Version 43.2 by Xiaoling on 2023/02/01 11:33

Show last authors
1 [[image:image-20230131115217-1.png]]
2
3
4
5 **Table of Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is LoRaWAN Pressure Sensor ==
17
18
19 (((
20 The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 )))
22
23 (((
24 The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 )))
26
27 (((
28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 )))
30
31 (((
32 PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 )))
34
35 (((
36 PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 )))
38
39 (((
40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 )))
42
43 [[image:1675071321348-194.png]]
44
45
46 == 1.2 ​Features ==
47
48
49 * LoRaWAN 1.0.3 Class A
50 * Ultra-low power consumption
51 * Measure air / gas or water pressure
52 * Different pressure range available
53 * Thread Installation Type or Immersion Type
54 * Monitor Battery Level
55 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
56 * Support Bluetooth v5.1 and LoRaWAN remote configure
57 * Support wireless OTA update firmware
58 * Uplink on periodically
59 * Downlink to change configure
60 * 8500mAh Battery for long term use
61
62
63 == 1.3 Specification ==
64
65
66 (% style="color:#037691" %)**Micro Controller:**
67
68 * MCU: 48Mhz ARM
69 * Flash: 256KB
70 * RAM: 64KB
71
72 (% style="color:#037691" %)**Common DC Characteristics:**
73
74 * Supply Voltage: 2.5v ~~ 3.6v
75 * Operating Temperature: -40 ~~ 85°C
76
77 (% style="color:#037691" %)**LoRa Spec:**
78
79 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
80 * Max +22 dBm constant RF output vs.
81 * RX sensitivity: down to -139 dBm.
82 * Excellent blocking immunity
83
84 (% style="color:#037691" %)**Current Input Measuring :**
85
86 * Range: 0 ~~ 20mA
87 * Accuracy: 0.02mA
88 * Resolution: 0.001mA
89
90 (% style="color:#037691" %)**Voltage Input Measuring:**
91
92 * Range: 0 ~~ 30v
93 * Accuracy: 0.02v
94 * Resolution: 0.001v
95
96 (% style="color:#037691" %)**Battery:**
97
98 * Li/SOCI2 un-chargeable battery
99 * Capacity: 8500mAh
100 * Self-Discharge: <1% / Year @ 25°C
101 * Max continuously current: 130mA
102 * Max boost current: 2A, 1 second
103
104 (% style="color:#037691" %)**Power Consumption**
105
106 * Sleep Mode: 5uA @ 3.3v
107 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
108
109
110 == 1.4 Probe Types ==
111
112 === 1.4.1 Thread Installation Type ===
113
114
115 [[image:1675071448299-229.png]]
116
117 * Hersman Pressure Transmitter
118 * Measuring Range: -0.1 ~~ 0 ~~ 60MPa, see order info.
119 * Accuracy: 0.2% F.S
120 * Long-Term Stability: 0.2% F.S ±0.05%
121 * Overload 200% F.S
122 * Zero Temperature Drift: 0.03% FS/℃(≤100Kpa), 0.02%FS/℃(>100Kpa)
123 * FS Temperature Drift: 0.003% FS/℃(≤100Kpa), 0.002%FS/℃(>100Kpa)
124 * Storage temperature: -30℃~~80℃
125 * Operating temperature: -20℃~~60℃
126 * Connector Type: Various Types, see order info
127
128
129 === 1.4.2 Immersion Type ===
130
131
132 [[image:1675071521308-426.png]]
133
134 * Immersion Type, Probe IP Level: IP68
135 * Measuring Range: Measure range can be customized, up to 100m.
136 * Accuracy: 0.2% F.S
137 * Long-Term Stability: ±0.2% F.S / Year
138 * Overload 200% F.S
139 * Zero Temperature Drift: ±2% F.S)
140 * FS Temperature Drift: ±2% F.S
141 * Storage temperature: -30℃~~80℃
142 * Operating temperature: -40℃~~85℃
143 * Material: 316 stainless steels
144
145
146 == 1.5 Probe Dimension ==
147
148
149
150 == 1.6 Application and Installation ==
151
152 === 1.6.1 Thread Installation Type ===
153
154
155 (% style="color:blue" %)**Application:**
156
157 * Hydraulic Pressure
158 * Petrochemical Industry
159 * Health and Medical
160 * Food & Beverage Processing
161 * Auto-controlling house
162 * Constant Pressure Water Supply
163 * Liquid Pressure measuring
164
165 Order the suitable thread size and install to measure the air / liquid pressure
166
167 [[image:1675071670469-145.png]]
168
169
170 === 1.6.2 Immersion Type ===
171
172
173 (% style="color:blue" %)**Application:**
174
175 Liquid & Water Pressure / Level detect.
176
177 [[image:1675071725288-579.png]]
178
179
180 The Immersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.
181
182
183 [[image:1675071736646-450.png]]
184
185
186 [[image:1675071776102-240.png]]
187
188
189 == 1.7 Sleep mode and working mode ==
190
191
192 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
193
194 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
195
196
197 == 1.8 Button & LEDs ==
198
199
200 [[image:1675071855856-879.png]]
201
202
203 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
204 |=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
205 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
206 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
207 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
208 )))
209 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
210 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
211 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
212 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
213 )))
214 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
215
216
217 == 1.9 Pin Mapping ==
218
219
220 [[image:1675072568006-274.png]]
221
222
223 == 1.10 BLE connection ==
224
225
226 PS-LB support BLE remote configure.
227
228
229 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
230
231 * Press button to send an uplink
232 * Press button to active device.
233 * Device Power on or reset.
234
235 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
236
237
238 == 1.11 Mechanical ==
239
240
241
242
243 [[image:1675143884058-338.png]]
244
245
246 [[image:1675143899218-599.png]]
247
248
249 [[image:1675143909447-639.png]]
250
251
252 = 2. Configure PS-LB to connect to LoRaWAN network =
253
254 == 2.1 How it works ==
255
256
257 The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
258
259
260 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
261
262
263 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
264
265
266 [[image:1675144005218-297.png]]
267
268
269 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
270
271
272 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
273
274 Each PS-LB is shipped with a sticker with the default device EUI as below:
275
276 [[image:image-20230131134744-2.jpeg]]
277
278
279
280 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
281
282
283 (% style="color:blue" %)**Register the device**
284
285 [[image:1675144099263-405.png]]
286
287
288 (% style="color:blue" %)**Add APP EUI and DEV EUI**
289
290 [[image:1675144117571-832.png]]
291
292
293 (% style="color:blue" %)**Add APP EUI in the application**
294
295
296 [[image:1675144143021-195.png]]
297
298
299 (% style="color:blue" %)**Add APP KEY**
300
301 [[image:1675144157838-392.png]]
302
303 (% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
304
305
306 Press the button for 5 seconds to activate the PS-LB.
307
308 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
309
310 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
311
312
313
314 == 2.3 ​Uplink Payload ==
315
316
317 Uplink payloads have two types:
318
319 * Distance Value: Use FPORT=2
320 * Other control commands: Use other FPORT fields.
321
322 The application server should parse the correct value based on FPORT settings.
323
324
325 === 2.3.1 Device Status, FPORT~=5 ===
326
327
328 Include device configure status. Once PS-LB Joined the network, it will uplink this message to the server.
329
330 Users can also use the downlink command(0x26 01) to ask PS-LB to resend this uplink.
331
332
333 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
334 |(% colspan="6" %)**Device Status (FPORT=5)**
335 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
336 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
337
338 Example parse in TTNv3
339
340 [[image:1675144504430-490.png]]
341
342
343 (% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
344
345 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
346
347 (% style="color:#037691" %)**Frequency Band**:
348
349 *0x01: EU868
350
351 *0x02: US915
352
353 *0x03: IN865
354
355 *0x04: AU915
356
357 *0x05: KZ865
358
359 *0x06: RU864
360
361 *0x07: AS923
362
363 *0x08: AS923-1
364
365 *0x09: AS923-2
366
367 *0x0a: AS923-3
368
369 *0x0b: CN470
370
371 *0x0c: EU433
372
373 *0x0d: KR920
374
375 *0x0e: MA869
376
377
378 (% style="color:#037691" %)**Sub-Band**:
379
380 AU915 and US915:value 0x00 ~~ 0x08
381
382 CN470: value 0x0B ~~ 0x0C
383
384 Other Bands: Always 0x00
385
386
387 (% style="color:#037691" %)**Battery Info**:
388
389 Check the battery voltage.
390
391 Ex1: 0x0B45 = 2885mV
392
393 Ex2: 0x0B49 = 2889mV
394
395
396 === 2.3.2 Sensor value, FPORT~=2 ===
397
398
399 Uplink payload includes in total 9 bytes.
400
401
402 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
403 |(% style="width:97px" %)(((
404 **Size(bytes)**
405 )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
406 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
407
408 [[image:1675144608950-310.png]]
409
410
411
412 === 2.3.3 Battery Info ===
413
414
415 Check the battery voltage for PS-LB.
416
417 Ex1: 0x0B45 = 2885mV
418
419 Ex2: 0x0B49 = 2889mV
420
421
422 === 2.3.4 Probe Model ===
423
424
425 PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
426
427
428 For example.
429
430 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
431 |(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
432 |(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
433 |(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
434
435 The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
436
437
438 === 2.3.5 0~~20mA value (IDC_IN) ===
439
440
441 The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
442
443 (% style="color:#037691" %)**Example**:
444
445 27AE(H) = 10158 (D)/1000 = 10.158mA.
446
447
448 === 2.3.6 0~~30V value ( pin VDC_IN) ===
449
450
451 Measure the voltage value. The range is 0 to 30V.
452
453 (% style="color:#037691" %)**Example**:
454
455 138E(H) = 5006(D)/1000= 5.006V
456
457
458 === 2.3.7 IN1&IN2&INT pin ===
459
460
461 IN1 and IN2 are used as digital input pins.
462
463 (% style="color:#037691" %)**Example**:
464
465 09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
466
467 09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
468
469
470 This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
471
472 (% style="color:#037691" %)**Example:**
473
474 09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
475
476 09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
477
478 0x01: Interrupt Uplink Packet.
479
480
481 === 2.3.8 ​Decode payload in The Things Network ===
482
483
484 While using TTN network, you can add the payload format to decode the payload.
485
486
487 [[image:1675144839454-913.png]]
488
489
490 PS-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
491
492
493 == 2.4 Uplink Interval ==
494
495
496 The PS-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
497
498
499 == 2.5 Show Data in DataCake IoT Server ==
500
501
502 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
503
504
505 (% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
506
507 (% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
508
509
510 [[image:1675144951092-237.png]]
511
512
513 [[image:1675144960452-126.png]]
514
515
516 (% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
517
518 (% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
519
520 [[image:1675145004465-869.png]]
521
522
523 [[image:1675145018212-853.png]]
524
525
526
527
528 [[image:1675145029119-717.png]]
529
530
531 (% style="color:blue" %)**Step 5: **(%%)add payload decode
532
533 [[image:1675145051360-659.png]]
534
535
536 [[image:1675145060812-420.png]]
537
538
539 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
540
541
542 [[image:1675145081239-376.png]]
543
544
545 == 2.6 Frequency Plans ==
546
547
548 The PS-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
549
550 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
551
552
553 == 2.7 ​Firmware Change Log ==
554
555
556 **Firmware download link:**
557
558 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
559
560
561
562 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
563
564
565 Use can configure PS-LB via AT Command or LoRaWAN Downlink.
566
567 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
568 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
569
570 There are two kinds of commands to configure PS-LB, they are:
571
572 * (% style="color:#037691" %)**General Commands**
573
574 These commands are to configure:
575
576 * General system settings like: uplink interval.
577 * LoRaWAN protocol & radio related command.
578
579 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
580
581 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
582
583
584 * (% style="color:#037691" %)**Commands special design for PS-LB**
585
586 These commands only valid for PS-LB, as below:
587
588
589 == 3.1 Set Transmit Interval Time ==
590
591
592 Feature: Change LoRaWAN End Node Transmit Interval.
593
594 (% style="color:blue" %)**AT Command: AT+TDC**
595
596 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
597 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
598 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
599 30000
600 OK
601 the interval is 30000ms = 30s
602 )))
603 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
604 OK
605 Set transmit interval to 60000ms = 60 seconds
606 )))
607
608 (% style="color:blue" %)**Downlink Command: 0x01**
609
610 Format: Command Code (0x01) followed by 3 bytes time value.
611
612 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
613
614 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
615 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
616
617
618 == 3.2 Set Interrupt Mode ==
619
620
621 Feature, Set Interrupt mode for GPIO_EXIT.
622
623 (% style="color:blue" %)**AT Command: AT+INTMOD**
624
625 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
626 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
627 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
628 0
629 OK
630 the mode is 0 = No interruption
631 )))
632 |(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
633 Set Transmit Interval
634 ~1. (Disable Interrupt),
635 2. (Trigger by rising and falling edge)
636 3. (Trigger by falling edge)
637 4. (Trigger by rising edge)
638 )))|(% style="width:157px" %)OK
639
640 (% style="color:blue" %)**Downlink Command: 0x06**
641
642 Format: Command Code (0x06) followed by 3 bytes.
643
644 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
645
646 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
647 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
648
649
650 == 3.3 Set the output time ==
651
652
653 Feature, Control the output 3V3 , 5V or 12V.
654
655 (% style="color:blue" %)**AT Command: AT+3V3T**
656
657 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
658 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
659 |(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
660 0
661 OK
662 )))
663 |(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
664 OK
665 default setting
666 )))
667 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
668 OK
669 )))
670 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
671 OK
672 )))
673
674 (% style="color:blue" %)**AT Command: AT+5VT**
675
676 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
677 |=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
678 |(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
679 0
680 OK
681 )))
682 |(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
683 OK
684 default setting
685 )))
686 |(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
687 OK
688 )))
689 |(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
690 OK
691 )))
692
693 (% style="color:blue" %)**AT Command: AT+12VT**
694
695 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
696 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
697 |(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
698 0
699 OK
700 )))
701 |(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
702 |(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
703 OK
704 )))
705
706 (% style="color:blue" %)**Downlink Command: 0x07**
707
708 Format: Command Code (0x07) followed by 3 bytes.
709
710 The first byte is which power, the second and third bytes are the time to turn on.
711
712 * Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
713 * Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
714 * Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
715 * Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
716 * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
717 * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
718
719
720 == 3.4 Set the Probe Model ==
721
722
723 (% style="color:blue" %)**AT Command: AT** **+PROBE**
724
725 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:448px" %)
726 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 204px;" %)**Function**|=(% style="width: 85px;" %)**Response**
727 |(% style="width:154px" %)AT +PROBE =?|(% style="width:204px" %)Get or Set the probe model.|(% style="width:85px" %)(((
728 0
729 OK
730 )))
731 |(% style="width:154px" %)AT +PROBE =0003|(% style="width:204px" %)Set water depth sensor mode, 3m type.|(% style="width:85px" %)OK
732 |(% style="width:154px" %)AT +PROBE =0101|(% style="width:204px" %)Set pressure transmitters mode, first type.|(% style="width:85px" %)(((
733 OK
734 )))
735 |(% style="width:154px" %)AT +PROBE =0000|(% style="width:204px" %)Initial state, no settings.|(% style="width:85px" %)(((
736 OK
737 )))
738
739 (% style="color:blue" %)**Downlink Command: 0x08**
740
741 Format: Command Code (0x08) followed by 2 bytes.
742
743 * Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
744 * Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
745
746
747 = 4. Battery & how to replace =
748
749 == 4.1 Battery Type ==
750
751
752 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
753
754
755 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
756
757 [[image:1675146710956-626.png]]
758
759
760 Minimum Working Voltage for the PS-LB:
761
762 PS-LB:  2.45v ~~ 3.6v
763
764
765 == 4.2 Replace Battery ==
766
767
768 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
769
770 And make sure the positive and negative pins match.
771
772
773 == 4.3 Power Consumption Analyze ==
774
775
776 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
777
778 Instruction to use as below:
779
780 (% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
781
782 (% style="color:blue" %)**Step 2:**(%%) Open it and choose
783
784 * Product Model
785 * Uplink Interval
786 * Working Mode
787
788 And the Life expectation in difference case will be shown on the right.
789
790 [[image:1675146895108-304.png]]
791
792
793 The battery related documents as below:
794
795 * [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
796 * [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
797 * [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
798
799 [[image:image-20230131145708-3.png]]
800
801
802 === 4.3.1 ​Battery Note ===
803
804
805 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
806
807
808 === 4.3.2 Replace the battery ===
809
810
811 You can change the battery in the PS-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
812
813 The default battery pack of PS-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
814
815
816 = 5. Remote Configure device =
817
818 == 5.1 Connect via BLE ==
819
820
821 Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
822
823
824 == 5.2 AT Command Set ==
825
826
827
828 = 6. OTA firmware update =
829
830
831 Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
832
833
834 = 7. FAQ =
835
836 == 7.1 How to use AT Command to access device? ==
837
838
839 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
840
841
842 == 7.2 How to update firmware via UART port? ==
843
844
845 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
846
847
848 == 7.3 How to change the LoRa Frequency Bands/Region? ==
849
850
851 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
852 When downloading the images, choose the required image file for download. ​
853
854
855 = 8. Order Info =
856
857
858 [[image:image-20230131153105-4.png]]
859
860
861 = 9. ​Packing Info =
862
863
864 (% style="color:#037691" %)**Package Includes**:
865
866 * PS-LB LoRaWAN Pressure Sensor
867
868 (% style="color:#037691" %)**Dimension and weight**:
869
870 * Device Size: cm
871 * Device Weight: g
872 * Package Size / pcs : cm
873 * Weight / pcs : g
874
875
876 = 10. Support =
877
878
879 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
880
881 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
882
883
884
885
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0