Version 45.3 by Xiaoling on 2023/02/21 15:24

Show last authors
1 [[image:image-20230131115217-1.png]]
2
3
4
5 **Table of Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is LoRaWAN Pressure Sensor ==
17
18
19 (((
20 The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 )))
22
23 (((
24 The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 )))
26
27 (((
28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 )))
30
31 (((
32 PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 )))
34
35 (((
36 PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 )))
38
39 (((
40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 )))
42
43 [[image:1675071321348-194.png]]
44
45
46 == 1.2 ​Features ==
47
48
49 * LoRaWAN 1.0.3 Class A
50 * Ultra-low power consumption
51 * Measure air / gas or water pressure
52 * Different pressure range available
53 * Thread Installation Type or Immersion Type
54 * Monitor Battery Level
55 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
56 * Support Bluetooth v5.1 and LoRaWAN remote configure
57 * Support wireless OTA update firmware
58 * Uplink on periodically
59 * Downlink to change configure
60 * 8500mAh Battery for long term use
61
62 == 1.3 Specification ==
63
64
65 (% style="color:#037691" %)**Micro Controller:**
66
67 * MCU: 48Mhz ARM
68 * Flash: 256KB
69 * RAM: 64KB
70
71 (% style="color:#037691" %)**Common DC Characteristics:**
72
73 * Supply Voltage: 2.5v ~~ 3.6v
74 * Operating Temperature: -40 ~~ 85°C
75
76 (% style="color:#037691" %)**LoRa Spec:**
77
78 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
79 * Max +22 dBm constant RF output vs.
80 * RX sensitivity: down to -139 dBm.
81 * Excellent blocking immunity
82
83 (% style="color:#037691" %)**Current Input Measuring :**
84
85 * Range: 0 ~~ 20mA
86 * Accuracy: 0.02mA
87 * Resolution: 0.001mA
88
89 (% style="color:#037691" %)**Voltage Input Measuring:**
90
91 * Range: 0 ~~ 30v
92 * Accuracy: 0.02v
93 * Resolution: 0.001v
94
95 (% style="color:#037691" %)**Battery:**
96
97 * Li/SOCI2 un-chargeable battery
98 * Capacity: 8500mAh
99 * Self-Discharge: <1% / Year @ 25°C
100 * Max continuously current: 130mA
101 * Max boost current: 2A, 1 second
102
103 (% style="color:#037691" %)**Power Consumption**
104
105 * Sleep Mode: 5uA @ 3.3v
106 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
107
108 == 1.4 Probe Types ==
109
110 === 1.4.1 Thread Installation Type ===
111
112
113 [[image:1675071448299-229.png]]
114
115 * Hersman Pressure Transmitter
116 * Measuring Range: -0.1 ~~ 0 ~~ 60MPa, see order info.
117 * Accuracy: 0.2% F.S
118 * Long-Term Stability: 0.2% F.S ±0.05%
119 * Overload 200% F.S
120 * Zero Temperature Drift: 0.03% FS/℃(≤100Kpa), 0.02%FS/℃(>100Kpa)
121 * FS Temperature Drift: 0.003% FS/℃(≤100Kpa), 0.002%FS/℃(>100Kpa)
122 * Storage temperature: -30℃~~80℃
123 * Operating temperature: -20℃~~60℃
124 * Connector Type: Various Types, see order info
125
126 === 1.4.2 Immersion Type ===
127
128
129 [[image:1675071521308-426.png]]
130
131 * Immersion Type, Probe IP Level: IP68
132 * Measuring Range: Measure range can be customized, up to 100m.
133 * Accuracy: 0.2% F.S
134 * Long-Term Stability: ±0.2% F.S / Year
135 * Overload 200% F.S
136 * Zero Temperature Drift: ±2% F.S)
137 * FS Temperature Drift: ±2% F.S
138 * Storage temperature: -30℃~~80℃
139 * Operating temperature: -40℃~~85℃
140 * Material: 316 stainless steels
141
142 == 1.5 Probe Dimension ==
143
144
145
146 == 1.6 Application and Installation ==
147
148 === 1.6.1 Thread Installation Type ===
149
150
151 (% style="color:blue" %)**Application:**
152
153 * Hydraulic Pressure
154 * Petrochemical Industry
155 * Health and Medical
156 * Food & Beverage Processing
157 * Auto-controlling house
158 * Constant Pressure Water Supply
159 * Liquid Pressure measuring
160
161 Order the suitable thread size and install to measure the air / liquid pressure
162
163 [[image:1675071670469-145.png]]
164
165
166 === 1.6.2 Immersion Type ===
167
168
169 (% style="color:blue" %)**Application:**
170
171 Liquid & Water Pressure / Level detect.
172
173 [[image:1675071725288-579.png]]
174
175
176 The Immersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.
177
178
179 [[image:1675071736646-450.png]]
180
181
182 [[image:1675071776102-240.png]]
183
184
185 == 1.7 Sleep mode and working mode ==
186
187
188 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
189
190 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
191
192
193 == 1.8 Button & LEDs ==
194
195
196 [[image:1675071855856-879.png]]
197
198
199 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
200 |=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
201 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
202 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
203 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
204 )))
205 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
206 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
207 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
208 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
209 )))
210 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
211
212 == 1.9 Pin Mapping ==
213
214
215 [[image:1675072568006-274.png]]
216
217
218 == 1.10 BLE connection ==
219
220
221 PS-LB support BLE remote configure.
222
223
224 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
225
226 * Press button to send an uplink
227 * Press button to active device.
228 * Device Power on or reset.
229
230 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
231
232
233 == 1.11 Mechanical ==
234
235
236 [[image:1675143884058-338.png]]
237
238
239 [[image:1675143899218-599.png]]
240
241
242 [[image:1675143909447-639.png]]
243
244
245 = 2. Configure PS-LB to connect to LoRaWAN network =
246
247 == 2.1 How it works ==
248
249
250 The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
251
252
253 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
254
255
256 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
257
258
259 [[image:1675144005218-297.png]]
260
261
262 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
263
264
265 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
266
267 Each PS-LB is shipped with a sticker with the default device EUI as below:
268
269 [[image:image-20230131134744-2.jpeg]]
270
271
272
273 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
274
275
276 (% style="color:blue" %)**Register the device**
277
278 [[image:1675144099263-405.png]]
279
280
281 (% style="color:blue" %)**Add APP EUI and DEV EUI**
282
283 [[image:1675144117571-832.png]]
284
285
286 (% style="color:blue" %)**Add APP EUI in the application**
287
288
289 [[image:1675144143021-195.png]]
290
291
292 (% style="color:blue" %)**Add APP KEY**
293
294 [[image:1675144157838-392.png]]
295
296 (% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
297
298
299 Press the button for 5 seconds to activate the PS-LB.
300
301 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
302
303 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
304
305
306
307 == 2.3 ​Uplink Payload ==
308
309
310 Uplink payloads have two types:
311
312 * Distance Value: Use FPORT=2
313 * Other control commands: Use other FPORT fields.
314
315 The application server should parse the correct value based on FPORT settings.
316
317
318 === 2.3.1 Device Status, FPORT~=5 ===
319
320
321 Include device configure status. Once PS-LB Joined the network, it will uplink this message to the server.
322
323 Users can also use the downlink command(0x26 01) to ask PS-LB to resend this uplink.
324
325
326 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
327 |(% colspan="6" %)**Device Status (FPORT=5)**
328 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
329 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
330
331 Example parse in TTNv3
332
333 [[image:1675144504430-490.png]]
334
335
336 (% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
337
338 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
339
340 (% style="color:#037691" %)**Frequency Band**:
341
342 *0x01: EU868
343
344 *0x02: US915
345
346 *0x03: IN865
347
348 *0x04: AU915
349
350 *0x05: KZ865
351
352 *0x06: RU864
353
354 *0x07: AS923
355
356 *0x08: AS923-1
357
358 *0x09: AS923-2
359
360 *0x0a: AS923-3
361
362 *0x0b: CN470
363
364 *0x0c: EU433
365
366 *0x0d: KR920
367
368 *0x0e: MA869
369
370
371 (% style="color:#037691" %)**Sub-Band**:
372
373 AU915 and US915:value 0x00 ~~ 0x08
374
375 CN470: value 0x0B ~~ 0x0C
376
377 Other Bands: Always 0x00
378
379
380 (% style="color:#037691" %)**Battery Info**:
381
382 Check the battery voltage.
383
384 Ex1: 0x0B45 = 2885mV
385
386 Ex2: 0x0B49 = 2889mV
387
388
389 === 2.3.2 Sensor value, FPORT~=2 ===
390
391
392 Uplink payload includes in total 9 bytes.
393
394
395 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
396 |(% style="width:97px" %)(((
397 **Size(bytes)**
398 )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
399 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
400
401 [[image:1675144608950-310.png]]
402
403
404 === 2.3.3 Sensor value, FPORT~=7 ===
405
406
407 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
408 |(% style="width:94px" %)(((
409 **Size(bytes)**
410 )))|(% style="width:43px" %)2|(% style="width:367px" %)n
411 |(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
412 Voltage value, each 2 bytes is a set of voltage values.
413 )))
414
415 [[image:image-20230220171300-1.png||height="207" width="863"]]
416
417
418 === 2.3.4 Battery Info ===
419
420
421 Check the battery voltage for PS-LB.
422
423 Ex1: 0x0B45 = 2885mV
424
425 Ex2: 0x0B49 = 2889mV
426
427
428 === 2.3.5 Probe Model ===
429
430
431 PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
432
433
434 For example.
435
436 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
437 |(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
438 |(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
439 |(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
440
441 The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
442
443
444 === 2.3.6 0~~20mA value (IDC_IN) ===
445
446
447 The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
448
449 (% style="color:#037691" %)**Example**:
450
451 27AE(H) = 10158 (D)/1000 = 10.158mA.
452
453
454 === 2.3.7 0~~30V value ( pin VDC_IN) ===
455
456
457 Measure the voltage value. The range is 0 to 30V.
458
459 (% style="color:#037691" %)**Example**:
460
461 138E(H) = 5006(D)/1000= 5.006V
462
463
464 === 2.3.8 IN1&IN2&INT pin ===
465
466
467 IN1 and IN2 are used as digital input pins.
468
469 (% style="color:#037691" %)**Example**:
470
471 09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
472
473 09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
474
475
476 This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
477
478 (% style="color:#037691" %)**Example:**
479
480 09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
481
482 09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
483
484 0x01: Interrupt Uplink Packet.
485
486
487 === 2.3.9 ​Decode payload in The Things Network ===
488
489
490 While using TTN network, you can add the payload format to decode the payload.
491
492
493 [[image:1675144839454-913.png]]
494
495
496 PS-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
497
498
499 == 2.4 Uplink Interval ==
500
501
502 The PS-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
503
504
505 == 2.5 Show Data in DataCake IoT Server ==
506
507
508 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
509
510
511 (% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
512
513 (% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
514
515
516 [[image:1675144951092-237.png]]
517
518
519 [[image:1675144960452-126.png]]
520
521
522 (% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
523
524 (% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
525
526 [[image:1675145004465-869.png]]
527
528
529 [[image:1675145018212-853.png]]
530
531
532
533
534 [[image:1675145029119-717.png]]
535
536
537 (% style="color:blue" %)**Step 5: **(%%)add payload decode
538
539 [[image:1675145051360-659.png]]
540
541
542 [[image:1675145060812-420.png]]
543
544
545 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
546
547
548 [[image:1675145081239-376.png]]
549
550
551 == 2.6 Frequency Plans ==
552
553
554 The PS-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
555
556 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
557
558
559 == 2.7 ​Firmware Change Log ==
560
561
562 **Firmware download link:**
563
564 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
565
566
567
568 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
569
570
571 Use can configure PS-LB via AT Command or LoRaWAN Downlink.
572
573 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
574 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
575
576 There are two kinds of commands to configure PS-LB, they are:
577
578 * (% style="color:#037691" %)**General Commands**
579
580 These commands are to configure:
581
582 * General system settings like: uplink interval.
583 * LoRaWAN protocol & radio related command.
584
585 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
586
587 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
588
589
590 * (% style="color:#037691" %)**Commands special design for PS-LB**
591
592 These commands only valid for PS-LB, as below:
593
594
595 == 3.1 Set Transmit Interval Time ==
596
597
598 Feature: Change LoRaWAN End Node Transmit Interval.
599
600 (% style="color:blue" %)**AT Command: AT+TDC**
601
602 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
603 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
604 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
605 30000
606 OK
607 the interval is 30000ms = 30s
608 )))
609 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
610 OK
611 Set transmit interval to 60000ms = 60 seconds
612 )))
613
614 (% style="color:blue" %)**Downlink Command: 0x01**
615
616 Format: Command Code (0x01) followed by 3 bytes time value.
617
618 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
619
620 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
621 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
622
623 == 3.2 Set Interrupt Mode ==
624
625
626 Feature, Set Interrupt mode for GPIO_EXIT.
627
628 (% style="color:blue" %)**AT Command: AT+INTMOD**
629
630 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
631 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
632 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
633 0
634 OK
635 the mode is 0 = No interruption
636 )))
637 |(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
638 Set Transmit Interval
639 ~1. (Disable Interrupt),
640 2. (Trigger by rising and falling edge)
641 3. (Trigger by falling edge)
642 4. (Trigger by rising edge)
643 )))|(% style="width:157px" %)OK
644
645 (% style="color:blue" %)**Downlink Command: 0x06**
646
647 Format: Command Code (0x06) followed by 3 bytes.
648
649 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
650
651 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
652 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
653
654 == 3.3 Set the output time ==
655
656
657 Feature, Control the output 3V3 , 5V or 12V.
658
659 (% style="color:blue" %)**AT Command: AT+3V3T**
660
661 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
662 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
663 |(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
664 0
665 OK
666 )))
667 |(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
668 OK
669 default setting
670 )))
671 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
672 OK
673 )))
674 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
675 OK
676 )))
677
678 (% style="color:blue" %)**AT Command: AT+5VT**
679
680 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
681 |=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
682 |(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
683 0
684 OK
685 )))
686 |(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
687 OK
688 default setting
689 )))
690 |(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
691 OK
692 )))
693 |(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
694 OK
695 )))
696
697 (% style="color:blue" %)**AT Command: AT+12VT**
698
699 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
700 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
701 |(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
702 0
703 OK
704 )))
705 |(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
706 |(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
707 OK
708 )))
709
710 (% style="color:blue" %)**Downlink Command: 0x07**
711
712 Format: Command Code (0x07) followed by 3 bytes.
713
714 The first byte is which power, the second and third bytes are the time to turn on.
715
716 * Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
717 * Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
718 * Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
719 * Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
720 * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
721 * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
722
723 == 3.4 Set the Probe Model ==
724
725
726 (% style="color:blue" %)**AT Command: AT** **+PROBE**
727
728 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:448px" %)
729 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 204px;" %)**Function**|=(% style="width: 85px;" %)**Response**
730 |(% style="width:154px" %)AT +PROBE =?|(% style="width:204px" %)Get or Set the probe model.|(% style="width:85px" %)(((
731 0
732 OK
733 )))
734 |(% style="width:154px" %)AT +PROBE =0003|(% style="width:204px" %)Set water depth sensor mode, 3m type.|(% style="width:85px" %)OK
735 |(% style="width:154px" %)AT +PROBE =0101|(% style="width:204px" %)Set pressure transmitters mode, first type.|(% style="width:85px" %)(((
736 OK
737 )))
738 |(% style="width:154px" %)AT +PROBE =0000|(% style="width:204px" %)Initial state, no settings.|(% style="width:85px" %)(((
739 OK
740 )))
741
742 (% style="color:blue" %)**Downlink Command: 0x08**
743
744 Format: Command Code (0x08) followed by 2 bytes.
745
746 * Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
747 * Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
748
749 == 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
750
751
752 Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
753
754 (% style="color:blue" %)**AT Command: AT** **+STDC**
755
756 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
757 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
758 |(% style="width:156px" %)AT+STDC=?|(% style="width:137px" %)(((
759 Get the mode of multiple acquisitions and one uplink
760 )))|(((
761 1,10,18
762 OK
763 )))
764 |(% style="width:156px" %)AT+STDC=1,10,18|(% style="width:137px" %)Set the mode of multiple acquisitions and one uplink|(((
765 OK
766 **(% style="color:#037691" %)aa:**(%%)
767 **0** means disable this function and use TDC to send packets.
768 **1** means enable this function, use the method of multiple acquisitions to send packets.
769 **(% style="color:#037691" %)bb:**(%%) Each collection interval (s), the value is 1~~65535
770 **(% style="color:#037691" %)cc:**(%%)the number of collection times, the value is 1~~120
771 )))
772
773 (% style="color:blue" %)**Downlink Command: 0xAE**
774
775 Format: Command Code (0x08) followed by 5 bytes.
776
777 * Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
778
779 = 4. Battery & how to replace =
780
781 == 4.1 Battery Type ==
782
783
784 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
785
786 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
787
788 [[image:1675146710956-626.png]]
789
790
791 Minimum Working Voltage for the PS-LB:
792
793 PS-LB:  2.45v ~~ 3.6v
794
795
796 == 4.2 Replace Battery ==
797
798
799 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
800
801 And make sure the positive and negative pins match.
802
803
804 == 4.3 Power Consumption Analyze ==
805
806
807 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
808
809 Instruction to use as below:
810
811 (% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
812
813 (% style="color:blue" %)**Step 2:**(%%) Open it and choose
814
815 * Product Model
816 * Uplink Interval
817 * Working Mode
818
819 And the Life expectation in difference case will be shown on the right.
820
821 [[image:1675146895108-304.png]]
822
823
824 The battery related documents as below:
825
826 * [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
827 * [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
828 * [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
829
830 [[image:image-20230131145708-3.png]]
831
832
833 === 4.3.1 ​Battery Note ===
834
835
836 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
837
838
839 === 4.3.2 Replace the battery ===
840
841
842 You can change the battery in the PS-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
843
844 The default battery pack of PS-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
845
846
847 = 5. Remote Configure device =
848
849 == 5.1 Connect via BLE ==
850
851
852 Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
853
854
855 == 5.2 AT Command Set ==
856
857
858
859 = 6. OTA firmware update =
860
861
862 Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
863
864
865 = 7. FAQ =
866
867 == 7.1 How to use AT Command to access device? ==
868
869
870 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
871
872
873 == 7.2 How to update firmware via UART port? ==
874
875
876 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
877
878
879 == 7.3 How to change the LoRa Frequency Bands/Region? ==
880
881
882 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
883 When downloading the images, choose the required image file for download. ​
884
885
886 = 8. Order Info =
887
888
889 [[image:image-20230131153105-4.png]]
890
891
892 = 9. ​Packing Info =
893
894
895 (% style="color:#037691" %)**Package Includes**:
896
897 * PS-LB LoRaWAN Pressure Sensor
898
899 (% style="color:#037691" %)**Dimension and weight**:
900
901 * Device Size: cm
902 * Device Weight: g
903 * Package Size / pcs : cm
904 * Weight / pcs : g
905
906 = 10. Support =
907
908
909 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
910
911 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
912
913
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0