.jpeg]]
637
638 Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
639
640 Below is the converter example:
641
642 [[image:image-20250401163906-4.jpeg]]
643
644
645 === 2.6.2 Set Device Time ===
646
647
648 There are two ways to set the device's time:
649
650
651 ~1. Through LoRaWAN MAC Command (Default settings)
652
653 Users need to set SYNCMOD=1 to enable sync time via the MAC command.
654
655 Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
656
657 Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.
658
659
660 2. Manually Set Time
661
662 Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
663
664
665 === 2.6.3 Poll sensor value ===
666
667 Users can poll sensor values based on timestamps. Below is the downlink command.
668
669 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
670 |=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31)
671 |(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte
672 |(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)(((
673 Timestamp end
674 )))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval
675
676 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
677
678 For example, downlink command[[image:image-20250117104812-1.png]]
679
680 Is to check 2024/12/20 09:34:59 to 2024/12/20 14:34:59's data
681
682 Uplink Internal =5s,means PS-LB will send one packet every 5s. range 5~~255s.
683
684
685 === 2.6.4 Datalog Uplink payload (FPORT~=3) ===
686
687
688 The Datalog uplinks will use below payload format.
689
690 Retrieval data payload:
691
692 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
693 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
694 Size(bytes)
695 )))|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)2|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)4
696 |(% style="width:103px" %)Value|(% style="width:68px" %)(((
697 Probe_mod
698 )))|(% style="width:104px" %)(((
699 VDC_intput_V
700 )))|(% style="width:83px" %)(((
701 IDC_intput_mA
702 )))|(% style="width:201px" %)(((
703 IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status
704 )))|(% style="width:86px" %)Unix Time Stamp
705
706 IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:
707
708 [[image:image-20250117104847-4.png]]
709
710
711 No ACK Message:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
712
713 Poll Message Flag: 1: This message is a poll message reply.
714
715 * Poll Message Flag is set to 1.
716
717 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
718
719 For example, in US915 band, the max payload for different DR is:
720
721 a) DR0: max is 11 bytes so one entry of data
722
723 b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
724
725 c) DR2: total payload includes 11 entries of data
726
727 d) DR3: total payload includes 22 entries of data.
728
729 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
730
731 Example:
732
733 If PS-LB-NA has below data inside Flash:
734
735 [[image:image-20250117104837-3.png]]
736
737
738 If user sends below downlink command: 316788D9BF6788DB6305
739
740 Where : Start time: 6788D9BF = time 25/1/16 10:04:47
741
742 Stop time: 6788DB63 = time 25/1/16 10:11:47
743
744
745 PA-LB-NA will uplink this payload.
746
747 [[image:image-20250117104827-2.png]]
748
749
750 00001B620000406788D9BF  00000D130000406788D9FB  00000D120000406788DA37  00000D110000406788DA73  00000D100000406788DAAF  00000D100000406788DAEB  00000D0F0000406788DB27  00000D100000406788DB63
751
752
753 Where the first 11 bytes is for the first entry :
754
755
756 0000  0D10  0000  40  6788DB63
757
758
759 Probe_mod = 0x0000 = 0000
760
761
762 VDC_intput_V = 0x0D10/1000=3.344V
763
764 IDC_intput_mA = 0x0000/1000=0mA
765
766
767 IN1_pin_level = (0x40& 0x08)? "High":"Low" = 0(Low)
768
769 IN2_pin_level = (0x40& 0x04)? "High":"Low" = 0(Low)
770
771 Exti_pin_level = (0x40& 0x02)? "High":"Low" = 0(Low)
772
773 Exti_status = (0x40& 0x01)? "True":"False" = 0(False)
774
775
776 Unix time is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
777
778 Its data format is:
779
780 [Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
781
782 Note: water_deep in the data needs to be converted using decoding to get it.
783
784
785 === 2.6.5 Decoder in TTN V3 ===
786
787 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
788
789 Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
790
791
792 == 2.7 Frequency Plans ==
793
794
795 The PS-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
796
797 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/a>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
798
799
800 == 2.8 Report on Change Feature (Since firmware V1.2) ==
801
802 === 2.8.1 Uplink payload(Enable ROC) ===
803
804
805 Used to Monitor the IDC and VDC increments, and send ROC uplink when the IDC or VDC changes exceed.
806
807 With ROC enabled, the payload is as follows:
808
809 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
810 |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
811 Size(bytes)
812 )))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
813 |(% style="width:98px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
814 [[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag
815 )))
816
817 IN1 &IN2 , Interrupt  flag , ROC_flag:
818
819 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
820 |(% style="background-color:#4f81bd; color:white; width:50px" %)Size(bit)|(% style="background-color:#4f81bd; color:white; width:60px" %)bit7|(% style="background-color:#4f81bd; color:white; width:62px" %)bit6|(% style="background-color:#4f81bd; color:white; width:62px" %)bit5|(% style="background-color:#4f81bd; color:white; width:65px" %)bit4|(% style="background-color:#4f81bd; color:white; width:56px" %)bit3|(% style="background-color:#4f81bd; color:white; width:55px" %)bit2|(% style="background-color:#4f81bd; color:white; width:55px" %)bit1|(% style="background-color:#4f81bd; color:white; width:50px" %)bit0
821 |(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status
822
823 * IDC_Roc_flagL
824
825 80 (H): (0x80&0x80)=80(H)=1000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
826
827 60 (H): (0x60&0x80)=0  bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
828
829
830 * IDC_Roc_flagH
831
832 60 (H): (0x60&0x40)=60(H)=01000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
833
834 80 (H): (0x80&0x40)=0  bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
835
836
837 * VDC_Roc_flagL
838
839 20 (H): (0x20&0x20)=20(H)=0010 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
840
841 90 (H): (0x90&0x20)=0  bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
842
843
844 * VDC_Roc_flagH
845
846 90 (H): (0x90&0x10)=10(H)=0001 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
847
848 20 (H): (0x20&0x10)=0  bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
849
850
851 * IN1_pin_level & IN2_pin_level
852
853 IN1 and IN2 are used as digital input pins.
854
855 80 (H): (0x80&0x08)=0  IN1 pin is low level.
856
857 80 (H): (0x09&0x04)=0    IN2 pin is low level.
858
859
860 * Exti_pin_level &Exti_status
861
862 This data field shows whether the packet is generated by an interrupt pin.
863
864 Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the GPIO_EXTI pin.
865
866 Exti_pin_level:  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
867
868 Exti_status: 80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
869
870
871 === 2.8.2 Set the Report on Change ===
872
873
874 Feature: Get or Set the Report on Change.
875
876
877 ==== 2.8.2.1 Wave alarm mode ====
878
879
880 Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed.
881
882 * Change value: The amount by which the next detection value increases/decreases relative to the previous detection value.
883 * Comparison value: A parameter to compare with the latest ROC test.
884
885 AT Command: AT+ROC
886
887 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
888 |=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 193px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
889 |(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
890 0,0,0,0(default)
891 OK
892 )))
893 |(% colspan="1" rowspan="4" style="width:143px" %)(((
894 AT+ROC=a,b,c,d
895 )))|(% style="width:154px" %)(((
896 **a:** Enable or disable the ROC
897 )))|(% style="width:197px" %)(((
898 **0:** off
899 **1:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
900 **2:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
901 )))
902 |(% style="width:154px" %)**b:** Set the detection interval|(% style="width:197px" %)(((
903 Range:  0~~65535s
904 )))
905 |(% style="width:154px" %)**c:** Setting the IDC change value|(% style="width:197px" %)Unit: uA
906 |(% style="width:154px" %)**d:** Setting the VDC change value|(% style="width:197px" %)Unit: mV
907
908 Example:
909
910 * AT+ROC=0,0,0,0  ~/~/ The ROC function is not used.
911 * AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed.
912 * AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage.
913 * AT+ROC=2,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed.
914
915 Downlink Command: 0x09 aa bb cc dd
916
917 Format: Function code (0x09) followed by 4 bytes.
918
919 aa: 1 byte; Set the wave alarm mode.
920
921 bb: 2 bytes; Set the detection interval. (second)
922
923 cc: 2 bytes; Setting the IDC change threshold. (uA)
924
925 dd: 2 bytes; Setting the VDC change threshold. (mV)
926
927 Example:
928
929 * Downlink Payload: 09 01 00 3C 0B B8 01 F4  ~/~/ Equal to AT+ROC=1,60,3000, 500
930 * Downlink Payload: 09 01 00 3C 0B B8 00 00  ~/~/ Equal to AT+ROC=1,60,3000,0
931 * Downlink Payload: 09 02 00 3C 0B B8 00 00  ~/~/ Equal to AT+ROC=2,60,3000,0
932
933 Screenshot of parsing example in TTN:
934
935 * AT+ROC=1,60,3000, 500.
936
937 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB-NA--LoRaWAN_Analog_Sensor_User_Manual/WebHome/image-20241019170902-1.png?width=1454&height=450&rev=1.1||alt="image-20241019170902-1.png"]]
938
939
940 ==== 2.8.2.2 Over-threshold alarm mode ====
941
942
943 Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded.
944
945 AT Command: AT+ROC=3,a,b,c,d,e
946
947 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
948 |=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 187px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
949 |(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
950 0,0,0,0(default)
951 OK
952 )))
953 |(% colspan="1" rowspan="5" style="width:143px" %)(((
954 AT+ROC=3,a,b,c,d,e
955 )))|(% style="width:160px" %)(((
956 **a:** Set the detection interval
957 )))|(% style="width:185px" %)(((
958 Range:  0~~65535s
959 )))
960 |(% style="width:160px" %)**b:** Set the IDC alarm trigger condition|(% style="width:185px" %)(((
961 **0:** Less than the set IDC threshold, Alarm
962 **1:** Greater than the set IDC threshold, Alarm
963 )))
964 |(% style="width:160px" %)(((
965 **c: ** IDC alarm threshold
966 )))|(% style="width:185px" %)(((
967 Unit: uA
968 )))
969 |(% style="width:160px" %)**d:** Set the VDC alarm trigger condition|(% style="width:185px" %)(((
970 **0:** Less than the set VDC threshold, Alarm
971 **1:** Greater than the set VDC threshold, Alarm
972 )))
973 |(% style="width:160px" %)**e:** VDC alarm threshold|(% style="width:185px" %)Unit: mV
974
975 Example:
976
977 * AT+ROC=3,60,0,3000,0,5000  ~/~/ The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
978 * AT+ROC=3,180,1,3000,1,5000  ~/~/ The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
979 * AT+ROC=3,300,0,3000,1,5000  ~/~/ The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
980
981 Downlink Command: 0x09 03 aa bb cc dd ee
982
983 Format: Function code (0x09) followed by 03 and the remaining 5 bytes.
984
985 aa: 2 bytes; Set the detection interval.(second)
986
987 bb: 1 byte; Set the IDC alarm trigger condition.
988
989 cc: 2 bytes; IDC alarm threshold.(uA)
990
991
992 dd: 1 byte; Set the VDC alarm trigger condition.
993
994 ee: 2 bytes; VDC alarm threshold.(mV)
995
996 Example:
997
998 * Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/ Equal to AT+ROC=3,60,0,3000,0,5000
999 * Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38  ~/~/ Equal to AT+ROC=3,60,1,3000,1,5000
1000 * Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38  ~/~/ Equal to AT+ROC=3,60,0,3000,1,5000
1001
1002 Screenshot of parsing example in TTN:
1003
1004 * AT+ROC=3,60,0,3000,0,5000
1005
1006 [[image:image-20250116180030-2.png]]
1007
1008
1009 == 2.9 ​Firmware Change Log ==
1010
1011
1012 Firmware download link:
1013
1014 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
1015
1016
1017 = 3. Configure PS-LB/LS =
1018
1019 == 3.1 Configure Methods ==
1020
1021
1022 PS-LB/LS supports below configure method:
1023
1024 * AT Command via Bluetooth Connection (Recommand Way): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1025 * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
1026 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
1027
1028 == 3.2 General Commands ==
1029
1030
1031 These commands are to configure:
1032
1033 * General system settings like: uplink interval.
1034 * LoRaWAN protocol & radio related command.
1035
1036 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
1037
1038 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1039
1040
1041 == 3.3 Commands special design for PS-LB/LS ==
1042
1043
1044 These commands only valid for PS-LB/LS, as below:
1045
1046
1047 === 3.3.1 Set Transmit Interval Time ===
1048
1049
1050 Feature: Change LoRaWAN End Node Transmit Interval.
1051
1052 AT Command: AT+TDC
1053
1054 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1055 |=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response
1056 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
1057 30000
1058 OK
1059 the interval is 30000ms = 30s
1060 )))
1061 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
1062 OK
1063 Set transmit interval to 60000ms = 60 seconds
1064 )))
1065
1066 Downlink Command: 0x01
1067
1068 Format: Command Code (0x01) followed by 3 bytes time value.
1069
1070 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1071
1072 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1073 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1074
1075 === 3.3.2 Set Interrupt Mode ===
1076
1077
1078 Feature, Set Interrupt mode for GPIO_EXIT.
1079
1080 AT Command: AT+INTMOD
1081
1082 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1083 |=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response
1084 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
1085 0
1086 OK
1087 the mode is 0 =Disable Interrupt
1088 )))
1089 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
1090 Set Transmit Interval
1091 0. (Disable Interrupt),
1092 ~1. (Trigger by rising and falling edge)
1093 2. (Trigger by falling edge)
1094 3. (Trigger by rising edge)
1095 )))|(% style="background-color:#f2f2f2; width:157px" %)OK
1096
1097 Downlink Command: 0x06
1098
1099 Format: Command Code (0x06) followed by 3 bytes.
1100
1101 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1102
1103 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
1104 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1105
1106 === 3.3.3 Set the output time ===
1107
1108
1109 Feature, Control the output 3V3 , 5V or 12V.
1110
1111 AT Command: AT+3V3T
1112
1113 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:474px" %)
1114 |=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1115 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
1116 0
1117 OK
1118 )))
1119 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1120 OK
1121 default setting
1122 )))
1123 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
1124 OK
1125 )))
1126 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1127 OK
1128 )))
1129
1130 AT Command: AT+5VT
1131
1132 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
1133 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1134 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1135 0
1136 OK
1137 )))
1138 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1139 OK
1140 default setting
1141 )))
1142 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
1143 OK
1144 )))
1145 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1146 OK
1147 )))
1148
1149 AT Command: AT+12VT
1150
1151 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:443px" %)
1152 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response
1153 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1154 0
1155 OK
1156 )))
1157 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
1158 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
1159 OK
1160 )))
1161
1162 Downlink Command: 0x07
1163
1164 Format: Command Code (0x07) followed by 3 bytes.
1165
1166 The first byte is which power, the second and third bytes are the time to turn on.
1167
1168 * Example 1: Downlink Payload: 070101F4  ~-~-->  AT+3V3T=500
1169 * Example 2: Downlink Payload: 0701FFFF   ~-~-->  AT+3V3T=65535
1170 * Example 3: Downlink Payload: 070203E8  ~-~-->  AT+5VT=1000
1171 * Example 4: Downlink Payload: 07020000  ~-~-->  AT+5VT=0
1172 * Example 5: Downlink Payload: 070301F4  ~-~-->  AT+12VT=500
1173 * Example 6: Downlink Payload: 07030000  ~-~-->  AT+12VT=0
1174
1175 Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.
1176
1177 Therefore, the corresponding downlink command is increased by one byte to five bytes.
1178
1179 Example:
1180
1181 * 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 01 01 D4 C0  ~-~-->  AT+3V3T=120000
1182 * 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 02 01 86 A0  ~-~-->  AT+5VT=100000
1183 * 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 03 01 38 80  ~-~-->  AT+12VT=80000
1184
1185 === 3.3.4 Set the Probe Model ===
1186
1187
1188 Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
1189
1190 AT Command: AT +PROBE
1191
1192 AT+PROBE=aabb
1193
1194 When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
1195
1196 When aa=01, it is the pressure mode, which converts the current into a pressure value;
1197
1198 bb represents which type of pressure sensor it is.
1199
1200 (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
1201
1202 When aa=02, it is the Differential Pressure Sensor , which converts the current into a pressure value;
1203
1204 bb represents which type of pressure sensor it is.
1205
1206 (0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C)
1207
1208 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1209 |(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1210 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
1211 OK
1212 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
1213 |(% style="background-color:#f2f2f2; width:154px" %)(((
1214 AT+PROBE=000A
1215 )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
1216 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
1217 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
1218 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
1219
1220 Downlink Command: 0x08
1221
1222 Format: Command Code (0x08) followed by 2 bytes.
1223
1224 * Example 1: Downlink Payload: 080003  ~-~-->  AT+PROBE=0003
1225 * Example 2: Downlink Payload: 080101  ~-~-->  AT+PROBE=0101
1226
1227 === 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
1228
1229
1230 Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time.
1231
1232 AT Command: AT +STDC
1233
1234 AT+STDC=aa,bb,bb
1235
1236 aa:
1237 0: means disable this function and use TDC to send packets.
1238 1: means that the function is enabled to send packets by collecting VDC data for multiple times.
1239 2: means that the function is enabled to send packets by collecting IDC data for multiple times.
1240 bb: Each collection interval (s), the value is 1~~65535
1241 cc: the number of collection times, the value is 1~~120
1242
1243 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1244 |(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1245 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
1246 OK
1247 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1248 Attention:Take effect after ATZ
1249 OK
1250 )))
1251 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
1252
1253
1254 Use the TDC interval to send packets.(default)
1255
1256
1257 )))|(% style="background-color:#f2f2f2" %)(((
1258 Attention:Take effect after ATZ
1259 OK
1260 )))
1261
1262 Downlink Command: 0xAE
1263
1264 Format: Command Code (0xAE) followed by 4 bytes.
1265
1266 * Example 1: Downlink Payload: AE 01 02 58 12 ~-~-->  AT+STDC=1,600,18
1267
1268 = 4. Battery & Power Consumption =
1269
1270
1271 PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1272
1273 [[Battery Info & Power Consumption Analyze>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1274
1275
1276 = 5. OTA firmware update =
1277
1278
1279 Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1280
1281
1282 = 6. FAQ =
1283
1284 == 6.1 How to use AT Command via UART to access device? ==
1285
1286
1287 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1288
1289
1290 == 6.2 How to update firmware via UART port? ==
1291
1292
1293 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1294
1295
1296 == 6.3 How to change the LoRa Frequency Bands/Region? ==
1297
1298
1299 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
1300 When downloading the images, choose the required image file for download. ​
1301
1302
1303 == 6.4 How to measure the depth of other liquids other than water? ==
1304
1305
1306 Test the current values at the depth of different liquids and convert them to a linear scale.
1307 Replace its ratio with the ratio of water to current in the decoder.
1308
1309 Example:
1310
1311 Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
1312
1313 Calculate scale factor:
1314 Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
1315
1316 Calculation formula:
1317
1318 Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
1319
1320 Actual calculations:
1321
1322 Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
1323
1324 Error:
1325
1326 0.009810726
1327
1328
1329 [[image:image-20240329175044-1.png]]
1330
1331
1332 = 7. Troubleshooting =
1333
1334 == 7.1 Water Depth Always shows 0 in payload ==
1335
1336
1337 If your device's IDC_intput_mA is normal, but your reading always shows 0, please refer to the following points:
1338
1339 ~1. Please set it to mod1
1340
1341 2. Please set the command [[AT+PROBE>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB%20--%20LoRaWAN%20Pressure%20Sensor/#H3.3.4SettheProbeModel]] according to the model of your sensor
1342
1343 3. Check the connection status of the sensor
1344
1345
1346 = 8. Order Info =
1347
1348 == 8.1 Thread Installation Type & Immersion Type Pressure Sensor ==
1349
1350
1351 Part Number: (% style="color:blue" %)**PS-NB/NS-Txx-YY  or  PS-NB/NS-Ixx-YY**
1352
1353 (% style="color:blue" %)**XX:**(%%)** Pressure Range and Thread Type **
1354
1355 (% style="color:blue" %)**YY:**(%%)** The default frequency band**
1356
1357 * YY: Frequency Bands, options: EU433,CN470,EU868,IN865,KR920,AS923,AU915,US915
1358
1359 [[image:image-20241021093209-1.png]]
1360
1361
1362 == 8.2 Wireless Differential Air Pressure Sensor ==
1363
1364
1365 Part Number: (% style="color:blue" %)**PS-LB-Dxx-YY  or  PS-LS-Dxx-YY **
1366
1367 (% style="color:blue" %)**XX:**(%%)** Differential Pressure Range**
1368
1369 (% style="color:blue" %)**YY:**(%%)** The default frequency band**
1370
1371 * YY: Frequency Bands, options: EU433,CN470,EU868,IN865,KR920,AS923,AU915,US915
1372
1373 [[image:image-20250401174215-1.png||height="486" width="656"]]
1374
1375
1376 = 9. ​Packing Info =
1377
1378
1379 Package Includes:
1380
1381 * PS-LB/LS-Txx/Ixx, PS-LB/LS-Dxx   LoRaWAN Pressure Sensor
1382
1383 Dimension and weight:
1384
1385 * Device Size: cm
1386 * Device Weight: g
1387 * Package Size / pcs : cm
1388 * Weight / pcs : g
1389
1390 = 10. Support =
1391
1392
1393 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1394
1395 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0