Show last authors
1 [[image:image-20230131115217-1.png]]
2
3
4
5 **Table of Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is LoRaWAN Pressure Sensor ==
17
18
19 (((
20 The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 )))
22
23 (((
24 The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 )))
26
27 (((
28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 )))
30
31 (((
32 PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 )))
34
35 (((
36 PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 )))
38
39 (((
40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 )))
42
43 [[image:1675071321348-194.png]]
44
45
46 == 1.2 ​Features ==
47
48
49 * LoRaWAN 1.0.3 Class A
50 * Ultra-low power consumption
51 * Measure air / gas or water pressure
52 * Different pressure range available
53 * Thread Installation Type or Immersion Type
54 * Monitor Battery Level
55 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
56 * Support Bluetooth v5.1 and LoRaWAN remote configure
57 * Support wireless OTA update firmware
58 * Uplink on periodically
59 * Downlink to change configure
60 * 8500mAh Battery for long term use
61 * Controllable 3.3v,5v and 12v output to power external sensor
62
63
64 == 1.3 Specification ==
65
66
67 (% style="color:#037691" %)**Micro Controller:**
68
69 * MCU: 48Mhz ARM
70 * Flash: 256KB
71 * RAM: 64KB
72
73 (% style="color:#037691" %)**Common DC Characteristics:**
74
75 * Supply Voltage: 2.5v ~~ 3.6v
76 * Operating Temperature: -40 ~~ 85°C
77
78 (% style="color:#037691" %)**LoRa Spec:**
79
80 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
81 * Max +22 dBm constant RF output vs.
82 * RX sensitivity: down to -139 dBm.
83 * Excellent blocking immunity
84
85 (% style="color:#037691" %)**Current Input Measuring :**
86
87 * Range: 0 ~~ 20mA
88 * Accuracy: 0.02mA
89 * Resolution: 0.001mA
90
91 (% style="color:#037691" %)**Voltage Input Measuring:**
92
93 * Range: 0 ~~ 30v
94 * Accuracy: 0.02v
95 * Resolution: 0.001v
96
97 (% style="color:#037691" %)**Battery:**
98
99 * Li/SOCI2 un-chargeable battery
100 * Capacity: 8500mAh
101 * Self-Discharge: <1% / Year @ 25°C
102 * Max continuously current: 130mA
103 * Max boost current: 2A, 1 second
104
105 (% style="color:#037691" %)**Power Consumption**
106
107 * Sleep Mode: 5uA @ 3.3v
108 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
109
110
111 == 1.4 Probe Types ==
112
113 === 1.4.1 Thread Installation Type ===
114
115
116 [[image:1675071448299-229.png]]
117
118 * Hersman Pressure Transmitter
119 * Measuring Range: -0.1 ~~ 0 ~~ 60MPa, see order info.
120 * Accuracy: 0.2% F.S
121 * Long-Term Stability: 0.2% F.S ±0.05%
122 * Overload 200% F.S
123 * Zero Temperature Drift: 0.03% FS/℃(≤100Kpa), 0.02%FS/℃(>100Kpa)
124 * FS Temperature Drift: 0.003% FS/℃(≤100Kpa), 0.002%FS/℃(>100Kpa)
125 * Storage temperature: -30℃~~80℃
126 * Operating temperature: -20℃~~60℃
127 * Connector Type: Various Types, see order info
128
129
130 === 1.4.2 Immersion Type ===
131
132
133 [[image:1675071521308-426.png]]
134
135 * Immersion Type, Probe IP Level: IP68
136 * Measuring Range: Measure range can be customized, up to 100m.
137 * Accuracy: 0.2% F.S
138 * Long-Term Stability: ±0.2% F.S / Year
139 * Storage temperature: -30℃~~80℃
140 * Operating temperature: 0℃~~50℃
141 * Material: 316 stainless steels
142
143
144 == 1.5 Probe Dimension ==
145
146
147
148 == 1.6 Application and Installation ==
149
150 === 1.6.1 Thread Installation Type ===
151
152
153 (% style="color:blue" %)**Application:**
154
155 * Hydraulic Pressure
156 * Petrochemical Industry
157 * Health and Medical
158 * Food & Beverage Processing
159 * Auto-controlling house
160 * Constant Pressure Water Supply
161 * Liquid Pressure measuring
162
163 Order the suitable thread size and install to measure the air / liquid pressure
164
165 [[image:1675071670469-145.png]]
166
167
168 === 1.6.2 Immersion Type ===
169
170
171 (% style="color:blue" %)**Application:**
172
173 Liquid & Water Pressure / Level detect.
174
175 [[image:1675071725288-579.png]]
176
177
178 The Immersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.
179
180
181 [[image:1675071736646-450.png]]
182
183
184 [[image:1675071776102-240.png]]
185
186
187 == 1.7 Sleep mode and working mode ==
188
189
190 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
191
192 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
193
194
195 == 1.8 Button & LEDs ==
196
197
198 [[image:1675071855856-879.png]]
199
200
201 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
202 |=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
203 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
204 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
205 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
206 )))
207 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
208 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
209 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
210 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
211 )))
212 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
213
214
215 == 1.9 Pin Mapping ==
216
217
218 [[image:1675072568006-274.png]]
219
220
221 == 1.10 BLE connection ==
222
223
224 PS-LB support BLE remote configure.
225
226
227 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
228
229 * Press button to send an uplink
230 * Press button to active device.
231 * Device Power on or reset.
232
233 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
234
235
236 == 1.11 Mechanical ==
237
238
239 [[image:1675143884058-338.png]]
240
241
242 [[image:1675143899218-599.png]]
243
244
245 [[image:1675143909447-639.png]]
246
247
248 = 2. Configure PS-LB to connect to LoRaWAN network =
249
250 == 2.1 How it works ==
251
252
253 The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
254
255
256 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
257
258
259 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
260
261
262 [[image:1675144005218-297.png]]
263
264
265 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
266
267
268 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
269
270 Each PS-LB is shipped with a sticker with the default device EUI as below:
271
272 [[image:image-20230131134744-2.jpeg]]
273
274
275
276 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
277
278
279 (% style="color:blue" %)**Register the device**
280
281 [[image:1675144099263-405.png]]
282
283
284 (% style="color:blue" %)**Add APP EUI and DEV EUI**
285
286 [[image:1675144117571-832.png]]
287
288
289 (% style="color:blue" %)**Add APP EUI in the application**
290
291
292 [[image:1675144143021-195.png]]
293
294
295 (% style="color:blue" %)**Add APP KEY**
296
297 [[image:1675144157838-392.png]]
298
299 (% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
300
301
302 Press the button for 5 seconds to activate the PS-LB.
303
304 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
305
306 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
307
308
309 == 2.3 ​Uplink Payload ==
310
311 === 2.3.1 Device Status, FPORT~=5 ===
312
313
314 Include device configure status. Once PS-LB Joined the network, it will uplink this message to the server.
315
316 Users can also use the downlink command(0x26 01) to ask PS-LB to resend this uplink.
317
318
319 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
320 |(% colspan="6" %)**Device Status (FPORT=5)**
321 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
322 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
323
324 Example parse in TTNv3
325
326 [[image:1675144504430-490.png]]
327
328
329 (% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
330
331 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
332
333 (% style="color:#037691" %)**Frequency Band**:
334
335 *0x01: EU868
336
337 *0x02: US915
338
339 *0x03: IN865
340
341 *0x04: AU915
342
343 *0x05: KZ865
344
345 *0x06: RU864
346
347 *0x07: AS923
348
349 *0x08: AS923-1
350
351 *0x09: AS923-2
352
353 *0x0a: AS923-3
354
355 *0x0b: CN470
356
357 *0x0c: EU433
358
359 *0x0d: KR920
360
361 *0x0e: MA869
362
363
364 (% style="color:#037691" %)**Sub-Band**:
365
366 AU915 and US915:value 0x00 ~~ 0x08
367
368 CN470: value 0x0B ~~ 0x0C
369
370 Other Bands: Always 0x00
371
372
373 (% style="color:#037691" %)**Battery Info**:
374
375 Check the battery voltage.
376
377 Ex1: 0x0B45 = 2885mV
378
379 Ex2: 0x0B49 = 2889mV
380
381
382 === 2.3.2 Sensor value, FPORT~=2 ===
383
384
385 Uplink payload includes in total 9 bytes.
386
387
388 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
389 |(% style="width:97px" %)(((
390 **Size(bytes)**
391 )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
392 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
393
394 [[image:1675144608950-310.png]]
395
396
397 === 2.3.3 Battery Info ===
398
399
400 Check the battery voltage for PS-LB.
401
402 Ex1: 0x0B45 = 2885mV
403
404 Ex2: 0x0B49 = 2889mV
405
406
407 === 2.3.4 Probe Model ===
408
409
410 PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
411
412
413 For example.
414
415 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
416 |**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning**
417 |PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
418 |PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
419 |PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure
420
421 The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
422
423
424 === 2.3.5 0~~20mA value (IDC_IN) ===
425
426
427 The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
428
429 (% style="color:#037691" %)**Example**:
430
431 27AE(H) = 10158 (D)/1000 = 10.158mA.
432
433
434 Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
435
436 [[image:image-20230225154759-1.png||height="408" width="741"]]
437
438
439 === 2.3.6 0~~30V value ( pin VDC_IN) ===
440
441
442 Measure the voltage value. The range is 0 to 30V.
443
444 (% style="color:#037691" %)**Example**:
445
446 138E(H) = 5006(D)/1000= 5.006V
447
448
449 === 2.3.7 IN1&IN2&INT pin ===
450
451
452 IN1 and IN2 are used as digital input pins.
453
454 (% style="color:#037691" %)**Example**:
455
456 09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
457
458 09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
459
460
461 This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
462
463 (% style="color:#037691" %)**Example:**
464
465 09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
466
467 09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
468
469 0x01: Interrupt Uplink Packet.
470
471
472 === (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 ===
473
474
475 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
476 |(% style="width:94px" %)(((
477 **Size(bytes)**
478 )))|(% style="width:43px" %)2|(% style="width:367px" %)n
479 |(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
480 Voltage value, each 2 bytes is a set of voltage values.
481 )))
482
483 [[image:image-20230220171300-1.png||height="207" width="863"]]
484
485 Multiple sets of data collected are displayed in this form:
486
487 [voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
488
489
490 === 2.3.9 ​Decode payload in The Things Network ===
491
492
493 While using TTN network, you can add the payload format to decode the payload.
494
495
496 [[image:1675144839454-913.png]]
497
498
499 PS-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
500
501
502 == 2.4 Uplink Interval ==
503
504
505 The PS-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
506
507
508 == 2.5 Show Data in DataCake IoT Server ==
509
510
511 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
512
513
514 (% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
515
516 (% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
517
518
519 [[image:1675144951092-237.png]]
520
521
522 [[image:1675144960452-126.png]]
523
524
525 (% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
526
527 (% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
528
529 [[image:1675145004465-869.png]]
530
531
532 [[image:1675145018212-853.png]]
533
534
535
536
537 [[image:1675145029119-717.png]]
538
539
540 (% style="color:blue" %)**Step 5: **(%%)add payload decode
541
542 [[image:1675145051360-659.png]]
543
544
545 [[image:1675145060812-420.png]]
546
547
548 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
549
550
551 [[image:1675145081239-376.png]]
552
553
554 == 2.6 Frequency Plans ==
555
556
557 The PS-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
558
559 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
560
561
562 == 2.7 ​Firmware Change Log ==
563
564
565 **Firmware download link:**
566
567 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
568
569
570 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
571
572
573 Use can configure PS-LB via AT Command or LoRaWAN Downlink.
574
575 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
576 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
577
578 There are two kinds of commands to configure PS-LB, they are:
579
580 * (% style="color:#037691" %)**General Commands**
581
582 These commands are to configure:
583
584 * General system settings like: uplink interval.
585 * LoRaWAN protocol & radio related command.
586
587 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
588
589 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
590
591
592 * (% style="color:#037691" %)**Commands special design for PS-LB**
593
594 These commands only valid for PS-LB, as below:
595
596
597 == 3.1 Set Transmit Interval Time ==
598
599
600 Feature: Change LoRaWAN End Node Transmit Interval.
601
602 (% style="color:blue" %)**AT Command: AT+TDC**
603
604 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
605 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
606 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
607 30000
608 OK
609 the interval is 30000ms = 30s
610 )))
611 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
612 OK
613 Set transmit interval to 60000ms = 60 seconds
614 )))
615
616 (% style="color:blue" %)**Downlink Command: 0x01**
617
618 Format: Command Code (0x01) followed by 3 bytes time value.
619
620 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
621
622 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
623 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
624
625 == 3.2 Set Interrupt Mode ==
626
627
628 Feature, Set Interrupt mode for GPIO_EXIT.
629
630 (% style="color:blue" %)**AT Command: AT+INTMOD**
631
632 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
633 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
634 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
635 0
636 OK
637 the mode is 0 =Disable Interrupt
638 )))
639 |(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
640 Set Transmit Interval
641 0. (Disable Interrupt),
642 ~1. (Trigger by rising and falling edge)
643 2. (Trigger by falling edge)
644 3. (Trigger by rising edge)
645 )))|(% style="width:157px" %)OK
646
647 (% style="color:blue" %)**Downlink Command: 0x06**
648
649 Format: Command Code (0x06) followed by 3 bytes.
650
651 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
652
653 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
654 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
655
656
657 == 3.3 Set the output time ==
658
659
660 Feature, Control the output 3V3 , 5V or 12V.
661
662 (% style="color:blue" %)**AT Command: AT+3V3T**
663
664 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
665 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
666 |(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
667 0
668 OK
669 )))
670 |(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
671 OK
672 default setting
673 )))
674 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
675 OK
676 )))
677 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
678 OK
679 )))
680
681 (% style="color:blue" %)**AT Command: AT+5VT**
682
683 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
684 |=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
685 |(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
686 0
687 OK
688 )))
689 |(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
690 OK
691 default setting
692 )))
693 |(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
694 OK
695 )))
696 |(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
697 OK
698 )))
699
700 (% style="color:blue" %)**AT Command: AT+12VT**
701
702 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
703 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
704 |(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
705 0
706 OK
707 )))
708 |(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
709 |(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
710 OK
711 )))
712
713 (% style="color:blue" %)**Downlink Command: 0x07**
714
715 Format: Command Code (0x07) followed by 3 bytes.
716
717 The first byte is which power, the second and third bytes are the time to turn on.
718
719 * Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
720 * Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
721 * Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
722 * Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
723 * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
724 * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
725
726
727 == 3.4 Set the Probe Model ==
728
729
730 Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
731
732 **AT Command: AT** **+PROBE**
733
734 AT+PROBE=aabb
735
736 When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
737
738 When aa=01, it is the pressure mode, which converts the current into a pressure value;
739
740 bb represents which type of pressure sensor it is.
741
742 (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
743
744 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
745 |**Command Example**|**Function**|**Response**
746 |AT +PROBE =?|Get or Set the probe model.|0
747 OK
748 |AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK
749 |(((
750 AT +PROBE =000A
751
752
753 )))|Set water depth sensor mode, 10m type.|OK
754 |AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK
755 |AT +PROBE =0000|Initial state, no settings.|OK
756
757 **Downlink Command: 0x08**
758
759 Format: Command Code (0x08) followed by 2 bytes.
760
761 * Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
762 * Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
763
764
765 == 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
766
767
768 Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
769
770 (% style="color:blue" %)**AT Command: AT** **+STDC**
771
772 AT+STDC=aa,bb,bb
773
774 (% style="color:#037691" %)**aa:**(%%)
775 **0:** means disable this function and use TDC to send packets.
776 **1:** means enable this function, use the method of multiple acquisitions to send packets.
777 (% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
778 (% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
779
780 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
781 |**Command Example**|**Function**|**Response**
782 |AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18
783 OK
784 |AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(((
785 Attention:Take effect after ATZ
786
787 OK
788 )))
789 |AT+STDC=0, 0,0|(((
790 Use the TDC interval to send packets.(default)
791
792
793 )))|(((
794 Attention:Take effect after ATZ
795
796 OK
797 )))
798
799 (% style="color:blue" %)**Downlink Command: 0xAE**
800
801 Format: Command Code (0x08) followed by 5 bytes.
802
803 * Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
804
805
806 = 4. Battery & how to replace =
807
808 == 4.1 Battery Type ==
809
810
811 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
812
813 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
814
815 [[image:1675146710956-626.png]]
816
817
818 Minimum Working Voltage for the PS-LB:
819
820 PS-LB:  2.45v ~~ 3.6v
821
822
823 == 4.2 Replace Battery ==
824
825
826 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
827
828 And make sure the positive and negative pins match.
829
830
831 == 4.3 Power Consumption Analyze ==
832
833
834 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
835
836 Instruction to use as below:
837
838 (% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
839
840 (% style="color:blue" %)**Step 2:**(%%) Open it and choose
841
842 * Product Model
843 * Uplink Interval
844 * Working Mode
845
846 And the Life expectation in difference case will be shown on the right.
847
848 [[image:1675146895108-304.png]]
849
850
851 The battery related documents as below:
852
853 * [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
854 * [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
855 * [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
856
857 [[image:image-20230131145708-3.png]]
858
859
860 === 4.3.1 ​Battery Note ===
861
862
863 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
864
865
866 === 4.3.2 Replace the battery ===
867
868
869 You can change the battery in the PS-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
870
871 The default battery pack of PS-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
872
873
874 = 5. Remote Configure device =
875
876 == 5.1 Connect via BLE ==
877
878
879 Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
880
881
882 == 5.2 AT Command Set ==
883
884
885
886 = 6. OTA firmware update =
887
888
889 Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
890
891
892 = 7. FAQ =
893
894 == 7.1 How to use AT Command via UART to access device? ==
895
896
897 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
898
899
900 == 7.2 How to update firmware via UART port? ==
901
902
903 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
904
905
906 == 7.3 How to change the LoRa Frequency Bands/Region? ==
907
908
909 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
910 When downloading the images, choose the required image file for download. ​
911
912
913 = 8. Order Info =
914
915
916 [[image:image-20230131153105-4.png]]
917
918
919 = 9. ​Packing Info =
920
921
922 (% style="color:#037691" %)**Package Includes**:
923
924 * PS-LB LoRaWAN Pressure Sensor
925
926 (% style="color:#037691" %)**Dimension and weight**:
927
928 * Device Size: cm
929 * Device Weight: g
930 * Package Size / pcs : cm
931 * Weight / pcs : g
932
933
934 = 10. Support =
935
936
937 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
938
939 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
940
941
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0