Version 52.2 by Xiaoling on 2023/03/24 13:55

Show last authors
1 [[image:image-20230131115217-1.png]]
2
3
4
5 **Table of Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is LoRaWAN Pressure Sensor ==
17
18
19 (((
20 The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 )))
22
23 (((
24 The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 )))
26
27 (((
28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 )))
30
31 (((
32 PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 )))
34
35 (((
36 PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 )))
38
39 (((
40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 )))
42
43 [[image:1675071321348-194.png]]
44
45
46 == 1.2 ​Features ==
47
48
49 * LoRaWAN 1.0.3 Class A
50 * Ultra-low power consumption
51 * Measure air / gas or water pressure
52 * Different pressure range available
53 * Thread Installation Type or Immersion Type
54 * Monitor Battery Level
55 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
56 * Support Bluetooth v5.1 and LoRaWAN remote configure
57 * Support wireless OTA update firmware
58 * Uplink on periodically
59 * Downlink to change configure
60 * 8500mAh Battery for long term use
61 * Controllable 3.3v,5v and 12v output to power external sensor
62
63
64
65 == 1.3 Specification ==
66
67
68 (% style="color:#037691" %)**Micro Controller:**
69
70 * MCU: 48Mhz ARM
71 * Flash: 256KB
72 * RAM: 64KB
73
74 (% style="color:#037691" %)**Common DC Characteristics:**
75
76 * Supply Voltage: 2.5v ~~ 3.6v
77 * Operating Temperature: -40 ~~ 85°C
78
79 (% style="color:#037691" %)**LoRa Spec:**
80
81 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
82 * Max +22 dBm constant RF output vs.
83 * RX sensitivity: down to -139 dBm.
84 * Excellent blocking immunity
85
86 (% style="color:#037691" %)**Current Input Measuring :**
87
88 * Range: 0 ~~ 20mA
89 * Accuracy: 0.02mA
90 * Resolution: 0.001mA
91
92 (% style="color:#037691" %)**Voltage Input Measuring:**
93
94 * Range: 0 ~~ 30v
95 * Accuracy: 0.02v
96 * Resolution: 0.001v
97
98 (% style="color:#037691" %)**Battery:**
99
100 * Li/SOCI2 un-chargeable battery
101 * Capacity: 8500mAh
102 * Self-Discharge: <1% / Year @ 25°C
103 * Max continuously current: 130mA
104 * Max boost current: 2A, 1 second
105
106 (% style="color:#037691" %)**Power Consumption**
107
108 * Sleep Mode: 5uA @ 3.3v
109 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
110
111
112
113 == 1.4 Probe Types ==
114
115 === 1.4.1 Thread Installation Type ===
116
117
118 [[image:1675071448299-229.png]]
119
120 * Hersman Pressure Transmitter
121 * Measuring Range: -0.1 ~~ 0 ~~ 60MPa, see order info.
122 * Accuracy: 0.2% F.S
123 * Long-Term Stability: 0.2% F.S ±0.05%
124 * Overload 200% F.S
125 * Zero Temperature Drift: 0.03% FS/℃(≤100Kpa), 0.02%FS/℃(>100Kpa)
126 * FS Temperature Drift: 0.003% FS/℃(≤100Kpa), 0.002%FS/℃(>100Kpa)
127 * Storage temperature: -30℃~~80℃
128 * Operating temperature: -20℃~~60℃
129 * Connector Type: Various Types, see order info
130
131
132
133 === 1.4.2 Immersion Type ===
134
135
136 [[image:1675071521308-426.png]]
137
138 * Immersion Type, Probe IP Level: IP68
139 * Measuring Range: Measure range can be customized, up to 100m.
140 * Accuracy: 0.2% F.S
141 * Long-Term Stability: ±0.2% F.S / Year
142 * Storage temperature: -30℃~~80℃
143 * Operating temperature: 0℃~~50℃
144 * Material: 316 stainless steels
145
146
147
148 == 1.5 Probe Dimension ==
149
150
151
152 == 1.6 Application and Installation ==
153
154 === 1.6.1 Thread Installation Type ===
155
156
157 (% style="color:blue" %)**Application:**
158
159 * Hydraulic Pressure
160 * Petrochemical Industry
161 * Health and Medical
162 * Food & Beverage Processing
163 * Auto-controlling house
164 * Constant Pressure Water Supply
165 * Liquid Pressure measuring
166
167 Order the suitable thread size and install to measure the air / liquid pressure
168
169 [[image:1675071670469-145.png]]
170
171
172 === 1.6.2 Immersion Type ===
173
174
175 (% style="color:blue" %)**Application:**
176
177 Liquid & Water Pressure / Level detect.
178
179 [[image:1675071725288-579.png]]
180
181
182 The Immersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.
183
184
185 [[image:1675071736646-450.png]]
186
187
188 [[image:1675071776102-240.png]]
189
190
191 == 1.7 Sleep mode and working mode ==
192
193
194 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
195
196 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
197
198
199 == 1.8 Button & LEDs ==
200
201
202 [[image:1675071855856-879.png]]
203
204
205 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
206 |=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
207 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
208 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
209 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
210 )))
211 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
212 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
213 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
214 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
215 )))
216 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
217
218
219
220 == 1.9 Pin Mapping ==
221
222
223 [[image:1675072568006-274.png]]
224
225
226 == 1.10 BLE connection ==
227
228
229 PS-LB support BLE remote configure.
230
231
232 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
233
234 * Press button to send an uplink
235 * Press button to active device.
236 * Device Power on or reset.
237
238 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
239
240
241 == 1.11 Mechanical ==
242
243
244 [[image:1675143884058-338.png]]
245
246
247 [[image:1675143899218-599.png]]
248
249
250 [[image:1675143909447-639.png]]
251
252
253 = 2. Configure PS-LB to connect to LoRaWAN network =
254
255 == 2.1 How it works ==
256
257
258 The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
259
260
261 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
262
263
264 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
265
266
267 [[image:1675144005218-297.png]]
268
269
270 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
271
272
273 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
274
275 Each PS-LB is shipped with a sticker with the default device EUI as below:
276
277 [[image:image-20230131134744-2.jpeg]]
278
279
280
281 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
282
283
284 (% style="color:blue" %)**Register the device**
285
286 [[image:1675144099263-405.png]]
287
288
289 (% style="color:blue" %)**Add APP EUI and DEV EUI**
290
291 [[image:1675144117571-832.png]]
292
293
294 (% style="color:blue" %)**Add APP EUI in the application**
295
296
297 [[image:1675144143021-195.png]]
298
299
300 (% style="color:blue" %)**Add APP KEY**
301
302 [[image:1675144157838-392.png]]
303
304 (% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
305
306
307 Press the button for 5 seconds to activate the PS-LB.
308
309 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
310
311 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
312
313
314 == 2.3 ​Uplink Payload ==
315
316 === 2.3.1 Device Status, FPORT~=5 ===
317
318
319 Include device configure status. Once PS-LB Joined the network, it will uplink this message to the server.
320
321 Users can also use the downlink command(0x26 01) to ask PS-LB to resend this uplink.
322
323
324 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
325 |(% colspan="6" %)**Device Status (FPORT=5)**
326 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
327 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
328
329 Example parse in TTNv3
330
331 [[image:1675144504430-490.png]]
332
333
334 (% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
335
336 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
337
338 (% style="color:#037691" %)**Frequency Band**:
339
340 *0x01: EU868
341
342 *0x02: US915
343
344 *0x03: IN865
345
346 *0x04: AU915
347
348 *0x05: KZ865
349
350 *0x06: RU864
351
352 *0x07: AS923
353
354 *0x08: AS923-1
355
356 *0x09: AS923-2
357
358 *0x0a: AS923-3
359
360 *0x0b: CN470
361
362 *0x0c: EU433
363
364 *0x0d: KR920
365
366 *0x0e: MA869
367
368
369 (% style="color:#037691" %)**Sub-Band**:
370
371 AU915 and US915:value 0x00 ~~ 0x08
372
373 CN470: value 0x0B ~~ 0x0C
374
375 Other Bands: Always 0x00
376
377
378 (% style="color:#037691" %)**Battery Info**:
379
380 Check the battery voltage.
381
382 Ex1: 0x0B45 = 2885mV
383
384 Ex2: 0x0B49 = 2889mV
385
386
387 === 2.3.2 Sensor value, FPORT~=2 ===
388
389
390 Uplink payload includes in total 9 bytes.
391
392
393 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
394 |(% style="width:97px" %)(((
395 **Size(bytes)**
396 )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
397 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
398
399 [[image:1675144608950-310.png]]
400
401
402 === 2.3.3 Battery Info ===
403
404
405 Check the battery voltage for PS-LB.
406
407 Ex1: 0x0B45 = 2885mV
408
409 Ex2: 0x0B49 = 2889mV
410
411
412 === 2.3.4 Probe Model ===
413
414
415 PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
416
417
418 For example.
419
420 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
421 |**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning**
422 |PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
423 |PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
424 |PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure
425
426 The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
427
428
429 === 2.3.5 0~~20mA value (IDC_IN) ===
430
431
432 The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
433
434 (% style="color:#037691" %)**Example**:
435
436 27AE(H) = 10158 (D)/1000 = 10.158mA.
437
438
439 Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
440
441 [[image:image-20230225154759-1.png||height="408" width="741"]]
442
443
444 === 2.3.6 0~~30V value ( pin VDC_IN) ===
445
446
447 Measure the voltage value. The range is 0 to 30V.
448
449 (% style="color:#037691" %)**Example**:
450
451 138E(H) = 5006(D)/1000= 5.006V
452
453
454 === 2.3.7 IN1&IN2&INT pin ===
455
456
457 IN1 and IN2 are used as digital input pins.
458
459 (% style="color:#037691" %)**Example**:
460
461 09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
462
463 09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
464
465
466 This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
467
468 (% style="color:#037691" %)**Example:**
469
470 09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
471
472 09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
473
474 0x01: Interrupt Uplink Packet.
475
476
477 === (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 ===
478
479
480 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
481 |(% style="width:94px" %)(((
482 **Size(bytes)**
483 )))|(% style="width:43px" %)2|(% style="width:367px" %)n
484 |(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
485 Voltage value, each 2 bytes is a set of voltage values.
486 )))
487
488 [[image:image-20230220171300-1.png||height="207" width="863"]]
489
490 Multiple sets of data collected are displayed in this form:
491
492 [voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
493
494
495 === 2.3.9 ​Decode payload in The Things Network ===
496
497
498 While using TTN network, you can add the payload format to decode the payload.
499
500
501 [[image:1675144839454-913.png]]
502
503
504 PS-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
505
506
507 == 2.4 Uplink Interval ==
508
509
510 The PS-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
511
512
513 == 2.5 Show Data in DataCake IoT Server ==
514
515
516 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
517
518
519 (% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
520
521 (% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
522
523
524 [[image:1675144951092-237.png]]
525
526
527 [[image:1675144960452-126.png]]
528
529
530 (% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
531
532 (% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
533
534 [[image:1675145004465-869.png]]
535
536
537 [[image:1675145018212-853.png]]
538
539
540
541
542 [[image:1675145029119-717.png]]
543
544
545 (% style="color:blue" %)**Step 5: **(%%)add payload decode
546
547 [[image:1675145051360-659.png]]
548
549
550 [[image:1675145060812-420.png]]
551
552
553 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
554
555
556 [[image:1675145081239-376.png]]
557
558
559 == 2.6 Frequency Plans ==
560
561
562 The PS-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
563
564 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
565
566
567 == 2.7 ​Firmware Change Log ==
568
569
570 **Firmware download link:**
571
572 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
573
574
575 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
576
577
578 Use can configure PS-LB via AT Command or LoRaWAN Downlink.
579
580 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
581 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
582
583 There are two kinds of commands to configure PS-LB, they are:
584
585 * (% style="color:#037691" %)**General Commands**
586
587 These commands are to configure:
588
589 * General system settings like: uplink interval.
590 * LoRaWAN protocol & radio related command.
591
592 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
593
594 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
595
596
597 * (% style="color:#037691" %)**Commands special design for PS-LB**
598
599 These commands only valid for PS-LB, as below:
600
601
602 == 3.1 Set Transmit Interval Time ==
603
604
605 Feature: Change LoRaWAN End Node Transmit Interval.
606
607 (% style="color:blue" %)**AT Command: AT+TDC**
608
609 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
610 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
611 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
612 30000
613 OK
614 the interval is 30000ms = 30s
615 )))
616 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
617 OK
618 Set transmit interval to 60000ms = 60 seconds
619 )))
620
621 (% style="color:blue" %)**Downlink Command: 0x01**
622
623 Format: Command Code (0x01) followed by 3 bytes time value.
624
625 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
626
627 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
628 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
629
630
631
632 == 3.2 Set Interrupt Mode ==
633
634
635 Feature, Set Interrupt mode for GPIO_EXIT.
636
637 (% style="color:blue" %)**AT Command: AT+INTMOD**
638
639 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
640 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
641 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
642 0
643 OK
644 the mode is 0 =Disable Interrupt
645 )))
646 |(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
647 Set Transmit Interval
648 0. (Disable Interrupt),
649 ~1. (Trigger by rising and falling edge)
650 2. (Trigger by falling edge)
651 3. (Trigger by rising edge)
652 )))|(% style="width:157px" %)OK
653
654 (% style="color:blue" %)**Downlink Command: 0x06**
655
656 Format: Command Code (0x06) followed by 3 bytes.
657
658 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
659
660 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
661 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
662
663
664
665 == 3.3 Set the output time ==
666
667
668 Feature, Control the output 3V3 , 5V or 12V.
669
670 (% style="color:blue" %)**AT Command: AT+3V3T**
671
672 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
673 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
674 |(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
675 0
676 OK
677 )))
678 |(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
679 OK
680 default setting
681 )))
682 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
683 OK
684 )))
685 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
686 OK
687 )))
688
689 (% style="color:blue" %)**AT Command: AT+5VT**
690
691 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
692 |=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
693 |(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
694 0
695 OK
696 )))
697 |(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
698 OK
699 default setting
700 )))
701 |(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
702 OK
703 )))
704 |(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
705 OK
706 )))
707
708 (% style="color:blue" %)**AT Command: AT+12VT**
709
710 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
711 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
712 |(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
713 0
714 OK
715 )))
716 |(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
717 |(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
718 OK
719 )))
720
721 (% style="color:blue" %)**Downlink Command: 0x07**
722
723 Format: Command Code (0x07) followed by 3 bytes.
724
725 The first byte is which power, the second and third bytes are the time to turn on.
726
727 * Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
728 * Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
729 * Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
730 * Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
731 * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
732 * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
733
734
735
736 == 3.4 Set the Probe Model ==
737
738
739 Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
740
741 **AT Command: AT** **+PROBE**
742
743 AT+PROBE=aabb
744
745 When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
746
747 When aa=01, it is the pressure mode, which converts the current into a pressure value;
748
749 bb represents which type of pressure sensor it is.
750
751 (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
752
753 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
754 |**Command Example**|**Function**|**Response**
755 |AT +PROBE =?|Get or Set the probe model.|0
756 OK
757 |AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK
758 |(((
759 AT +PROBE =000A
760
761
762 )))|Set water depth sensor mode, 10m type.|OK
763 |AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK
764 |AT +PROBE =0000|Initial state, no settings.|OK
765
766 **Downlink Command: 0x08**
767
768 Format: Command Code (0x08) followed by 2 bytes.
769
770 * Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
771 * Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
772
773
774
775 == 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
776
777
778 Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
779
780 (% style="color:blue" %)**AT Command: AT** **+STDC**
781
782 AT+STDC=aa,bb,bb
783
784 (% style="color:#037691" %)**aa:**(%%)
785 **0:** means disable this function and use TDC to send packets.
786 **1:** means enable this function, use the method of multiple acquisitions to send packets.
787 (% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
788 (% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
789
790 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
791 |**Command Example**|**Function**|**Response**
792 |AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18
793 OK
794 |AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(((
795 Attention:Take effect after ATZ
796
797 OK
798 )))
799 |AT+STDC=0, 0,0|(((
800 Use the TDC interval to send packets.(default)
801
802
803 )))|(((
804 Attention:Take effect after ATZ
805
806 OK
807 )))
808
809 (% style="color:blue" %)**Downlink Command: 0xAE**
810
811 Format: Command Code (0x08) followed by 5 bytes.
812
813 * Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
814
815
816
817 = 4. Battery & how to replace =
818
819 == 4.1 Battery Type ==
820
821
822 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
823
824 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
825
826 [[image:1675146710956-626.png]]
827
828
829 Minimum Working Voltage for the PS-LB:
830
831 PS-LB:  2.45v ~~ 3.6v
832
833
834 == 4.2 Replace Battery ==
835
836
837 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
838
839 And make sure the positive and negative pins match.
840
841
842 == 4.3 Power Consumption Analyze ==
843
844
845 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
846
847 Instruction to use as below:
848
849 (% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
850
851 (% style="color:blue" %)**Step 2:**(%%) Open it and choose
852
853 * Product Model
854 * Uplink Interval
855 * Working Mode
856
857 And the Life expectation in difference case will be shown on the right.
858
859 [[image:1675146895108-304.png]]
860
861
862 The battery related documents as below:
863
864 * [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
865 * [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
866 * [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
867
868 [[image:image-20230131145708-3.png]]
869
870
871 === 4.3.1 ​Battery Note ===
872
873
874 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
875
876
877 === 4.3.2 Replace the battery ===
878
879
880 You can change the battery in the PS-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
881
882 The default battery pack of PS-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
883
884
885 = 5. Remote Configure device =
886
887 == 5.1 Connect via BLE ==
888
889
890 Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
891
892
893 == 5.2 AT Command Set ==
894
895
896
897 = 6. OTA firmware update =
898
899
900 Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
901
902
903 = 7. FAQ =
904
905 == 7.1 How to use AT Command via UART to access device? ==
906
907
908 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
909
910
911 == 7.2 How to update firmware via UART port? ==
912
913
914 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
915
916
917 == 7.3 How to change the LoRa Frequency Bands/Region? ==
918
919
920 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
921 When downloading the images, choose the required image file for download. ​
922
923
924 = 8. Order Info =
925
926
927 [[image:image-20230131153105-4.png]]
928
929
930 = 9. ​Packing Info =
931
932
933 (% style="color:#037691" %)**Package Includes**:
934
935 * PS-LB LoRaWAN Pressure Sensor
936
937 (% style="color:#037691" %)**Dimension and weight**:
938
939 * Device Size: cm
940 * Device Weight: g
941 * Package Size / pcs : cm
942 * Weight / pcs : g
943
944
945
946 = 10. Support =
947
948
949 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
950
951 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
952
953