Show last authors
1
2
3
4 (% style="text-align:center" %)
5 [[image:image-20240109154731-4.png||height="671" width="945"]]
6
7
8
9
10
11
12
13 **Table of Contents :**
14
15 {{toc/}}
16
17
18
19
20
21
22 = 1. Introduction =
23
24 == 1.1 What is LoRaWAN Pressure Sensor ==
25
26
27 (((
28 The Dragino PS-LB/LS series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB/LS can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
29 )))
30
31 (((
32 The PS-LB/LS series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
33 )))
34
35 (((
36 The LoRa wireless technology used in PS-LB/LS allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
37 )))
38
39 (((
40 PS-LB/LS supports BLE configure and wireless OTA update which make user easy to use.
41 )))
42
43 (((
44 PS-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + li-on battery **(%%), it is designed for long term use up to 5 years.
45 )))
46
47 (((
48 Each PS-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
49 )))
50
51 [[image:1675071321348-194.png]]
52
53
54 == 1.2 ​Features ==
55
56
57 * LoRaWAN 1.0.3 Class A
58 * Ultra-low power consumption
59 * Measure air / gas or water pressure
60 * Different pressure range available
61 * Thread Installation Type or Immersion Type
62 * Monitor Battery Level
63 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
64 * Support Bluetooth v5.1 and LoRaWAN remote configure
65 * Support wireless OTA update firmware
66 * Uplink on periodically
67 * Downlink to change configure
68 * Controllable 3.3v,5v and 12v output to power external sensor
69 * 8500mAh Li/SOCl2 Battery (PS-LB)
70 * Solar panel + 3000mAh Li-on battery (PS-LS)
71
72 == 1.3 Specification ==
73
74
75 (% style="color:#037691" %)**Micro Controller:**
76
77 * MCU: 48Mhz ARM
78 * Flash: 256KB
79 * RAM: 64KB
80
81 (% style="color:#037691" %)**Common DC Characteristics:**
82
83 * Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
84 * Operating Temperature: -40 ~~ 85°C
85
86 (% style="color:#037691" %)**LoRa Spec:**
87
88 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz,Band 2 (LF): 410 ~~ 528 Mhz
89 * Max +22 dBm constant RF output vs.
90 * RX sensitivity: down to -139 dBm.
91 * Excellent blocking immunity
92
93 (% style="color:#037691" %)**Current Input Measuring :**
94
95 * Range: 0 ~~ 20mA
96 * Accuracy: 0.02mA
97 * Resolution: 0.001mA
98
99 (% style="color:#037691" %)**Voltage Input Measuring:**
100
101 * Range: 0 ~~ 30v
102 * Accuracy: 0.02v
103 * Resolution: 0.001v
104
105 (% style="color:#037691" %)**Battery:**
106
107 * Li/SOCI2 un-chargeable battery
108 * Capacity: 8500mAh
109 * Self-Discharge: <1% / Year @ 25°C
110 * Max continuously current: 130mA
111 * Max boost current: 2A, 1 second
112
113 (% style="color:#037691" %)**Power Consumption**
114
115 * Sleep Mode: 5uA @ 3.3v
116 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
117
118 == 1.4 Probe Types ==
119
120 === 1.4.1 Thread Installation Type ===
121
122
123 [[image:1675071448299-229.png]]
124
125 * Hersman Pressure Transmitter
126 * Measuring Range: -0.1 ~~ 0 ~~ 60MPa, see order info.
127 * Accuracy: 0.2% F.S
128 * Long-Term Stability: 0.2% F.S ±0.05%
129 * Overload 200% F.S
130 * Zero Temperature Drift: 0.03% FS/℃(≤100Kpa), 0.02%FS/℃(>100Kpa)
131 * FS Temperature Drift: 0.003% FS/℃(≤100Kpa), 0.002%FS/℃(>100Kpa)
132 * Storage temperature: -30℃~~80℃
133 * Operating temperature: -20℃~~60℃
134 * Connector Type: Various Types, see order info
135
136 === 1.4.2 Immersion Type ===
137
138
139 [[image:image-20240109160445-5.png||height="284" width="214"]]
140
141 * Immersion Type, Probe IP Level: IP68
142 * Measuring Range: Measure range can be customized, up to 100m.
143 * Accuracy: 0.2% F.S
144 * Long-Term Stability: ±0.2% F.S / Year
145 * Storage temperature: -30℃~~80℃
146 * Operating temperature: 0℃~~50℃
147 * Material: 316 stainless steels
148
149
150 === 1.4.3 Wireless Differential Air Pressure Sensor ===
151
152 [[image:image-20240511174954-1.png]]
153
154 * Measuring Range: -100KPa~~0~~100KPa,Intermediate range is optional.
155 * Accuracy: 0.5% F.S, resolution is 0.05%.
156 * Overload: 300% F.S
157 * Zero temperature drift: ±0.03%F.S/°C
158 * Operating temperature: -40℃~~85℃
159 * Compensation temperature: 0~~50°C
160
161
162
163 == 1.5 Application and Installation ==
164
165 === 1.5.1 Thread Installation Type ===
166
167
168 (% style="color:blue" %)**Application:**
169
170 * Hydraulic Pressure
171 * Petrochemical Industry
172 * Health and Medical
173 * Food & Beverage Processing
174 * Auto-controlling house
175 * Constant Pressure Water Supply
176 * Liquid Pressure measuring
177
178 Order the suitable thread size and install to measure the air / liquid pressure
179
180 [[image:1675071670469-145.png]]
181
182
183 === 1.5.2 Immersion Type ===
184
185
186 (% style="color:blue" %)**Application:**
187
188 Liquid & Water Pressure / Level detect.
189
190 [[image:1675071725288-579.png]]
191
192
193 The Immersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.
194
195 The Immersion Type Sensor has different variant which defined by Ixx. For example, this means two points:
196
197 * Cable Length: 10 Meters
198 * Water Detect Range: 0 ~~ 10 Meters.
199
200 [[image:1675071736646-450.png]]
201
202
203 [[image:1675071776102-240.png]]
204
205
206 == 1.6 Sleep mode and working mode ==
207
208
209 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
210
211 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
212
213
214 == 1.7 Button & LEDs ==
215
216
217 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]](% style="display:none" %)
218
219 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
220 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
221 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
222 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
223 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
224 )))
225 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
226 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
227 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
228 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
229 )))
230 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
231
232 == 1.8 Pin Mapping ==
233
234
235 [[image:1675072568006-274.png]]
236
237
238 == 1.9 BLE connection ==
239
240
241 PS-LB/LS support BLE remote configure.
242
243
244 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
245
246 * Press button to send an uplink
247 * Press button to active device.
248 * Device Power on or reset.
249
250 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
251
252
253 == 1.10 Mechanical ==
254
255 === 1.10.1 for LB version(% style="display:none" %) (%%) ===
256
257
258 [[image:image-20240109160800-6.png]]
259
260
261 === 1.10.2 for LS version ===
262
263
264 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/WebHome/image-20231231203439-3.png?width=886&height=385&rev=1.1||alt="image-20231231203439-3.png"]]
265
266
267 = 2. Configure PS-LB/LS to connect to LoRaWAN network =
268
269 == 2.1 How it works ==
270
271
272 The PS-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
273
274
275 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
276
277
278 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
279
280
281 [[image:1675144005218-297.png]]
282
283
284 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
285
286
287 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB/LS.
288
289 Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
290
291 [[image:image-20230426085320-1.png||height="234" width="504"]]
292
293
294 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
295
296
297 (% style="color:blue" %)**Register the device**
298
299 [[image:1675144099263-405.png]]
300
301
302 (% style="color:blue" %)**Add APP EUI and DEV EUI**
303
304 [[image:1675144117571-832.png]]
305
306
307 (% style="color:blue" %)**Add APP EUI in the application**
308
309
310 [[image:1675144143021-195.png]]
311
312
313 (% style="color:blue" %)**Add APP KEY**
314
315 [[image:1675144157838-392.png]]
316
317 (% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB/LS
318
319
320 Press the button for 5 seconds to activate the PS-LB/LS.
321
322 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
323
324 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
325
326
327 == 2.3 ​Uplink Payload ==
328
329 === 2.3.1 Device Status, FPORT~=5 ===
330
331
332 Include device configure status. Once PS-LB/LS Joined the network, it will uplink this message to the server.
333
334 Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
335
336
337 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
338 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
339 |(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
340 |(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
341
342 Example parse in TTNv3
343
344 [[image:1675144504430-490.png]]
345
346
347 (% style="color:#037691" %)**Sensor Model**(%%): For PS-LB/LS, this value is 0x16
348
349 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
350
351 (% style="color:#037691" %)**Frequency Band**:
352
353 *0x01: EU868
354
355 *0x02: US915
356
357 *0x03: IN865
358
359 *0x04: AU915
360
361 *0x05: KZ865
362
363 *0x06: RU864
364
365 *0x07: AS923
366
367 *0x08: AS923-1
368
369 *0x09: AS923-2
370
371 *0x0a: AS923-3
372
373 *0x0b: CN470
374
375 *0x0c: EU433
376
377 *0x0d: KR920
378
379 *0x0e: MA869
380
381
382 (% style="color:#037691" %)**Sub-Band**:
383
384 AU915 and US915:value 0x00 ~~ 0x08
385
386 CN470: value 0x0B ~~ 0x0C
387
388 Other Bands: Always 0x00
389
390
391 (% style="color:#037691" %)**Battery Info**:
392
393 Check the battery voltage.
394
395 Ex1: 0x0B45 = 2885mV
396
397 Ex2: 0x0B49 = 2889mV
398
399
400 === 2.3.2 Sensor value, FPORT~=2 ===
401
402
403 Uplink payload includes in total 9 bytes.
404
405
406 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
407 |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
408 **Size(bytes)**
409 )))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
410 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
411
412 [[image:1675144608950-310.png]]
413
414
415 === 2.3.3 Battery Info ===
416
417
418 Check the battery voltage for PS-LB/LS.
419
420 Ex1: 0x0B45 = 2885mV
421
422 Ex2: 0x0B49 = 2889mV
423
424
425 === 2.3.4 Probe Model ===
426
427
428 PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
429
430
431 **For example.**
432
433 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
434 |(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
435 |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
436 |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
437 |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
438
439 The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
440
441
442 === 2.3.5 0~~20mA value (IDC_IN) ===
443
444
445 The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
446
447 (% style="color:#037691" %)**Example**:
448
449 27AE(H) = 10158 (D)/1000 = 10.158mA.
450
451
452 Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
453
454 [[image:image-20230225154759-1.png||height="408" width="741"]]
455
456
457 === 2.3.6 0~~30V value ( pin VDC_IN) ===
458
459
460 Measure the voltage value. The range is 0 to 30V.
461
462 (% style="color:#037691" %)**Example**:
463
464 138E(H) = 5006(D)/1000= 5.006V
465
466
467 === 2.3.7 IN1&IN2&INT pin ===
468
469
470 IN1 and IN2 are used as digital input pins.
471
472 (% style="color:#037691" %)**Example**:
473
474 09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
475
476 09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
477
478
479 This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
480
481 (% style="color:#037691" %)**Example:**
482
483 09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
484
485 09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
486
487 0x01: Interrupt Uplink Packet.
488
489
490 === 2.3.8 Sensor value, FPORT~=7 ===
491
492
493 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
494 |(% style="background-color:#4f81bd; color:white; width:65px" %)(((
495 **Size(bytes)**
496 )))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
497 |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
498 Voltage value, each 2 bytes is a set of voltage values.
499 )))
500
501 [[image:image-20230220171300-1.png||height="207" width="863"]]
502
503 Multiple sets of data collected are displayed in this form:
504
505 [voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
506
507
508 === 2.3.9 ​Decode payload in The Things Network ===
509
510
511 While using TTN network, you can add the payload format to decode the payload.
512
513
514 [[image:1675144839454-913.png]]
515
516
517 PS-LB/LS TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
518
519
520 == 2.4 Uplink Interval ==
521
522
523 The PS-LB/LS by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
524
525
526 == 2.5 Show Data in DataCake IoT Server ==
527
528
529 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
530
531
532 (% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
533
534 (% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
535
536
537 [[image:1675144951092-237.png]]
538
539
540 [[image:1675144960452-126.png]]
541
542
543 (% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
544
545 (% style="color:blue" %)**Step 4:** (%%)Create PS-LB/LS product.
546
547 [[image:1675145004465-869.png]]
548
549
550 [[image:1675145018212-853.png]]
551
552
553
554 [[image:1675145029119-717.png]]
555
556
557 (% style="color:blue" %)**Step 5: **(%%)add payload decode
558
559 [[image:1675145051360-659.png]]
560
561
562 [[image:1675145060812-420.png]]
563
564
565 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
566
567
568 [[image:1675145081239-376.png]]
569
570
571 == 2.6 Frequency Plans ==
572
573
574 The PS-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
575
576 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
577
578
579 == 2.7 ​Firmware Change Log ==
580
581
582 **Firmware download link:**
583
584 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
585
586
587 = 3. Configure PS-LB/LS =
588
589 == 3.1 Configure Methods ==
590
591
592 PS-LB/LS supports below configure method:
593
594 * AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
595 * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
596 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
597
598 == 3.2 General Commands ==
599
600
601 These commands are to configure:
602
603 * General system settings like: uplink interval.
604 * LoRaWAN protocol & radio related command.
605
606 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
607
608 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
609
610
611 == 3.3 Commands special design for PS-LB/LS ==
612
613
614 These commands only valid for PS-LB/LS, as below:
615
616
617 === 3.3.1 Set Transmit Interval Time ===
618
619
620 Feature: Change LoRaWAN End Node Transmit Interval.
621
622 (% style="color:blue" %)**AT Command: AT+TDC**
623
624 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
625 |=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Response**
626 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
627 30000
628 OK
629 the interval is 30000ms = 30s
630 )))
631 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
632 OK
633 Set transmit interval to 60000ms = 60 seconds
634 )))
635
636 (% style="color:blue" %)**Downlink Command: 0x01**
637
638 Format: Command Code (0x01) followed by 3 bytes time value.
639
640 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
641
642 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
643 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
644
645 === 3.3.2 Set Interrupt Mode ===
646
647
648 Feature, Set Interrupt mode for GPIO_EXIT.
649
650 (% style="color:blue" %)**AT Command: AT+INTMOD**
651
652 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
653 |=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Response**
654 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
655 0
656 OK
657 the mode is 0 =Disable Interrupt
658 )))
659 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
660 Set Transmit Interval
661 0. (Disable Interrupt),
662 ~1. (Trigger by rising and falling edge)
663 2. (Trigger by falling edge)
664 3. (Trigger by rising edge)
665 )))|(% style="background-color:#f2f2f2; width:157px" %)OK
666
667 (% style="color:blue" %)**Downlink Command: 0x06**
668
669 Format: Command Code (0x06) followed by 3 bytes.
670
671 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
672
673 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
674 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
675
676 === 3.3.3 Set the output time ===
677
678
679 Feature, Control the output 3V3 , 5V or 12V.
680
681 (% style="color:blue" %)**AT Command: AT+3V3T**
682
683 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
684 |=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 201px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
685 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
686 0
687 OK
688 )))
689 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
690 OK
691 default setting
692 )))
693 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
694 OK
695 )))
696 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
697 OK
698 )))
699
700 (% style="color:blue" %)**AT Command: AT+5VT**
701
702 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
703 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
704 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
705 0
706 OK
707 )))
708 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
709 OK
710 default setting
711 )))
712 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
713 OK
714 )))
715 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
716 OK
717 )))
718
719 (% style="color:blue" %)**AT Command: AT+12VT**
720
721 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
722 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 199px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
723 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
724 0
725 OK
726 )))
727 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
728 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
729 OK
730 )))
731
732 (% style="color:blue" %)**Downlink Command: 0x07**
733
734 Format: Command Code (0x07) followed by 3 bytes.
735
736 The first byte is which power, the second and third bytes are the time to turn on.
737
738 * Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
739 * Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
740 * Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
741 * Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
742 * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
743 * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
744
745 === 3.3.4 Set the Probe Model ===
746
747
748 Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
749
750 (% style="color:blue" %)**AT Command: AT** **+PROBE**
751
752 AT+PROBE=aabb
753
754 When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
755
756 When aa=01, it is the pressure mode, which converts the current into a pressure value;
757
758 bb represents which type of pressure sensor it is.
759
760 (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
761
762 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
763 |(% style="background-color:#4f81bd; color:white; width:154px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:269px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
764 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
765 OK
766 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
767 |(% style="background-color:#f2f2f2; width:154px" %)(((
768 AT+PROBE=000A
769 )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
770 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
771 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
772 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
773
774 (% style="color:blue" %)**Downlink Command: 0x08**
775
776 Format: Command Code (0x08) followed by 2 bytes.
777
778 * Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
779 * Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
780
781 === 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
782
783
784 Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
785
786 (% style="color:blue" %)**AT Command: AT** **+STDC**
787
788 AT+STDC=aa,bb,bb
789
790 (% style="color:#037691" %)**aa:**(%%)
791 **0:** means disable this function and use TDC to send packets.
792 **1:** means enable this function, use the method of multiple acquisitions to send packets.
793 (% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
794 (% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
795
796 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
797 |(% style="background-color:#4f81bd; color:white; width:160px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:215px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
798 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
799 OK
800 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
801 Attention:Take effect after ATZ
802
803 OK
804 )))
805 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
806 Use the TDC interval to send packets.(default)
807
808
809 )))|(% style="background-color:#f2f2f2" %)(((
810 Attention:Take effect after ATZ
811
812 OK
813 )))
814
815 (% style="color:blue" %)**Downlink Command: 0xAE**
816
817 Format: Command Code (0x08) followed by 5 bytes.
818
819 * Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
820
821 = 4. Battery & Power Consumption =
822
823
824 PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
825
826 [[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
827
828
829 = 5. OTA firmware update =
830
831
832 Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
833
834
835 = 6. FAQ =
836
837 == 6.1 How to use AT Command via UART to access device? ==
838
839
840 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
841
842
843 == 6.2 How to update firmware via UART port? ==
844
845
846 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
847
848
849 == 6.3 How to change the LoRa Frequency Bands/Region? ==
850
851
852 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
853 When downloading the images, choose the required image file for download. ​
854
855
856 == 6.4 How to measure the depth of other liquids other than water? ==
857
858
859 Test the current values at the depth of different liquids and convert them to a linear scale.
860 Replace its ratio with the ratio of water to current in the decoder.
861
862 **Example:**
863
864 Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
865
866 **Calculate scale factor:**
867 Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
868
869 **Calculation formula:**
870
871 Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
872
873 **Actual calculations:**
874
875 Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
876
877 **Error:**
878
879 0.009810726
880
881
882 [[image:image-20240329175044-1.png]]
883
884 = 7. Troubleshooting =
885
886 == 7.1 Water Depth Always shows 0 in payload ==
887
888
889 If your device's IDC_intput_mA is normal, but your reading always shows 0, please refer to the following points:
890
891 ~1. Please set it to mod1
892
893 2. Please set the command [[AT+PROBE>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB%20--%20LoRaWAN%20Pressure%20Sensor/#H3.3.4SettheProbeModel]] according to the model of your sensor
894
895 3. Check the connection status of the sensor
896
897
898 = 8. Order Info =
899
900
901 [[image:image-20240109172423-7.png]](% style="display:none" %)
902
903
904 = 9. ​Packing Info =
905
906
907 (% style="color:#037691" %)**Package Includes**:
908
909 * PS-LB or PS-LS LoRaWAN Pressure Sensor
910
911 (% style="color:#037691" %)**Dimension and weight**:
912
913 * Device Size: cm
914 * Device Weight: g
915 * Package Size / pcs : cm
916 * Weight / pcs : g
917
918 = 10. Support =
919
920
921 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
922
923 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].
924
925
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0