Show last authors
1
2
3
4 (% style="text-align:center" %)
5 [[image:image-20240109154731-4.png||height="671" width="945"]]
6
7
8
9
10
11
12
13 **Table of Contents :**
14
15 {{toc/}}
16
17
18
19
20
21
22 = 1. Introduction =
23
24 == 1.1 What is LoRaWAN Pressure Sensor ==
25
26
27 (((
28 The Dragino PS-LB/LS series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB/LS can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
29 )))
30
31 (((
32 The PS-LB/LS series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
33 )))
34
35 (((
36 The LoRa wireless technology used in PS-LB/LS allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
37 )))
38
39 (((
40 PS-LB/LS supports BLE configure and wireless OTA update which make user easy to use.
41 )))
42
43 (((
44 PS-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + Li-ion battery **(%%), it is designed for long term use up to 5 years.
45 )))
46
47 (((
48 Each PS-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
49 )))
50
51 [[image:1675071321348-194.png]]
52
53
54 == 1.2 ​Features ==
55
56
57 * LoRaWAN 1.0.3 Class A
58 * Ultra-low power consumption
59 * Measure air / gas or water pressure
60 * Different pressure range available
61 * Thread Installation Type or Immersion Type
62 * Monitor Battery Level
63 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
64 * Support Bluetooth v5.1 and LoRaWAN remote configure
65 * Support wireless OTA update firmware
66 * Uplink on periodically
67 * Downlink to change configure
68 * Controllable 3.3v,5v and 12v output to power external sensor
69 * 8500mAh Li/SOCl2 Battery (PS-LB)
70 * Solar panel + 3000mAh Li-ion battery (PS-LS)
71
72 == 1.3 Specification ==
73
74
75 (% style="color:#037691" %)**Micro Controller:**
76
77 * MCU: 48Mhz ARM
78 * Flash: 256KB
79 * RAM: 64KB
80
81 (% style="color:#037691" %)**Common DC Characteristics:**
82
83 * Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
84 * Operating Temperature: -40 ~~ 85°C
85
86 (% style="color:#037691" %)**LoRa Spec:**
87
88 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz,Band 2 (LF): 410 ~~ 528 Mhz
89 * Max +22 dBm constant RF output vs.
90 * RX sensitivity: down to -139 dBm.
91 * Excellent blocking immunity
92
93 (% style="color:#037691" %)**Current Input Measuring :**
94
95 * Range: 0 ~~ 20mA
96 * Accuracy: 0.02mA
97 * Resolution: 0.001mA
98
99 (% style="color:#037691" %)**Voltage Input Measuring:**
100
101 * Range: 0 ~~ 30v
102 * Accuracy: 0.02v
103 * Resolution: 0.001v
104
105 (% style="color:#037691" %)**Battery:**
106
107 * Li/SOCI2 un-chargeable battery
108 * Capacity: 8500mAh
109 * Self-Discharge: <1% / Year @ 25°C
110 * Max continuously current: 130mA
111 * Max boost current: 2A, 1 second
112
113 (% style="color:#037691" %)**Power Consumption**
114
115 * Sleep Mode: 5uA @ 3.3v
116 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
117
118 == 1.4 Probe Types ==
119
120 === 1.4.1 Thread Installation Type ===
121
122
123 [[image:1675071448299-229.png]]
124
125 * Hersman Pressure Transmitter
126 * Measuring Range: -0.1 ~~ 0 ~~ 60MPa, see order info.
127 * Accuracy: 0.2% F.S
128 * Long-Term Stability: 0.2% F.S ±0.05%
129 * Overload 200% F.S
130 * Zero Temperature Drift: 0.03% FS/℃(≤100Kpa), 0.02%FS/℃(>100Kpa)
131 * FS Temperature Drift: 0.003% FS/℃(≤100Kpa), 0.002%FS/℃(>100Kpa)
132 * Storage temperature: -30℃~~80℃
133 * Operating temperature: -20℃~~60℃
134 * Connector Type: Various Types, see order info
135
136 === 1.4.2 Immersion Type ===
137
138
139 [[image:image-20240109160445-5.png||height="221" width="166"]]
140
141 * Immersion Type, Probe IP Level: IP68
142 * Measuring Range: Measure range can be customized, up to 100m.
143 * Accuracy: 0.2% F.S
144 * Long-Term Stability: ±0.2% F.S / Year
145 * Storage temperature: -30°C~~80°C
146 * Operating temperature: 0°C~~50°C
147 * Material: 316 stainless steels
148
149 === 1.4.3 Wireless Differential Air Pressure Sensor ===
150
151 [[image:image-20240511174954-1.png]]
152
153 * Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
154 * Accuracy: 0.5% F.S, resolution is 0.05%.
155 * Overload: 300% F.S
156 * Zero temperature drift: ±0.03%F.S/°C
157 * Operating temperature: -20°C~~60°C
158 * Storage temperature:  -20°C~~60°C
159 * Compensation temperature: 0~~50°C
160
161 == 1.5 Application and Installation ==
162
163 === 1.5.1 Thread Installation Type ===
164
165
166 (% style="color:blue" %)**Application:**
167
168 * Hydraulic Pressure
169 * Petrochemical Industry
170 * Health and Medical
171 * Food & Beverage Processing
172 * Auto-controlling house
173 * Constant Pressure Water Supply
174 * Liquid Pressure measuring
175
176 Order the suitable thread size and install to measure the air / liquid pressure
177
178 [[image:1675071670469-145.png]]
179
180
181 === 1.5.2 Immersion Type ===
182
183
184 (% style="color:blue" %)**Application:**
185
186 Liquid & Water Pressure / Level detect.
187
188 [[image:1675071725288-579.png]]
189
190
191 Below is the wiring to for connect the probe to the device.
192
193 The Immersion Type Sensor has different variant which defined by Ixx. For example, this means two points:
194
195 * Cable Length: 10 Meters
196 * Water Detect Range: 0 ~~ 10 Meters.
197
198 [[image:1675071736646-450.png]]
199
200
201 [[image:1675071776102-240.png]]
202
203
204
205 === 1.5.3 Wireless Differential Air Pressure Sensor ===
206
207
208 (% style="color:blue" %)**Application:**
209
210 Indoor Air Control & Filter clogging Detect.
211
212 [[image:image-20240513100129-6.png]]
213
214 [[image:image-20240513100135-7.png]]
215
216
217 Below is the wiring to for connect the probe to the device.
218
219 [[image:image-20240513093957-1.png]]
220
221
222 Size of wind pressure transmitter:
223
224 [[image:image-20240513094047-2.png]]
225
226 Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.
227
228
229 == 1.6 Sleep mode and working mode ==
230
231
232 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
233
234 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
235
236
237 == 1.7 Button & LEDs ==
238
239
240 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]](% style="display:none" %)
241
242 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
243 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
244 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
245 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
246 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
247 )))
248 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
249 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
250 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
251 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
252 )))
253 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
254
255 == 1.8 Pin Mapping ==
256
257
258 [[image:1675072568006-274.png]]
259
260
261 == 1.9 BLE connection ==
262
263
264 PS-LB/LS support BLE remote configure.
265
266
267 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
268
269 * Press button to send an uplink
270 * Press button to active device.
271 * Device Power on or reset.
272
273 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
274
275
276 == 1.10 Mechanical ==
277
278 === 1.10.1 for LB version ===
279
280
281 [[image:image-20240109160800-6.png]]
282
283
284 === 1.10.2 for LS version ===
285
286
287 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/WebHome/image-20231231203439-3.png?width=886&height=385&rev=1.1||alt="image-20231231203439-3.png"]]
288
289
290 = 2. Configure PS-LB/LS to connect to LoRaWAN network =
291
292 == 2.1 How it works ==
293
294
295 The PS-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
296
297
298 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
299
300
301 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
302
303
304 [[image:1675144005218-297.png]]
305
306
307 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
308
309
310 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB/LS.
311
312 Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
313
314 [[image:image-20230426085320-1.png||height="234" width="504"]]
315
316
317 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
318
319
320 (% style="color:blue" %)**Register the device**
321
322 [[image:1675144099263-405.png]]
323
324
325 (% style="color:blue" %)**Add APP EUI and DEV EUI**
326
327 [[image:1675144117571-832.png]]
328
329
330 (% style="color:blue" %)**Add APP EUI in the application**
331
332
333 [[image:1675144143021-195.png]]
334
335
336 (% style="color:blue" %)**Add APP KEY**
337
338 [[image:1675144157838-392.png]]
339
340 (% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB/LS
341
342
343 Press the button for 5 seconds to activate the PS-LB/LS.
344
345 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
346
347 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
348
349
350 == 2.3 ​Uplink Payload ==
351
352 === 2.3.1 Device Status, FPORT~=5 ===
353
354
355 Include device configure status. Once PS-LB/LS Joined the network, it will uplink this message to the server.
356
357 Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
358
359
360 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
361 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
362 |(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
363 |(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
364
365 Example parse in TTNv3
366
367 [[image:1675144504430-490.png]]
368
369
370 (% style="color:#037691" %)**Sensor Model**(%%): For PS-LB/LS, this value is 0x16
371
372 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
373
374 (% style="color:#037691" %)**Frequency Band**:
375
376 *0x01: EU868
377
378 *0x02: US915
379
380 *0x03: IN865
381
382 *0x04: AU915
383
384 *0x05: KZ865
385
386 *0x06: RU864
387
388 *0x07: AS923
389
390 *0x08: AS923-1
391
392 *0x09: AS923-2
393
394 *0x0a: AS923-3
395
396 *0x0b: CN470
397
398 *0x0c: EU433
399
400 *0x0d: KR920
401
402 *0x0e: MA869
403
404
405 (% style="color:#037691" %)**Sub-Band**:
406
407 AU915 and US915:value 0x00 ~~ 0x08
408
409 CN470: value 0x0B ~~ 0x0C
410
411 Other Bands: Always 0x00
412
413
414 (% style="color:#037691" %)**Battery Info**:
415
416 Check the battery voltage.
417
418 Ex1: 0x0B45 = 2885mV
419
420 Ex2: 0x0B49 = 2889mV
421
422
423 === 2.3.2 Sensor value, FPORT~=2 ===
424
425
426 Uplink payload includes in total 9 bytes.
427
428
429 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
430 |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
431 **Size(bytes)**
432 )))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
433 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
434
435 [[image:1675144608950-310.png]]
436
437
438 === 2.3.3 Battery Info ===
439
440
441 Check the battery voltage for PS-LB/LS.
442
443 Ex1: 0x0B45 = 2885mV
444
445 Ex2: 0x0B49 = 2889mV
446
447
448 === 2.3.4 Probe Model ===
449
450
451 PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
452
453
454 **For example.**
455
456 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
457 |(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
458 |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
459 |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
460 |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
461
462 The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
463
464
465 === 2.3.5 0~~20mA value (IDC_IN) ===
466
467
468 The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
469
470 (% style="color:#037691" %)**Example**:
471
472 27AE(H) = 10158 (D)/1000 = 10.158mA.
473
474
475 Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
476
477 [[image:image-20230225154759-1.png||height="408" width="741"]]
478
479
480 === 2.3.6 0~~30V value ( pin VDC_IN) ===
481
482
483 Measure the voltage value. The range is 0 to 30V.
484
485 (% style="color:#037691" %)**Example**:
486
487 138E(H) = 5006(D)/1000= 5.006V
488
489
490 === 2.3.7 IN1&IN2&INT pin ===
491
492
493 IN1 and IN2 are used as digital input pins.
494
495 (% style="color:#037691" %)**Example**:
496
497 09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
498
499 09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
500
501
502 This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
503
504 (% style="color:#037691" %)**Example:**
505
506 09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
507
508 09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
509
510 0x01: Interrupt Uplink Packet.
511
512
513 === 2.3.8 Sensor value, FPORT~=7 ===
514
515
516 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
517 |(% style="background-color:#4f81bd; color:white; width:65px" %)(((
518 **Size(bytes)**
519 )))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
520 |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
521 Voltage value, each 2 bytes is a set of voltage values.
522 )))
523
524 [[image:image-20230220171300-1.png||height="207" width="863"]]
525
526 Multiple sets of data collected are displayed in this form:
527
528 [voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
529
530
531 === 2.3.9 ​Decode payload in The Things Network ===
532
533
534 While using TTN network, you can add the payload format to decode the payload.
535
536
537 [[image:1675144839454-913.png]]
538
539
540 PS-LB/LS TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
541
542
543 == 2.4 Uplink Interval ==
544
545
546 The PS-LB/LS by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
547
548
549 == 2.5 Show Data in DataCake IoT Server ==
550
551
552 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
553
554
555 (% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
556
557 (% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
558
559
560 [[image:1675144951092-237.png]]
561
562
563 [[image:1675144960452-126.png]]
564
565
566 (% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
567
568 (% style="color:blue" %)**Step 4:** (%%)Create PS-LB/LS product.
569
570 [[image:1675145004465-869.png]]
571
572
573 [[image:1675145018212-853.png]]
574
575
576
577 [[image:1675145029119-717.png]]
578
579
580 (% style="color:blue" %)**Step 5: **(%%)add payload decode
581
582 [[image:1675145051360-659.png]]
583
584
585 [[image:1675145060812-420.png]]
586
587
588 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
589
590
591 [[image:1675145081239-376.png]]
592
593
594 == 2.6 Datalog Feature (Since V1.1) ==
595
596 When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot.
597
598
599
600 === 2.6.1 Unix TimeStamp ===
601
602 CPL01 uses Unix TimeStamp format based on
603
604 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861618065-927.png?width=705&height=109&rev=1.1||alt="1652861618065-927.png" height="109" width="705"]]
605
606 Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
607
608 Below is the converter example:
609
610 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861637105-371.png?width=732&height=428&rev=1.1||alt="1652861637105-371.png"]]
611
612
613 === 2.6.2 Set Device Time ===
614
615 There are two ways to set the device's time:
616
617
618 (% style="color:blue" %)**1. Through LoRaWAN MAC Command (Default settings)**
619
620 Users need to set SYNCMOD=1 to enable sync time via the MAC command.
621
622 Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
623
624
625 (% style="color:red" %)**Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.**
626
627
628 (% style="color:blue" %)** 2. Manually Set Time**
629
630 Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
631
632
633 === 2.6.3 Poll sensor value ===
634
635 Users can poll sensor values based on timestamps. Below is the downlink command.
636
637 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
638 |=(% colspan="4" style="width: 154px;background-color:#4F81BD;color:white" %)**Downlink Command to poll Open/Close status (0x31)**
639 |(% style="background-color:#f2f2f2; width:70px" %)**1byte**|(% style="background-color:#f2f2f2; width:140px" %)**4bytes**|(% style="background-color:#f2f2f2; width:140px" %)(((
640 (((
641 **4bytes**
642 )))
643
644
645 )))|(% style="background-color:#f2f2f2; width:150px" %)**1byte**
646 |(% style="background-color:#f2f2f2; width:70px" %)31|(% style="background-color:#f2f2f2; width:140px" %)Timestamp start|(% style="background-color:#f2f2f2; width:140px" %)Timestamp end|(% style="background-color:#f2f2f2; width:150px" %)Uplink Interval
647
648 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
649
650 For example, downlink command[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
651
652 Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
653
654 Uplink Internal =5s,means CPL01 will send one packet every 5s. range 5~~255s.
655
656
657 === 2.6.4 Decoder in TTN V3 ===
658
659 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
660
661 Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
662
663
664
665 == 2.7 Frequency Plans ==
666
667
668 The PS-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
669
670 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/a>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
671
672
673 == 2.8 Report on Change Feature (Since firmware V1.1.2) ==
674
675
676 === 2.8.1 Uplink payload(Enable ROC) ===
677
678
679 Used to Monitor the IDC and VDC increments, and send ROC uplink when the IDC or VDC changes exceed.
680
681 With ROC enabled, the payload is as follows:
682
683 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
684 |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
685 **Size(bytes)**
686 )))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
687 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
688 [[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag
689 )))
690
691 (% style="color:blue" %)**IN1 &IN2 , Interrupt  flag , ROC_flag:**
692
693 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
694 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bit)**|(% style="background-color:#4f81bd; color:white; width:60px" %)**bit7**|(% style="background-color:#4f81bd; color:white; width:62px" %)**bit6**|(% style="background-color:#4f81bd; color:white; width:62px" %)**bit5**|(% style="background-color:#4f81bd; color:white; width:65px" %)**bit4**|(% style="background-color:#4f81bd; color:white; width:56px" %)**bit3**|(% style="background-color:#4f81bd; color:white; width:55px" %)**bit2**|(% style="background-color:#4f81bd; color:white; width:55px" %)**bit1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**bit0**
695 |(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status
696
697 * (% style="color:#037691" %)**IDC_Roc_flagL**
698
699 80 (H): (0x80&0x80)=80(H)=**1**000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
700
701 60 (H): (0x60&0x80)=0  bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
702
703
704 * (% style="color:#037691" %)**IDC_Roc_flagH**
705
706 60 (H): (0x60&0x40)=60(H)=0**1**000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
707
708 80 (H): (0x80&0x40)=0  bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
709
710
711 * (% style="color:#037691" %)**VDC_Roc_flagL**
712
713 20 (H): (0x20&0x20)=20(H)=00**1**0 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
714
715 90 (H): (0x90&0x20)=0  bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
716
717
718 * (% style="color:#037691" %)**VDC_Roc_flagH**
719
720 90 (H): (0x90&0x10)=10(H)=000**1** 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
721
722 20 (H): (0x20&0x10)=0  bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
723
724
725 * (% style="color:#037691" %)**IN1_pin_level & IN2_pin_level**
726
727 IN1 and IN2 are used as digital input pins.
728
729 80 (H): (0x80&0x08)=0  IN1 pin is low level.
730
731 80 (H): (0x09&0x04)=0    IN2 pin is low level.
732
733
734 * (% style="color:#037691" %)**Exti_pin_level &Exti_status**
735
736 This data field shows whether the packet is generated by an interrupt pin.
737
738 Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the **GPIO_EXTI** pin.
739
740 **Exti_pin_level:**  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
741
742 **Exti_status: **80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
743
744
745 === 2.8.2 Set the Report on Change ===
746
747
748 Feature: Set the detection interval and threshold to monitor whether the IDC/VDC variable exceeds the threshold. If the threshold is exceeded, an ROC uplink is sent.
749 (% style="color:blue" %)**AT Command: AT+ROC**
750
751 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
752 |=(% style="width: 143px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)**Parameters**|=(% style="width: 170px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation**
753 |(% style="width:143px" %)AT+ROC=?|(% style="width:197px" %)Show current ROC setting|(% style="width:168px" %)(((
754 0,0,0,0(default)
755
756 OK
757 )))
758 |(% colspan="1" rowspan="4" style="width:143px" %)(((
759
760
761
762
763 AT+ROC=a,b,c,d
764 )))|(% style="width:197px" %)**a**: Enable or disable the ROC|(% style="width:168px" %)(((
765 0: off
766
767 1: on
768 )))
769 |(% style="width:197px" %)**b**: Set the detection interval|(% style="width:168px" %)Unit: second
770 |(% style="width:197px" %)**c**: Setting the IDC change threshold|(% style="width:168px" %)Unit: uA
771 |(% style="width:197px" %)**d**: Setting the VDC change threshold|(% style="width:168px" %)Unit: mV
772
773 **Example:**
774
775 * AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink.
776 * AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink. 0 Means doesn't monitor Voltage.
777
778 (% style="color:blue" %)**Downlink Command: 0x09 aa bb cc dd**
779
780 Format: Function code (0x09) followed by 4 bytes.
781
782 (% style="color:blue" %)**aa: **(%%)Enable/Disable the ROC.
783
784 (% style="color:blue" %)**bb: **(%%)Set the detection interval. (second)
785
786 (% style="color:blue" %)**cc: **(%%)Setting the IDC change threshold. (uA)
787
788 (% style="color:blue" %)**dd: **(%%)Setting the VDC change threshold. (mV)
789
790 **Example:**
791
792 * Downlink Payload: **09 01 00 3C 0B B8 01 F4 ** ~/~/Equal to AT+ROC=1,60,3000, 500
793 * Downlink Payload: **09 01 00 3C 0B B8 00 00 ** ~/~/AT+ROC=1,60,3000,0
794
795 (% style="color:blue" %)**Screenshot of parsing example in TTN:**
796
797 * AT+ROC=1,60,3000, 500.
798
799 [[image:image-20241019170902-1.png||height="450" width="1454"]]
800
801
802 == 2.9 ​Firmware Change Log ==
803
804
805 **Firmware download link:**
806
807 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
808
809
810 = 3. Configure PS-LB/LS =
811
812 == 3.1 Configure Methods ==
813
814
815 PS-LB/LS supports below configure method:
816
817 * AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
818 * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
819 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
820
821 == 3.2 General Commands ==
822
823
824 These commands are to configure:
825
826 * General system settings like: uplink interval.
827 * LoRaWAN protocol & radio related command.
828
829 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
830
831 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
832
833
834 == 3.3 Commands special design for PS-LB/LS ==
835
836
837 These commands only valid for PS-LB/LS, as below:
838
839
840 === 3.3.1 Set Transmit Interval Time ===
841
842
843 Feature: Change LoRaWAN End Node Transmit Interval.
844
845 (% style="color:blue" %)**AT Command: AT+TDC**
846
847 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
848 |=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Response**
849 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
850 30000
851 OK
852 the interval is 30000ms = 30s
853 )))
854 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
855 OK
856 Set transmit interval to 60000ms = 60 seconds
857 )))
858
859 (% style="color:blue" %)**Downlink Command: 0x01**
860
861 Format: Command Code (0x01) followed by 3 bytes time value.
862
863 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
864
865 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
866 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
867
868 === 3.3.2 Set Interrupt Mode ===
869
870
871 Feature, Set Interrupt mode for GPIO_EXIT.
872
873 (% style="color:blue" %)**AT Command: AT+INTMOD**
874
875 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
876 |=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Response**
877 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
878 0
879 OK
880 the mode is 0 =Disable Interrupt
881 )))
882 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
883 Set Transmit Interval
884 0. (Disable Interrupt),
885 ~1. (Trigger by rising and falling edge)
886 2. (Trigger by falling edge)
887 3. (Trigger by rising edge)
888 )))|(% style="background-color:#f2f2f2; width:157px" %)OK
889
890 (% style="color:blue" %)**Downlink Command: 0x06**
891
892 Format: Command Code (0x06) followed by 3 bytes.
893
894 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
895
896 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
897 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
898
899 === 3.3.3 Set the output time ===
900
901
902 Feature, Control the output 3V3 , 5V or 12V.
903
904 (% style="color:blue" %)**AT Command: AT+3V3T**
905
906 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
907 |=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 201px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
908 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
909 0
910 OK
911 )))
912 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
913 OK
914 default setting
915 )))
916 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
917 OK
918 )))
919 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
920 OK
921 )))
922
923 (% style="color:blue" %)**AT Command: AT+5VT**
924
925 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
926 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
927 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
928 0
929 OK
930 )))
931 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
932 OK
933 default setting
934 )))
935 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
936 OK
937 )))
938 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
939 OK
940 )))
941
942 (% style="color:blue" %)**AT Command: AT+12VT**
943
944 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
945 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 199px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
946 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
947 0
948 OK
949 )))
950 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
951 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
952 OK
953 )))
954
955 (% style="color:blue" %)**Downlink Command: 0x07**
956
957 Format: Command Code (0x07) followed by 3 bytes.
958
959 The first byte is which power, the second and third bytes are the time to turn on.
960
961 * Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
962 * Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
963 * Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
964 * Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
965 * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
966 * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
967
968 === 3.3.4 Set the Probe Model ===
969
970
971 Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
972
973 (% style="color:blue" %)**AT Command: AT** **+PROBE**
974
975 AT+PROBE=aabb
976
977 When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
978
979 When aa=01, it is the pressure mode, which converts the current into a pressure value;
980
981 bb represents which type of pressure sensor it is.
982
983 (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
984
985 When aa=02, it is the Differential Pressure Sensor , which converts the current into a pressure value;
986
987 bb represents which type of pressure sensor it is.
988
989 (0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C)
990
991 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
992 |(% style="background-color:#4f81bd; color:white; width:154px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:269px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
993 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
994 OK
995 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
996 |(% style="background-color:#f2f2f2; width:154px" %)(((
997 AT+PROBE=000A
998 )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
999 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
1000 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
1001 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
1002
1003 (% style="color:blue" %)**Downlink Command: 0x08**
1004
1005 Format: Command Code (0x08) followed by 2 bytes.
1006
1007 * Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
1008 * Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
1009
1010 === 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
1011
1012
1013 Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time.
1014
1015 (% style="color:blue" %)**AT Command: AT** **+STDC**
1016
1017 AT+STDC=aa,bb,bb
1018
1019 (% style="color:#037691" %)**aa:**(%%)
1020 **0:** means disable this function and use TDC to send packets.
1021 **1:** means that the function is enabled to send packets by collecting VDC data for multiple times.
1022 **2:** means that the function is enabled to send packets by collecting IDC data for multiple times.
1023 (% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
1024 (% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
1025
1026 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1027 |(% style="background-color:#4f81bd; color:white; width:160px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:215px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1028 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
1029 OK
1030 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1031 Attention:Take effect after ATZ
1032
1033 OK
1034 )))
1035 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
1036 Use the TDC interval to send packets.(default)
1037
1038
1039 )))|(% style="background-color:#f2f2f2" %)(((
1040 Attention:Take effect after ATZ
1041
1042 OK
1043 )))
1044
1045 (% style="color:blue" %)**Downlink Command: 0xAE**
1046
1047 Format: Command Code (0xAE) followed by 4 bytes.
1048
1049 * Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
1050
1051 = 4. Battery & Power Consumption =
1052
1053
1054 PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1055
1056 [[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1057
1058
1059 = 5. OTA firmware update =
1060
1061
1062 Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1063
1064
1065 = 6. FAQ =
1066
1067 == 6.1 How to use AT Command via UART to access device? ==
1068
1069
1070 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1071
1072
1073 == 6.2 How to update firmware via UART port? ==
1074
1075
1076 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1077
1078
1079 == 6.3 How to change the LoRa Frequency Bands/Region? ==
1080
1081
1082 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
1083 When downloading the images, choose the required image file for download. ​
1084
1085
1086 == 6.4 How to measure the depth of other liquids other than water? ==
1087
1088
1089 Test the current values at the depth of different liquids and convert them to a linear scale.
1090 Replace its ratio with the ratio of water to current in the decoder.
1091
1092 **Example:**
1093
1094 Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
1095
1096 **Calculate scale factor:**
1097 Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
1098
1099 **Calculation formula:**
1100
1101 Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
1102
1103 **Actual calculations:**
1104
1105 Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
1106
1107 **Error:**
1108
1109 0.009810726
1110
1111
1112 [[image:image-20240329175044-1.png]]
1113
1114 = 7. Troubleshooting =
1115
1116 == 7.1 Water Depth Always shows 0 in payload ==
1117
1118
1119 If your device's IDC_intput_mA is normal, but your reading always shows 0, please refer to the following points:
1120
1121 ~1. Please set it to mod1
1122
1123 2. Please set the command [[AT+PROBE>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB%20--%20LoRaWAN%20Pressure%20Sensor/#H3.3.4SettheProbeModel]] according to the model of your sensor
1124
1125 3. Check the connection status of the sensor
1126
1127
1128 = 8. Order Info =
1129
1130
1131 [[image:image-20240109172423-7.png]](% style="display:none" %)
1132
1133 [[image:image-20240817150702-1.png]]
1134
1135 = 9. ​Packing Info =
1136
1137
1138 (% style="color:#037691" %)**Package Includes**:
1139
1140 * PS-LB or PS-LS LoRaWAN Pressure Sensor
1141
1142 (% style="color:#037691" %)**Dimension and weight**:
1143
1144 * Device Size: cm
1145 * Device Weight: g
1146 * Package Size / pcs : cm
1147 * Weight / pcs : g
1148
1149 = 10. Support =
1150
1151
1152 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1153
1154 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0