Version 45.1 by Bei Jinggeng on 2023/02/20 17:13

Show last authors
1 [[image:image-20230131115217-1.png]]
2
3
4
5 **Table of Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is LoRaWAN Pressure Sensor ==
17
18
19 (((
20 The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 )))
22
23 (((
24 The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 )))
26
27 (((
28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 )))
30
31 (((
32 PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 )))
34
35 (((
36 PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 )))
38
39 (((
40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 )))
42
43 [[image:1675071321348-194.png]]
44
45
46 == 1.2 ​Features ==
47
48
49 * LoRaWAN 1.0.3 Class A
50 * Ultra-low power consumption
51 * Measure air / gas or water pressure
52 * Different pressure range available
53 * Thread Installation Type or Immersion Type
54 * Monitor Battery Level
55 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
56 * Support Bluetooth v5.1 and LoRaWAN remote configure
57 * Support wireless OTA update firmware
58 * Uplink on periodically
59 * Downlink to change configure
60 * 8500mAh Battery for long term use
61
62
63 == 1.3 Specification ==
64
65
66 (% style="color:#037691" %)**Micro Controller:**
67
68 * MCU: 48Mhz ARM
69 * Flash: 256KB
70 * RAM: 64KB
71
72 (% style="color:#037691" %)**Common DC Characteristics:**
73
74 * Supply Voltage: 2.5v ~~ 3.6v
75 * Operating Temperature: -40 ~~ 85°C
76
77 (% style="color:#037691" %)**LoRa Spec:**
78
79 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
80 * Max +22 dBm constant RF output vs.
81 * RX sensitivity: down to -139 dBm.
82 * Excellent blocking immunity
83
84 (% style="color:#037691" %)**Current Input Measuring :**
85
86 * Range: 0 ~~ 20mA
87 * Accuracy: 0.02mA
88 * Resolution: 0.001mA
89
90 (% style="color:#037691" %)**Voltage Input Measuring:**
91
92 * Range: 0 ~~ 30v
93 * Accuracy: 0.02v
94 * Resolution: 0.001v
95
96 (% style="color:#037691" %)**Battery:**
97
98 * Li/SOCI2 un-chargeable battery
99 * Capacity: 8500mAh
100 * Self-Discharge: <1% / Year @ 25°C
101 * Max continuously current: 130mA
102 * Max boost current: 2A, 1 second
103
104 (% style="color:#037691" %)**Power Consumption**
105
106 * Sleep Mode: 5uA @ 3.3v
107 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
108
109
110 == 1.4 Probe Types ==
111
112 === 1.4.1 Thread Installation Type ===
113
114
115 [[image:1675071448299-229.png]]
116
117 * Hersman Pressure Transmitter
118 * Measuring Range: -0.1 ~~ 0 ~~ 60MPa, see order info.
119 * Accuracy: 0.2% F.S
120 * Long-Term Stability: 0.2% F.S ±0.05%
121 * Overload 200% F.S
122 * Zero Temperature Drift: 0.03% FS/℃(≤100Kpa), 0.02%FS/℃(>100Kpa)
123 * FS Temperature Drift: 0.003% FS/℃(≤100Kpa), 0.002%FS/℃(>100Kpa)
124 * Storage temperature: -30℃~~80℃
125 * Operating temperature: -20℃~~60℃
126 * Connector Type: Various Types, see order info
127
128
129 === 1.4.2 Immersion Type ===
130
131
132 [[image:1675071521308-426.png]]
133
134 * Immersion Type, Probe IP Level: IP68
135 * Measuring Range: Measure range can be customized, up to 100m.
136 * Accuracy: 0.2% F.S
137 * Long-Term Stability: ±0.2% F.S / Year
138 * Overload 200% F.S
139 * Zero Temperature Drift: ±2% F.S)
140 * FS Temperature Drift: ±2% F.S
141 * Storage temperature: -30℃~~80℃
142 * Operating temperature: -40℃~~85℃
143 * Material: 316 stainless steels
144
145
146 == 1.5 Probe Dimension ==
147
148
149
150 == 1.6 Application and Installation ==
151
152 === 1.6.1 Thread Installation Type ===
153
154
155 (% style="color:blue" %)**Application:**
156
157 * Hydraulic Pressure
158 * Petrochemical Industry
159 * Health and Medical
160 * Food & Beverage Processing
161 * Auto-controlling house
162 * Constant Pressure Water Supply
163 * Liquid Pressure measuring
164
165 Order the suitable thread size and install to measure the air / liquid pressure
166
167 [[image:1675071670469-145.png]]
168
169
170 === 1.6.2 Immersion Type ===
171
172
173 (% style="color:blue" %)**Application:**
174
175 Liquid & Water Pressure / Level detect.
176
177 [[image:1675071725288-579.png]]
178
179
180 The Immersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.
181
182
183 [[image:1675071736646-450.png]]
184
185
186 [[image:1675071776102-240.png]]
187
188
189 == 1.7 Sleep mode and working mode ==
190
191
192 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
193
194 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
195
196
197 == 1.8 Button & LEDs ==
198
199
200 [[image:1675071855856-879.png]]
201
202
203 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
204 |=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
205 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
206 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
207 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
208 )))
209 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
210 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
211 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
212 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
213 )))
214 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
215
216
217 == 1.9 Pin Mapping ==
218
219
220 [[image:1675072568006-274.png]]
221
222
223 == 1.10 BLE connection ==
224
225
226 PS-LB support BLE remote configure.
227
228
229 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
230
231 * Press button to send an uplink
232 * Press button to active device.
233 * Device Power on or reset.
234
235 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
236
237
238 == 1.11 Mechanical ==
239
240
241 [[image:1675143884058-338.png]]
242
243
244 [[image:1675143899218-599.png]]
245
246
247 [[image:1675143909447-639.png]]
248
249
250 = 2. Configure PS-LB to connect to LoRaWAN network =
251
252 == 2.1 How it works ==
253
254
255 The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
256
257
258 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
259
260
261 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
262
263
264 [[image:1675144005218-297.png]]
265
266
267 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
268
269
270 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
271
272 Each PS-LB is shipped with a sticker with the default device EUI as below:
273
274 [[image:image-20230131134744-2.jpeg]]
275
276
277
278 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
279
280
281 (% style="color:blue" %)**Register the device**
282
283 [[image:1675144099263-405.png]]
284
285
286 (% style="color:blue" %)**Add APP EUI and DEV EUI**
287
288 [[image:1675144117571-832.png]]
289
290
291 (% style="color:blue" %)**Add APP EUI in the application**
292
293
294 [[image:1675144143021-195.png]]
295
296
297 (% style="color:blue" %)**Add APP KEY**
298
299 [[image:1675144157838-392.png]]
300
301 (% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
302
303
304 Press the button for 5 seconds to activate the PS-LB.
305
306 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
307
308 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
309
310
311
312 == 2.3 ​Uplink Payload ==
313
314
315 Uplink payloads have two types:
316
317 * Distance Value: Use FPORT=2
318 * Other control commands: Use other FPORT fields.
319
320 The application server should parse the correct value based on FPORT settings.
321
322
323 === 2.3.1 Device Status, FPORT~=5 ===
324
325
326 Include device configure status. Once PS-LB Joined the network, it will uplink this message to the server.
327
328 Users can also use the downlink command(0x26 01) to ask PS-LB to resend this uplink.
329
330
331 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
332 |(% colspan="6" %)**Device Status (FPORT=5)**
333 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
334 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
335
336 Example parse in TTNv3
337
338 [[image:1675144504430-490.png]]
339
340
341 (% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
342
343 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
344
345 (% style="color:#037691" %)**Frequency Band**:
346
347 *0x01: EU868
348
349 *0x02: US915
350
351 *0x03: IN865
352
353 *0x04: AU915
354
355 *0x05: KZ865
356
357 *0x06: RU864
358
359 *0x07: AS923
360
361 *0x08: AS923-1
362
363 *0x09: AS923-2
364
365 *0x0a: AS923-3
366
367 *0x0b: CN470
368
369 *0x0c: EU433
370
371 *0x0d: KR920
372
373 *0x0e: MA869
374
375
376 (% style="color:#037691" %)**Sub-Band**:
377
378 AU915 and US915:value 0x00 ~~ 0x08
379
380 CN470: value 0x0B ~~ 0x0C
381
382 Other Bands: Always 0x00
383
384
385 (% style="color:#037691" %)**Battery Info**:
386
387 Check the battery voltage.
388
389 Ex1: 0x0B45 = 2885mV
390
391 Ex2: 0x0B49 = 2889mV
392
393
394 === 2.3.2 Sensor value, FPORT~=2 ===
395
396
397 Uplink payload includes in total 9 bytes.
398
399
400 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
401 |(% style="width:97px" %)(((
402 **Size(bytes)**
403 )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
404 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
405
406 [[image:1675144608950-310.png]]
407
408
409 (% class="wikigeneratedid" %)
410 === 2.3.3 Sensor value, FPORT~=7 ===
411
412 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:543px" %)
413 |(% style="width:99px" %)(((
414 **Size(bytes)**
415 )))|(% style="width:63px" %)2|(% style="width:378px" %)n
416 |(% style="width:99px" %)Value|(% style="width:63px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:378px" %)(((
417 Voltage value, each 2 bytes is a set of voltage values
418 )))
419
420
421 [[image:image-20230220171300-1.png||height="207" width="863"]]
422
423
424 === 2.3.3 Battery Info ===
425
426
427 Check the battery voltage for PS-LB.
428
429 Ex1: 0x0B45 = 2885mV
430
431 Ex2: 0x0B49 = 2889mV
432
433
434
435 === 2.3.4 Probe Model ===
436
437
438 PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
439
440
441 For example.
442
443 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
444 |(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
445 |(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
446 |(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
447
448 The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
449
450
451 === 2.3.5 0~~20mA value (IDC_IN) ===
452
453
454 The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
455
456 (% style="color:#037691" %)**Example**:
457
458 27AE(H) = 10158 (D)/1000 = 10.158mA.
459
460
461 === 2.3.6 0~~30V value ( pin VDC_IN) ===
462
463
464 Measure the voltage value. The range is 0 to 30V.
465
466 (% style="color:#037691" %)**Example**:
467
468 138E(H) = 5006(D)/1000= 5.006V
469
470
471 === 2.3.7 IN1&IN2&INT pin ===
472
473
474 IN1 and IN2 are used as digital input pins.
475
476 (% style="color:#037691" %)**Example**:
477
478 09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
479
480 09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
481
482
483 This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
484
485 (% style="color:#037691" %)**Example:**
486
487 09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
488
489 09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
490
491 0x01: Interrupt Uplink Packet.
492
493
494 === 2.3.8 ​Decode payload in The Things Network ===
495
496
497 While using TTN network, you can add the payload format to decode the payload.
498
499
500 [[image:1675144839454-913.png]]
501
502
503 PS-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
504
505
506 == 2.4 Uplink Interval ==
507
508
509 The PS-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
510
511
512 == 2.5 Show Data in DataCake IoT Server ==
513
514
515 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
516
517
518 (% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
519
520 (% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
521
522
523 [[image:1675144951092-237.png]]
524
525
526 [[image:1675144960452-126.png]]
527
528
529 (% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
530
531 (% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
532
533 [[image:1675145004465-869.png]]
534
535
536 [[image:1675145018212-853.png]]
537
538
539
540
541 [[image:1675145029119-717.png]]
542
543
544 (% style="color:blue" %)**Step 5: **(%%)add payload decode
545
546 [[image:1675145051360-659.png]]
547
548
549 [[image:1675145060812-420.png]]
550
551
552 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
553
554
555 [[image:1675145081239-376.png]]
556
557
558 == 2.6 Frequency Plans ==
559
560
561 The PS-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
562
563 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
564
565
566 == 2.7 ​Firmware Change Log ==
567
568
569 **Firmware download link:**
570
571 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
572
573
574
575 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
576
577
578 Use can configure PS-LB via AT Command or LoRaWAN Downlink.
579
580 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
581 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
582
583 There are two kinds of commands to configure PS-LB, they are:
584
585 * (% style="color:#037691" %)**General Commands**
586
587 These commands are to configure:
588
589 * General system settings like: uplink interval.
590 * LoRaWAN protocol & radio related command.
591
592 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
593
594 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
595
596
597 * (% style="color:#037691" %)**Commands special design for PS-LB**
598
599 These commands only valid for PS-LB, as below:
600
601
602 == 3.1 Set Transmit Interval Time ==
603
604
605 Feature: Change LoRaWAN End Node Transmit Interval.
606
607 (% style="color:blue" %)**AT Command: AT+TDC**
608
609 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
610 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
611 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
612 30000
613 OK
614 the interval is 30000ms = 30s
615 )))
616 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
617 OK
618 Set transmit interval to 60000ms = 60 seconds
619 )))
620
621 (% style="color:blue" %)**Downlink Command: 0x01**
622
623 Format: Command Code (0x01) followed by 3 bytes time value.
624
625 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
626
627 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
628 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
629
630
631 == 3.2 Set Interrupt Mode ==
632
633
634 Feature, Set Interrupt mode for GPIO_EXIT.
635
636 (% style="color:blue" %)**AT Command: AT+INTMOD**
637
638 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
639 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
640 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
641 0
642 OK
643 the mode is 0 = No interruption
644 )))
645 |(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
646 Set Transmit Interval
647 ~1. (Disable Interrupt),
648 2. (Trigger by rising and falling edge)
649 3. (Trigger by falling edge)
650 4. (Trigger by rising edge)
651 )))|(% style="width:157px" %)OK
652
653 (% style="color:blue" %)**Downlink Command: 0x06**
654
655 Format: Command Code (0x06) followed by 3 bytes.
656
657 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
658
659 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
660 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
661
662
663 == 3.3 Set the output time ==
664
665
666 Feature, Control the output 3V3 , 5V or 12V.
667
668 (% style="color:blue" %)**AT Command: AT+3V3T**
669
670 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
671 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
672 |(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
673 0
674 OK
675 )))
676 |(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
677 OK
678 default setting
679 )))
680 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
681 OK
682 )))
683 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
684 OK
685 )))
686
687 (% style="color:blue" %)**AT Command: AT+5VT**
688
689 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
690 |=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
691 |(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
692 0
693 OK
694 )))
695 |(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
696 OK
697 default setting
698 )))
699 |(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
700 OK
701 )))
702 |(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
703 OK
704 )))
705
706 (% style="color:blue" %)**AT Command: AT+12VT**
707
708 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
709 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
710 |(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
711 0
712 OK
713 )))
714 |(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
715 |(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
716 OK
717 )))
718
719 (% style="color:blue" %)**Downlink Command: 0x07**
720
721 Format: Command Code (0x07) followed by 3 bytes.
722
723 The first byte is which power, the second and third bytes are the time to turn on.
724
725 * Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
726 * Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
727 * Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
728 * Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
729 * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
730 * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
731
732
733 == 3.4 Set the Probe Model ==
734
735
736 (% style="color:blue" %)**AT Command: AT** **+PROBE**
737
738 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:448px" %)
739 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 204px;" %)**Function**|=(% style="width: 85px;" %)**Response**
740 |(% style="width:154px" %)AT +PROBE =?|(% style="width:204px" %)Get or Set the probe model.|(% style="width:85px" %)(((
741 0
742 OK
743 )))
744 |(% style="width:154px" %)AT +PROBE =0003|(% style="width:204px" %)Set water depth sensor mode, 3m type.|(% style="width:85px" %)OK
745 |(% style="width:154px" %)AT +PROBE =0101|(% style="width:204px" %)Set pressure transmitters mode, first type.|(% style="width:85px" %)(((
746 OK
747 )))
748 |(% style="width:154px" %)AT +PROBE =0000|(% style="width:204px" %)Initial state, no settings.|(% style="width:85px" %)(((
749 OK
750 )))
751
752 (% style="color:blue" %)**Downlink Command: 0x08**
753
754 Format: Command Code (0x08) followed by 2 bytes.
755
756 * Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
757 * Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
758
759
760 == 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
761
762 Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
763
764 (% style="color:blue" %)**AT Command: AT** **+STDC**
765
766 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
767 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
768 |(% style="width:156px" %)AT+STDC=?|(% style="width:137px" %)(((
769 Get the mode of multiple acquisitions and one uplink
770 )))|(((
771 1,10,18
772 OK
773 )))
774 |(% style="width:156px" %)AT+STDC=1,10,18|(% style="width:137px" %)Set the mode of multiple acquisitions and one uplink|(((
775 OK
776
777 aa:
778
779 0 means disable this function and use TDC to send packets.
780
781 1 means enable this function, use the method of multiple acquisitions to send packets.
782
783 bb: Each collection interval (s), the value is 1~~65535
784
785 cc: the number of collection times, the value is 1~~120
786 )))
787
788 (% style="color:blue" %)**Downlink Command: 0xAE**
789
790 Format: Command Code (0x08) followed by 5 bytes.
791
792 * Example 1: Downlink Payload: AE 01 02 58 12 **~-~-->**  AT+STDC=1,600,18
793
794 = 4. Battery & how to replace =
795
796 == 4.1 Battery Type ==
797
798
799 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
800
801 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
802
803 [[image:1675146710956-626.png]]
804
805
806 Minimum Working Voltage for the PS-LB:
807
808 PS-LB:  2.45v ~~ 3.6v
809
810
811 == 4.2 Replace Battery ==
812
813
814 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
815
816 And make sure the positive and negative pins match.
817
818
819 == 4.3 Power Consumption Analyze ==
820
821
822 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
823
824 Instruction to use as below:
825
826 (% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
827
828 (% style="color:blue" %)**Step 2:**(%%) Open it and choose
829
830 * Product Model
831 * Uplink Interval
832 * Working Mode
833
834 And the Life expectation in difference case will be shown on the right.
835
836 [[image:1675146895108-304.png]]
837
838
839 The battery related documents as below:
840
841 * [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
842 * [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
843 * [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
844
845 [[image:image-20230131145708-3.png]]
846
847
848 === 4.3.1 ​Battery Note ===
849
850
851 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
852
853
854 === 4.3.2 Replace the battery ===
855
856
857 You can change the battery in the PS-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
858
859 The default battery pack of PS-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
860
861
862 = 5. Remote Configure device =
863
864 == 5.1 Connect via BLE ==
865
866
867 Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
868
869
870 == 5.2 AT Command Set ==
871
872
873
874 = 6. OTA firmware update =
875
876
877 Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
878
879
880 = 7. FAQ =
881
882 == 7.1 How to use AT Command to access device? ==
883
884
885 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
886
887
888 == 7.2 How to update firmware via UART port? ==
889
890
891 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
892
893
894 == 7.3 How to change the LoRa Frequency Bands/Region? ==
895
896
897 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
898 When downloading the images, choose the required image file for download. ​
899
900
901 = 8. Order Info =
902
903
904 [[image:image-20230131153105-4.png]]
905
906
907 = 9. ​Packing Info =
908
909
910 (% style="color:#037691" %)**Package Includes**:
911
912 * PS-LB LoRaWAN Pressure Sensor
913
914 (% style="color:#037691" %)**Dimension and weight**:
915
916 * Device Size: cm
917 * Device Weight: g
918 * Package Size / pcs : cm
919 * Weight / pcs : g
920
921
922 = 10. Support =
923
924
925 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
926
927 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
928
929
930