Version 72.1 by Xiaoling on 2024/01/09 16:08

Show last authors
1
2
3
4 (% style="text-align:center" %)
5 [[image:image-20240109154731-4.png||height="671" width="945"]]
6
7
8
9
10
11
12
13 **Table of Contents :**
14
15 {{toc/}}
16
17
18
19
20
21
22 = 1. Introduction =
23
24 == 1.1 What is LoRaWAN Pressure Sensor ==
25
26
27 (((
28 The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
29 )))
30
31 (((
32 The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
33 )))
34
35 (((
36 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
37 )))
38
39 (((
40 PS-LB supports BLE configure and wireless OTA update which make user easy to use.
41 )))
42
43 (((
44 PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
45 )))
46
47 (((
48 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
49 )))
50
51 [[image:1675071321348-194.png]]
52
53
54 == 1.2 ​Features ==
55
56
57 * LoRaWAN 1.0.3 Class A
58 * Ultra-low power consumption
59 * Measure air / gas or water pressure
60 * Different pressure range available
61 * Thread Installation Type or Immersion Type
62 * Monitor Battery Level
63 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
64 * Support Bluetooth v5.1 and LoRaWAN remote configure
65 * Support wireless OTA update firmware
66 * Uplink on periodically
67 * Downlink to change configure
68 * Controllable 3.3v,5v and 12v output to power external sensor
69 * 8500mAh Li/SOCl2 Battery (PS-LB)
70 * Solar panel + 3000mAh Li-on battery (PS-LS)
71
72 == 1.3 Specification ==
73
74
75 (% style="color:#037691" %)**Micro Controller:**
76
77 * MCU: 48Mhz ARM
78 * Flash: 256KB
79 * RAM: 64KB
80
81 (% style="color:#037691" %)**Common DC Characteristics:**
82
83 * Supply Voltage: 2.5v ~~ 3.6v
84 * Operating Temperature: -40 ~~ 85°C
85
86 (% style="color:#037691" %)**LoRa Spec:**
87
88 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz,Band 2 (LF): 410 ~~ 528 Mhz
89 * Max +22 dBm constant RF output vs.
90 * RX sensitivity: down to -139 dBm.
91 * Excellent blocking immunity
92
93 (% style="color:#037691" %)**Current Input Measuring :**
94
95 * Range: 0 ~~ 20mA
96 * Accuracy: 0.02mA
97 * Resolution: 0.001mA
98
99 (% style="color:#037691" %)**Voltage Input Measuring:**
100
101 * Range: 0 ~~ 30v
102 * Accuracy: 0.02v
103 * Resolution: 0.001v
104
105 (% style="color:#037691" %)**Battery:**
106
107 * Li/SOCI2 un-chargeable battery
108 * Capacity: 8500mAh
109 * Self-Discharge: <1% / Year @ 25°C
110 * Max continuously current: 130mA
111 * Max boost current: 2A, 1 second
112
113 (% style="color:#037691" %)**Power Consumption**
114
115 * Sleep Mode: 5uA @ 3.3v
116 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
117
118 == 1.4 Probe Types ==
119
120 === 1.4.1 Thread Installation Type ===
121
122
123 [[image:1675071448299-229.png]]
124
125 * Hersman Pressure Transmitter
126 * Measuring Range: -0.1 ~~ 0 ~~ 60MPa, see order info.
127 * Accuracy: 0.2% F.S
128 * Long-Term Stability: 0.2% F.S ±0.05%
129 * Overload 200% F.S
130 * Zero Temperature Drift: 0.03% FS/℃(≤100Kpa), 0.02%FS/℃(>100Kpa)
131 * FS Temperature Drift: 0.003% FS/℃(≤100Kpa), 0.002%FS/℃(>100Kpa)
132 * Storage temperature: -30℃~~80℃
133 * Operating temperature: -20℃~~60℃
134 * Connector Type: Various Types, see order info
135
136 === 1.4.2 Immersion Type ===
137
138
139 [[image:image-20240109160445-5.png||height="284" width="214"]]
140
141 * Immersion Type, Probe IP Level: IP68
142 * Measuring Range: Measure range can be customized, up to 100m.
143 * Accuracy: 0.2% F.S
144 * Long-Term Stability: ±0.2% F.S / Year
145 * Storage temperature: -30℃~~80℃
146 * Operating temperature: 0℃~~50℃
147 * Material: 316 stainless steels
148
149 == 1.5 Probe Dimension ==
150
151
152
153 == 1.6 Application and Installation ==
154
155 === 1.6.1 Thread Installation Type ===
156
157
158 (% style="color:blue" %)**Application:**
159
160 * Hydraulic Pressure
161 * Petrochemical Industry
162 * Health and Medical
163 * Food & Beverage Processing
164 * Auto-controlling house
165 * Constant Pressure Water Supply
166 * Liquid Pressure measuring
167
168 Order the suitable thread size and install to measure the air / liquid pressure
169
170 [[image:1675071670469-145.png]]
171
172
173 === 1.6.2 Immersion Type ===
174
175
176 (% style="color:blue" %)**Application:**
177
178 Liquid & Water Pressure / Level detect.
179
180 [[image:1675071725288-579.png]]
181
182
183 The Immersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.
184
185
186 [[image:1675071736646-450.png]]
187
188
189 [[image:1675071776102-240.png]]
190
191
192 == 1.7 Sleep mode and working mode ==
193
194
195 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
196
197 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
198
199
200 == 1.8 Button & LEDs ==
201
202
203 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]](% style="display:none" %)
204
205 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
206 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
207 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
208 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
209 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
210 )))
211 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
212 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
213 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
214 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
215 )))
216 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
217
218 == 1.9 Pin Mapping ==
219
220
221 [[image:1675072568006-274.png]]
222
223
224 == 1.10 BLE connection ==
225
226
227 PS-LB support BLE remote configure.
228
229
230 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
231
232 * Press button to send an uplink
233 * Press button to active device.
234 * Device Power on or reset.
235
236 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
237
238
239 == 1.11 Mechanical ==
240
241 === 1.11.1 for LB version(% style="display:none" %) (%%) ===
242
243
244 [[image:1675143884058-338.png]] [[image:1675143899218-599.png]]
245
246
247 [[image:1675143909447-639.png]]
248
249
250 = 2. Configure PS-LB to connect to LoRaWAN network =
251
252 == 2.1 How it works ==
253
254
255 The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
256
257
258 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
259
260
261 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
262
263
264 [[image:1675144005218-297.png]]
265
266
267 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
268
269
270 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
271
272 Each PS-LB is shipped with a sticker with the default device EUI as below:
273
274 [[image:image-20230426085320-1.png||height="234" width="504"]]
275
276
277 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
278
279
280 (% style="color:blue" %)**Register the device**
281
282 [[image:1675144099263-405.png]]
283
284
285 (% style="color:blue" %)**Add APP EUI and DEV EUI**
286
287 [[image:1675144117571-832.png]]
288
289
290 (% style="color:blue" %)**Add APP EUI in the application**
291
292
293 [[image:1675144143021-195.png]]
294
295
296 (% style="color:blue" %)**Add APP KEY**
297
298 [[image:1675144157838-392.png]]
299
300 (% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
301
302
303 Press the button for 5 seconds to activate the PS-LB.
304
305 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
306
307 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
308
309
310 == 2.3 ​Uplink Payload ==
311
312 === 2.3.1 Device Status, FPORT~=5 ===
313
314
315 Include device configure status. Once PS-LB Joined the network, it will uplink this message to the server.
316
317 Users can also use the downlink command(0x26 01) to ask PS-LB to resend this uplink.
318
319
320 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
321 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
322 |(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
323 |(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
324
325 Example parse in TTNv3
326
327 [[image:1675144504430-490.png]]
328
329
330 (% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
331
332 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
333
334 (% style="color:#037691" %)**Frequency Band**:
335
336 *0x01: EU868
337
338 *0x02: US915
339
340 *0x03: IN865
341
342 *0x04: AU915
343
344 *0x05: KZ865
345
346 *0x06: RU864
347
348 *0x07: AS923
349
350 *0x08: AS923-1
351
352 *0x09: AS923-2
353
354 *0x0a: AS923-3
355
356 *0x0b: CN470
357
358 *0x0c: EU433
359
360 *0x0d: KR920
361
362 *0x0e: MA869
363
364
365 (% style="color:#037691" %)**Sub-Band**:
366
367 AU915 and US915:value 0x00 ~~ 0x08
368
369 CN470: value 0x0B ~~ 0x0C
370
371 Other Bands: Always 0x00
372
373
374 (% style="color:#037691" %)**Battery Info**:
375
376 Check the battery voltage.
377
378 Ex1: 0x0B45 = 2885mV
379
380 Ex2: 0x0B49 = 2889mV
381
382
383 === 2.3.2 Sensor value, FPORT~=2 ===
384
385
386 Uplink payload includes in total 9 bytes.
387
388
389 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
390 |(% style="background-color:#d9e2f3; color:#0070c0; width:97px" %)(((
391 **Size(bytes)**
392 )))|(% style="background-color:#d9e2f3; color:#0070c0; width:48px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:71px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:98px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:73px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:122px" %)**1**
393 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
394
395 [[image:1675144608950-310.png]]
396
397
398 === 2.3.3 Battery Info ===
399
400
401 Check the battery voltage for PS-LB.
402
403 Ex1: 0x0B45 = 2885mV
404
405 Ex2: 0x0B49 = 2889mV
406
407
408 === 2.3.4 Probe Model ===
409
410
411 PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
412
413
414 **For example.**
415
416 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
417 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Part Number**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Probe Used**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4~~20mA scale**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Example: 12mA meaning**
418 |(% style="background-color:#f2f2f2" %)PS-LB-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
419 |(% style="background-color:#f2f2f2" %)PS-LB-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
420 |(% style="background-color:#f2f2f2" %)PS-LB-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
421
422 The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
423
424
425 === 2.3.5 0~~20mA value (IDC_IN) ===
426
427
428 The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
429
430 (% style="color:#037691" %)**Example**:
431
432 27AE(H) = 10158 (D)/1000 = 10.158mA.
433
434
435 Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
436
437 [[image:image-20230225154759-1.png||height="408" width="741"]]
438
439
440 === 2.3.6 0~~30V value ( pin VDC_IN) ===
441
442
443 Measure the voltage value. The range is 0 to 30V.
444
445 (% style="color:#037691" %)**Example**:
446
447 138E(H) = 5006(D)/1000= 5.006V
448
449
450 === 2.3.7 IN1&IN2&INT pin ===
451
452
453 IN1 and IN2 are used as digital input pins.
454
455 (% style="color:#037691" %)**Example**:
456
457 09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
458
459 09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
460
461
462 This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
463
464 (% style="color:#037691" %)**Example:**
465
466 09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
467
468 09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
469
470 0x01: Interrupt Uplink Packet.
471
472
473 === (% style="color:inherit; font-family:inherit; font-size:23px" %)2.3.8 Sensor value, FPORT~=7(%%) ===
474
475
476 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:508.222px" %)
477 |(% style="background-color:#d9e2f3; color:#0070c0; width:94px" %)(((
478 **Size(bytes)**
479 )))|(% style="background-color:#d9e2f3; color:#0070c0; width:43px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:367px" %)**n**
480 |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
481 Voltage value, each 2 bytes is a set of voltage values.
482 )))
483
484 [[image:image-20230220171300-1.png||height="207" width="863"]]
485
486 Multiple sets of data collected are displayed in this form:
487
488 [voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
489
490
491 === 2.3.9 ​Decode payload in The Things Network ===
492
493
494 While using TTN network, you can add the payload format to decode the payload.
495
496
497 [[image:1675144839454-913.png]]
498
499
500 PS-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
501
502
503 == 2.4 Uplink Interval ==
504
505
506 The PS-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
507
508
509 == 2.5 Show Data in DataCake IoT Server ==
510
511
512 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
513
514
515 (% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
516
517 (% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
518
519
520 [[image:1675144951092-237.png]]
521
522
523 [[image:1675144960452-126.png]]
524
525
526 (% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
527
528 (% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
529
530 [[image:1675145004465-869.png]]
531
532
533 [[image:1675145018212-853.png]]
534
535
536
537 [[image:1675145029119-717.png]]
538
539
540 (% style="color:blue" %)**Step 5: **(%%)add payload decode
541
542 [[image:1675145051360-659.png]]
543
544
545 [[image:1675145060812-420.png]]
546
547
548 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
549
550
551 [[image:1675145081239-376.png]]
552
553
554 == 2.6 Frequency Plans ==
555
556
557 The PS-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
558
559 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
560
561
562 == 2.7 ​Firmware Change Log ==
563
564
565 **Firmware download link:**
566
567 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
568
569
570 = 3. Configure PS-LB =
571
572 == 3.1 Configure Methods ==
573
574
575 PS-LB supports below configure method:
576
577 * AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
578 * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
579 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
580
581 == 3.2 General Commands ==
582
583
584 These commands are to configure:
585
586 * General system settings like: uplink interval.
587 * LoRaWAN protocol & radio related command.
588
589 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
590
591 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
592
593
594 == 3.3 Commands special design for PS-LB ==
595
596
597 These commands only valid for PS-LB, as below:
598
599
600 === 3.3.1 Set Transmit Interval Time ===
601
602
603 Feature: Change LoRaWAN End Node Transmit Interval.
604
605 (% style="color:blue" %)**AT Command: AT+TDC**
606
607 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
608 |=(% style="width: 160px; background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 160px; background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Response**
609 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
610 30000
611 OK
612 the interval is 30000ms = 30s
613 )))
614 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
615 OK
616 Set transmit interval to 60000ms = 60 seconds
617 )))
618
619 (% style="color:blue" %)**Downlink Command: 0x01**
620
621 Format: Command Code (0x01) followed by 3 bytes time value.
622
623 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
624
625 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
626 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
627
628 === 3.3.2 Set Interrupt Mode ===
629
630
631 Feature, Set Interrupt mode for GPIO_EXIT.
632
633 (% style="color:blue" %)**AT Command: AT+INTMOD**
634
635 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
636 |=(% style="width: 154px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Response**
637 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
638 0
639 OK
640 the mode is 0 =Disable Interrupt
641 )))
642 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
643 Set Transmit Interval
644 0. (Disable Interrupt),
645 ~1. (Trigger by rising and falling edge)
646 2. (Trigger by falling edge)
647 3. (Trigger by rising edge)
648 )))|(% style="background-color:#f2f2f2; width:157px" %)OK
649
650 (% style="color:blue" %)**Downlink Command: 0x06**
651
652 Format: Command Code (0x06) followed by 3 bytes.
653
654 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
655
656 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
657 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
658
659 === 3.3.3 Set the output time ===
660
661
662 Feature, Control the output 3V3 , 5V or 12V.
663
664 (% style="color:blue" %)**AT Command: AT+3V3T**
665
666 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
667 |=(% style="width: 154px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 201px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 119px;background-color:#D9E2F3;color:#0070C0" %)**Response**
668 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
669 0
670 OK
671 )))
672 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
673 OK
674 default setting
675 )))
676 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
677 OK
678 )))
679 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
680 OK
681 )))
682
683 (% style="color:blue" %)**AT Command: AT+5VT**
684
685 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
686 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 119px;background-color:#D9E2F3;color:#0070C0" %)**Response**
687 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
688 0
689 OK
690 )))
691 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
692 OK
693 default setting
694 )))
695 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
696 OK
697 )))
698 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
699 OK
700 )))
701
702 (% style="color:blue" %)**AT Command: AT+12VT**
703
704 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
705 |=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 199px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 88px;background-color:#D9E2F3;color:#0070C0" %)**Response**
706 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
707 0
708 OK
709 )))
710 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
711 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
712 OK
713 )))
714
715 (% style="color:blue" %)**Downlink Command: 0x07**
716
717 Format: Command Code (0x07) followed by 3 bytes.
718
719 The first byte is which power, the second and third bytes are the time to turn on.
720
721 * Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
722 * Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
723 * Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
724 * Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
725 * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
726 * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
727
728 === 3.3.4 Set the Probe Model ===
729
730
731 Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
732
733 (% style="color:blue" %)**AT Command: AT** **+PROBE**
734
735 AT+PROBE=aabb
736
737 When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
738
739 When aa=01, it is the pressure mode, which converts the current into a pressure value;
740
741 bb represents which type of pressure sensor it is.
742
743 (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
744
745 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
746 |(% style="background-color:#d9e2f3; color:#0070c0; width:154px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:269px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Response**
747 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
748 OK
749 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
750 |(% style="background-color:#f2f2f2; width:154px" %)(((
751 AT+PROBE=000A
752 )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
753 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
754 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
755 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
756
757 (% style="color:blue" %)**Downlink Command: 0x08**
758
759 Format: Command Code (0x08) followed by 2 bytes.
760
761 * Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
762 * Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
763
764 === 3.3.5 Multiple collections are one uplink(Since firmware V1.1) ===
765
766
767 Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
768
769 (% style="color:blue" %)**AT Command: AT** **+STDC**
770
771 AT+STDC=aa,bb,bb
772
773 (% style="color:#037691" %)**aa:**(%%)
774 **0:** means disable this function and use TDC to send packets.
775 **1:** means enable this function, use the method of multiple acquisitions to send packets.
776 (% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
777 (% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
778
779 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
780 |(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:215px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Response**
781 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
782 OK
783 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
784 Attention:Take effect after ATZ
785
786 OK
787 )))
788 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
789 Use the TDC interval to send packets.(default)
790
791
792 )))|(% style="background-color:#f2f2f2" %)(((
793 Attention:Take effect after ATZ
794
795 OK
796 )))
797
798 (% style="color:blue" %)**Downlink Command: 0xAE**
799
800 Format: Command Code (0x08) followed by 5 bytes.
801
802 * Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
803
804 = 4. Battery & Power Consumption =
805
806
807 PS-LB uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
808
809 [[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
810
811
812 = 5. OTA firmware update =
813
814
815 Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
816
817
818 = 6. FAQ =
819
820 == 6.1 How to use AT Command via UART to access device? ==
821
822
823 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
824
825
826 == 6.2 How to update firmware via UART port? ==
827
828
829 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
830
831
832 == 6.3 How to change the LoRa Frequency Bands/Region? ==
833
834
835 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
836 When downloading the images, choose the required image file for download. ​
837
838
839 = 7. Troubleshooting =
840
841 == 7.1 Water Depth Always shows 0 in payload ==
842
843
844 If your device's IDC_intput_mA is normal, but your reading always shows 0, please refer to the following points:
845
846 ~1. Please set it to mod1
847
848 2. Please set the command [[AT+PROBE>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB%20--%20LoRaWAN%20Pressure%20Sensor/#H3.3.4SettheProbeModel]] according to the model of your sensor
849
850 3. Check the connection status of the sensor
851
852
853 = 8. Order Info =
854
855
856 [[image:image-20230131153105-4.png]]
857
858
859 = 9. ​Packing Info =
860
861
862 (% style="color:#037691" %)**Package Includes**:
863
864 * PS-LB LoRaWAN Pressure Sensor
865
866 (% style="color:#037691" %)**Dimension and weight**:
867
868 * Device Size: cm
869 * Device Weight: g
870 * Package Size / pcs : cm
871 * Weight / pcs : g
872
873 = 10. Support =
874
875
876 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
877
878 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].
879
880