Show last authors
1 [[image:image-20230131115217-1.png]]
2
3
4
5 **Table of Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is LoRaWAN Pressure Sensor ==
17
18
19 (((
20 The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 )))
22
23 (((
24 The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 )))
26
27 (((
28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 )))
30
31 (((
32 PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 )))
34
35 (((
36 PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 )))
38
39 (((
40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 )))
42
43 [[image:1675071321348-194.png]]
44
45
46 == 1.2 ​Features ==
47
48
49 * LoRaWAN 1.0.3 Class A
50 * Ultra-low power consumption
51 * Measure air / gas or water pressure
52 * Different pressure range available
53 * Thread Installation Type or Immersion Type
54 * Monitor Battery Level
55 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
56 * Support Bluetooth v5.1 and LoRaWAN remote configure
57 * Support wireless OTA update firmware
58 * Uplink on periodically
59 * Downlink to change configure
60 * 8500mAh Battery for long term use
61
62
63
64 == 1.3 Specification ==
65
66
67 (% style="color:#037691" %)**Micro Controller:**
68
69 * MCU: 48Mhz ARM
70 * Flash: 256KB
71 * RAM: 64KB
72
73 (% style="color:#037691" %)**Common DC Characteristics:**
74
75 * Supply Voltage: 2.5v ~~ 3.6v
76 * Operating Temperature: -40 ~~ 85°C
77
78 (% style="color:#037691" %)**LoRa Spec:**
79
80 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
81 * Max +22 dBm constant RF output vs.
82 * RX sensitivity: down to -139 dBm.
83 * Excellent blocking immunity
84
85 (% style="color:#037691" %)**Current Input Measuring :**
86
87 * Range: 0 ~~ 20mA
88 * Accuracy: 0.02mA
89 * Resolution: 0.001mA
90
91 (% style="color:#037691" %)**Voltage Input Measuring:**
92
93 * Range: 0 ~~ 30v
94 * Accuracy: 0.02v
95 * Resolution: 0.001v
96
97 (% style="color:#037691" %)**Battery:**
98
99 * Li/SOCI2 un-chargeable battery
100 * Capacity: 8500mAh
101 * Self-Discharge: <1% / Year @ 25°C
102 * Max continuously current: 130mA
103 * Max boost current: 2A, 1 second
104
105 (% style="color:#037691" %)**Power Consumption**
106
107 * Sleep Mode: 5uA @ 3.3v
108 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
109
110
111
112 == 1.4 Probe Types ==
113
114 === 1.4.1 Thread Installation Type ===
115
116
117 [[image:1675071448299-229.png]]
118
119 * Hersman Pressure Transmitter
120 * Measuring Range: -0.1 ~~ 0 ~~ 60MPa, see order info.
121 * Accuracy: 0.2% F.S
122 * Long-Term Stability: 0.2% F.S ±0.05%
123 * Overload 200% F.S
124 * Zero Temperature Drift: 0.03% FS/℃(≤100Kpa), 0.02%FS/℃(>100Kpa)
125 * FS Temperature Drift: 0.003% FS/℃(≤100Kpa), 0.002%FS/℃(>100Kpa)
126 * Storage temperature: -30℃~~80℃
127 * Operating temperature: -20℃~~60℃
128 * Connector Type: Various Types, see order info
129
130
131
132 === 1.4.2 Immersion Type ===
133
134
135 [[image:1675071521308-426.png]]
136
137 * Immersion Type, Probe IP Level: IP68
138 * Measuring Range: Measure range can be customized, up to 100m.
139 * Accuracy: 0.2% F.S
140 * Long-Term Stability: ±0.2% F.S / Year
141 * Overload 200% F.S
142 * Zero Temperature Drift: ±2% F.S)
143 * FS Temperature Drift: ±2% F.S
144 * Storage temperature: -30℃~~80℃
145 * Operating temperature: -40℃~~85℃
146 * Material: 316 stainless steels
147
148
149
150 == 1.5 Probe Dimension ==
151
152
153
154 == 1.6 Application and Installation ==
155
156 === 1.6.1 Thread Installation Type ===
157
158
159 (% style="color:blue" %)**Application:**
160
161 * Hydraulic Pressure
162 * Petrochemical Industry
163 * Health and Medical
164 * Food & Beverage Processing
165 * Auto-controlling house
166 * Constant Pressure Water Supply
167 * Liquid Pressure measuring
168
169 Order the suitable thread size and install to measure the air / liquid pressure
170
171 [[image:1675071670469-145.png]]
172
173
174 === 1.6.2 Immersion Type ===
175
176
177 (% style="color:blue" %)**Application:**
178
179 Liquid & Water Pressure / Level detect.
180
181 [[image:1675071725288-579.png]]
182
183
184 The Immersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.
185
186
187 [[image:1675071736646-450.png]]
188
189
190 [[image:1675071776102-240.png]]
191
192
193 == 1.7 Sleep mode and working mode ==
194
195
196 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
197
198 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
199
200
201 == 1.8 Button & LEDs ==
202
203
204 [[image:1675071855856-879.png]]
205
206
207 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
208 |=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
209 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
210 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
211 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
212 )))
213 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
214 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
215 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
216 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
217 )))
218 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
219
220
221
222 == 1.9 Pin Mapping ==
223
224
225 [[image:1675072568006-274.png]]
226
227
228 == 1.10 BLE connection ==
229
230
231 PS-LB support BLE remote configure.
232
233
234 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
235
236 * Press button to send an uplink
237 * Press button to active device.
238 * Device Power on or reset.
239
240 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
241
242
243 == 1.11 Mechanical ==
244
245
246 [[image:1675143884058-338.png]]
247
248
249 [[image:1675143899218-599.png]]
250
251
252 [[image:1675143909447-639.png]]
253
254
255 = 2. Configure PS-LB to connect to LoRaWAN network =
256
257 == 2.1 How it works ==
258
259
260 The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
261
262
263 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
264
265
266 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
267
268
269 [[image:1675144005218-297.png]]
270
271
272 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
273
274
275 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
276
277 Each PS-LB is shipped with a sticker with the default device EUI as below:
278
279 [[image:image-20230131134744-2.jpeg]]
280
281
282
283 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
284
285
286 (% style="color:blue" %)**Register the device**
287
288 [[image:1675144099263-405.png]]
289
290
291 (% style="color:blue" %)**Add APP EUI and DEV EUI**
292
293 [[image:1675144117571-832.png]]
294
295
296 (% style="color:blue" %)**Add APP EUI in the application**
297
298
299 [[image:1675144143021-195.png]]
300
301
302 (% style="color:blue" %)**Add APP KEY**
303
304 [[image:1675144157838-392.png]]
305
306 (% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
307
308
309 Press the button for 5 seconds to activate the PS-LB.
310
311 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
312
313 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
314
315
316
317 == 2.3 ​Uplink Payload ==
318
319
320 Uplink payloads have two types:
321
322 * Distance Value: Use FPORT=2
323 * Other control commands: Use other FPORT fields.
324
325 The application server should parse the correct value based on FPORT settings.
326
327
328 === 2.3.1 Device Status, FPORT~=5 ===
329
330
331 Include device configure status. Once PS-LB Joined the network, it will uplink this message to the server.
332
333 Users can also use the downlink command(0x26 01) to ask PS-LB to resend this uplink.
334
335
336 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
337 |(% colspan="6" %)**Device Status (FPORT=5)**
338 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
339 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
340
341 Example parse in TTNv3
342
343 [[image:1675144504430-490.png]]
344
345
346 (% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
347
348 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
349
350 (% style="color:#037691" %)**Frequency Band**:
351
352 *0x01: EU868
353
354 *0x02: US915
355
356 *0x03: IN865
357
358 *0x04: AU915
359
360 *0x05: KZ865
361
362 *0x06: RU864
363
364 *0x07: AS923
365
366 *0x08: AS923-1
367
368 *0x09: AS923-2
369
370 *0x0a: AS923-3
371
372 *0x0b: CN470
373
374 *0x0c: EU433
375
376 *0x0d: KR920
377
378 *0x0e: MA869
379
380
381 (% style="color:#037691" %)**Sub-Band**:
382
383 AU915 and US915:value 0x00 ~~ 0x08
384
385 CN470: value 0x0B ~~ 0x0C
386
387 Other Bands: Always 0x00
388
389
390 (% style="color:#037691" %)**Battery Info**:
391
392 Check the battery voltage.
393
394 Ex1: 0x0B45 = 2885mV
395
396 Ex2: 0x0B49 = 2889mV
397
398
399 === 2.3.2 Sensor value, FPORT~=2 ===
400
401
402 Uplink payload includes in total 9 bytes.
403
404
405 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
406 |(% style="width:97px" %)(((
407 **Size(bytes)**
408 )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
409 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
410
411 [[image:1675144608950-310.png]]
412
413
414 === 2.3.3 Battery Info ===
415
416
417 Check the battery voltage for PS-LB.
418
419 Ex1: 0x0B45 = 2885mV
420
421 Ex2: 0x0B49 = 2889mV
422
423
424 === 2.3.4 Probe Model ===
425
426
427 PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
428
429
430 For example.
431
432 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
433 |(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
434 |(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
435 |(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
436
437 The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
438
439
440 === 2.3.5 0~~20mA value (IDC_IN) ===
441
442
443 The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
444
445 (% style="color:#037691" %)**Example**:
446
447 27AE(H) = 10158 (D)/1000 = 10.158mA.
448
449
450 === 2.3.6 0~~30V value ( pin VDC_IN) ===
451
452
453 Measure the voltage value. The range is 0 to 30V.
454
455 (% style="color:#037691" %)**Example**:
456
457 138E(H) = 5006(D)/1000= 5.006V
458
459
460 === 2.3.7 IN1&IN2&INT pin ===
461
462
463 IN1 and IN2 are used as digital input pins.
464
465 (% style="color:#037691" %)**Example**:
466
467 09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
468
469 09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
470
471
472 This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
473
474 (% style="color:#037691" %)**Example:**
475
476 09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
477
478 09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
479
480 0x01: Interrupt Uplink Packet.
481
482
483 === 2.3.8 ​Decode payload in The Things Network ===
484
485
486 While using TTN network, you can add the payload format to decode the payload.
487
488
489 [[image:1675144839454-913.png]]
490
491
492 PS-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
493
494
495 == 2.4 Uplink Interval ==
496
497
498 The PS-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
499
500
501 == 2.5 Show Data in DataCake IoT Server ==
502
503
504 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
505
506
507 (% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
508
509 (% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
510
511
512 [[image:1675144951092-237.png]]
513
514
515 [[image:1675144960452-126.png]]
516
517
518 (% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
519
520 (% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
521
522 [[image:1675145004465-869.png]]
523
524
525 [[image:1675145018212-853.png]]
526
527
528
529
530 [[image:1675145029119-717.png]]
531
532
533 (% style="color:blue" %)**Step 5: **(%%)add payload decode
534
535 [[image:1675145051360-659.png]]
536
537
538 [[image:1675145060812-420.png]]
539
540
541 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
542
543
544 [[image:1675145081239-376.png]]
545
546
547 == 2.6 Frequency Plans ==
548
549
550 The PS-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
551
552 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
553
554
555 == 2.7 ​Firmware Change Log ==
556
557
558 **Firmware download link:**
559
560 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
561
562
563
564 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
565
566
567 Use can configure PS-LB via AT Command or LoRaWAN Downlink.
568
569 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
570 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
571
572 There are two kinds of commands to configure PS-LB, they are:
573
574 * (% style="color:#037691" %)**General Commands**
575
576 These commands are to configure:
577
578 * General system settings like: uplink interval.
579 * LoRaWAN protocol & radio related command.
580
581 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
582
583 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
584
585
586 * (% style="color:#037691" %)**Commands special design for PS-LB**
587
588 These commands only valid for PS-LB, as below:
589
590
591 == 3.1 Set Transmit Interval Time ==
592
593
594 Feature: Change LoRaWAN End Node Transmit Interval.
595
596 (% style="color:blue" %)**AT Command: AT+TDC**
597
598 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
599 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
600 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
601 30000
602 OK
603 the interval is 30000ms = 30s
604 )))
605 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
606 OK
607 Set transmit interval to 60000ms = 60 seconds
608 )))
609
610 (% style="color:blue" %)**Downlink Command: 0x01**
611
612 Format: Command Code (0x01) followed by 3 bytes time value.
613
614 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
615
616 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
617 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
618
619
620
621 == 3.2 Set Interrupt Mode ==
622
623
624 Feature, Set Interrupt mode for GPIO_EXIT.
625
626 (% style="color:blue" %)**AT Command: AT+INTMOD**
627
628 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
629 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
630 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
631 0
632 OK
633 the mode is 0 = No interruption
634 )))
635 |(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
636 Set Transmit Interval
637 ~1. (Disable Interrupt),
638 2. (Trigger by rising and falling edge)
639 3. (Trigger by falling edge)
640 4. (Trigger by rising edge)
641 )))|(% style="width:157px" %)OK
642
643 (% style="color:blue" %)**Downlink Command: 0x06**
644
645 Format: Command Code (0x06) followed by 3 bytes.
646
647 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
648
649 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
650 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
651
652
653
654 == 3.3 Set the output time ==
655
656
657 Feature, Control the output 3V3 , 5V or 12V.
658
659 (% style="color:blue" %)**AT Command: AT+3V3T**
660
661 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
662 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
663 |(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
664 0
665 OK
666 )))
667 |(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
668 OK
669 default setting
670 )))
671 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
672 OK
673 )))
674 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
675 OK
676 )))
677
678
679 (% style="color:blue" %)**AT Command: AT+5VT**
680
681 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
682 |=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
683 |(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
684 0
685 OK
686 )))
687 |(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
688 OK
689 default setting
690 )))
691 |(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
692 OK
693 )))
694 |(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
695 OK
696 )))
697
698
699 (% style="color:blue" %)**AT Command: AT+12VT**
700
701 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
702 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
703 |(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
704 0
705 OK
706 )))
707 |(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
708 |(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
709 OK
710 )))
711
712
713 (% style="color:blue" %)**Downlink Command: 0x07**
714
715 Format: Command Code (0x07) followed by 3 bytes.
716
717 The first byte is which power, the second and third bytes are the time to turn on.
718
719 * Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
720 * Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
721 * Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
722 * Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
723 * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
724 * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
725
726
727
728 == 3.4 Set the Probe Model ==
729
730
731 (% style="color:blue" %)**AT Command: AT** **+PROBE**
732
733 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:448px" %)
734 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 204px;" %)**Function**|=(% style="width: 85px;" %)**Response**
735 |(% style="width:154px" %)AT +PROBE =?|(% style="width:204px" %)Get or Set the probe model.|(% style="width:85px" %)(((
736 0
737 OK
738 )))
739 |(% style="width:154px" %)AT +PROBE =0003|(% style="width:204px" %)Set water depth sensor mode, 3m type.|(% style="width:85px" %)OK
740 |(% style="width:154px" %)AT +PROBE =0101|(% style="width:204px" %)Set pressure transmitters mode, first type.|(% style="width:85px" %)(((
741 OK
742 )))
743 |(% style="width:154px" %)AT +PROBE =0000|(% style="width:204px" %)Initial state, no settings.|(% style="width:85px" %)(((
744 OK
745 )))
746
747 (% style="color:blue" %)**Downlink Command: 0x08**
748
749 Format: Command Code (0x08) followed by 2 bytes.
750
751 * Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
752 * Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
753
754
755
756 = 4. Battery & how to replace =
757
758 == 4.1 Battery Type ==
759
760
761 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
762
763 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
764
765 [[image:1675146710956-626.png]]
766
767
768 Minimum Working Voltage for the PS-LB:
769
770 PS-LB:  2.45v ~~ 3.6v
771
772
773 == 4.2 Replace Battery ==
774
775
776 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
777
778 And make sure the positive and negative pins match.
779
780
781 == 4.3 Power Consumption Analyze ==
782
783
784 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
785
786 Instruction to use as below:
787
788 (% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
789
790 (% style="color:blue" %)**Step 2:**(%%) Open it and choose
791
792 * Product Model
793 * Uplink Interval
794 * Working Mode
795
796 And the Life expectation in difference case will be shown on the right.
797
798 [[image:1675146895108-304.png]]
799
800
801 The battery related documents as below:
802
803 * [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
804 * [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
805 * [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
806
807 [[image:image-20230131145708-3.png]]
808
809
810 === 4.3.1 ​Battery Note ===
811
812
813 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
814
815
816 === 4.3.2 Replace the battery ===
817
818
819 You can change the battery in the PS-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
820
821 The default battery pack of PS-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
822
823
824 = 5. Remote Configure device =
825
826 == 5.1 Connect via BLE ==
827
828
829 Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
830
831
832 == 5.2 AT Command Set ==
833
834
835
836 = 6. OTA firmware update =
837
838
839 Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
840
841
842 = 7. FAQ =
843
844 == 7.1 How to use AT Command to access device? ==
845
846
847 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
848
849
850 == 7.2 How to update firmware via UART port? ==
851
852
853 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
854
855
856 == 7.3 How to change the LoRa Frequency Bands/Region? ==
857
858
859 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
860 When downloading the images, choose the required image file for download. ​
861
862
863 = 8. Order Info =
864
865
866 [[image:image-20230131153105-4.png]]
867
868
869 = 9. ​Packing Info =
870
871
872 (% style="color:#037691" %)**Package Includes**:
873
874 * PS-LB LoRaWAN Pressure Sensor
875
876 (% style="color:#037691" %)**Dimension and weight**:
877
878 * Device Size: cm
879 * Device Weight: g
880 * Package Size / pcs : cm
881 * Weight / pcs : g
882
883
884
885 = 10. Support =
886
887
888 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
889
890 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
891
892
893
894
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0