Show last authors
1 [[image:image-20230131115217-1.png]]
2
3
4
5 **Table of Contents:**
6
7 {{toc/}}
8
9
10
11 = 1. Introduction =
12
13 == 1.1 What is LoRaWAN Pressure Sensor ==
14
15
16 The Dragino PS-LB series sensors are **LoRaWAN Pressure Sensor** for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
17
18 The PS-LB series sensors include **Thread Installation Type** and **Immersion Type**, it supports different pressure range which can be used for different measurement requirement.
19
20 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
21
22 PS-LB supports BLE configure and wireless OTA update which make user easy to use.
23
24 PS-LB is powered by **8500mAh Li-SOCI2 battery**, it is designed for long term use up to 5 years.
25
26 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
27
28 [[image:1675071321348-194.png]]
29
30
31
32 == 1.2 ​Features ==
33
34
35 * LoRaWAN 1.0.3 Class A
36 * Ultra-low power consumption
37 * Measure air / gas or water pressure
38 * Different pressure range available
39 * Thread Installation Type or Immersion Type
40 * Monitor Battery Level
41 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
42 * Support Bluetooth v5.1 and LoRaWAN remote configure
43 * Support wireless OTA update firmware
44 * Uplink on periodically
45 * Downlink to change configure
46 * 8500mAh Battery for long term use
47
48
49 == 1.3 Specification ==
50
51
52 **Micro Controller:**
53
54 * MCU: 48Mhz ARM
55 * Flash: 256KB
56 * RAM: 64KB
57
58 **Common DC Characteristics:**
59
60 * Supply Voltage: 2.5v ~~ 3.6v
61 * Operating Temperature: -40 ~~ 85°C
62
63 **LoRa Spec:**
64
65 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
66 * Max +22 dBm constant RF output vs.
67 * RX sensitivity: down to -139 dBm.
68 * Excellent blocking immunity
69
70 **Current Input Measuring :**
71
72 * Range: 0 ~~ 20mA
73 * Accuracy: 0.02mA
74 * Resolution: 0.001mA
75
76 **Voltage Input Measuring:**
77
78 * Range: 0 ~~ 30v
79 * Accuracy: 0.02v
80 * Resolution: 0.001v
81
82 **Battery:**
83
84 * Li/SOCI2 un-chargeable battery
85 * Capacity: 8500mAh
86 * Self-Discharge: <1% / Year @ 25°C
87 * Max continuously current: 130mA
88 * Max boost current: 2A, 1 second
89
90 **Power Consumption**
91
92 * Sleep Mode: 5uA @ 3.3v
93 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
94
95
96 == 1.4 Probe Types ==
97
98 === 1.4.1 Thread Installation Type ===
99
100
101 [[image:1675071448299-229.png]]
102
103 * Hersman Pressure Transmitter
104 * Measuring Range: -0.1 ~~ 0 ~~ 60MPa, see order info.
105 * Accuracy: 0.2% F.S
106 * Long-Term Stability: 0.2% F.S ±0.05%
107 * Overload 200% F.S
108 * Zero Temperature Drift: 0.03% FS/℃(≤100Kpa), 0.02%FS/℃(>100Kpa)
109 * FS Temperature Drift: 0.003% FS/℃(≤100Kpa), 0.002%FS/℃(>100Kpa)
110 * Storage temperature: -30℃~~80℃
111 * Operating temperature: -20℃~~60℃
112 * Connector Type: Various Types, see order info
113
114
115 === 1.4.2 Immersion Type ===
116
117
118 [[image:1675071521308-426.png]]
119
120 * Immersion Type, Probe IP Level: IP68
121 * Measuring Range: Measure range can be customized, up to 100m.
122 * Accuracy: 0.2% F.S
123 * Long-Term Stability: ±0.2% F.S / Year
124 * Overload 200% F.S
125 * Zero Temperature Drift: ±2% F.S)
126 * FS Temperature Drift: ±2% F.S
127 * Storage temperature: -30℃~~80℃
128 * Operating temperature: -40℃~~85℃
129 * Material: 316 stainless steels
130
131
132 == 1.5 Probe Dimension ==
133
134
135
136
137 == 1.6 Application and Installation ==
138
139 === 1.6.1 Thread Installation Type ===
140
141
142 **Application:**
143
144 * Hydraulic Pressure
145 * Petrochemical Industry
146 * Health and Medical
147 * Food & Beverage Processing
148 * Auto-controlling house
149 * Constant Pressure Water Supply
150 * Liquid Pressure measuring
151
152 Order the suitable thread size and install to measure the air / liquid pressure
153
154 [[image:1675071670469-145.png]]
155
156
157 === 1.6.2 Immersion Type ===
158
159
160 **Application:**
161
162 Liquid & Water Pressure / Level detect.
163
164 [[image:1675071725288-579.png]]
165
166
167 The Immersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.
168
169
170 [[image:1675071736646-450.png]]
171
172
173 [[image:1675071776102-240.png]]
174
175
176 == 1.7 Sleep mode and working mode ==
177
178
179 **Deep Sleep Mode: **Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
180
181 **Working Mode:** In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
182
183
184 == 1.8 Button & LEDs ==
185
186
187 [[image:1675071855856-879.png]]
188
189
190 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
191 |(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action**
192 |(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
193 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **blue led** will blink once.
194
195 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
196 )))
197 |(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
198 **Green led** will fast blink 5 times, device will enter **OTA mode** for 3 seconds. And then start to JOIN LoRaWAN network.
199
200 **Green led** will solidly turn on for 5 seconds after joined in network.
201
202 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
203 )))
204 |(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
205
206
207
208 == 1.9 Pin Mapping ==
209
210
211 [[image:1675072568006-274.png]]
212
213
214 == 1.10 BLE connection ==
215
216
217 PS-LB support BLE remote configure.
218
219
220 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
221
222 * Press button to send an uplink
223 * Press button to active device.
224 * Device Power on or reset.
225
226 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
227
228
229 == 1.11 Mechanical ==
230
231
232
233
234 [[image:1675143884058-338.png]]
235
236
237 [[image:1675143899218-599.png]]
238
239
240 [[image:1675143909447-639.png]]
241
242
243 = 2. Configure PS-LB to connect to LoRaWAN network =
244
245 == 2.1 How it works ==
246
247
248 The PS-LB is configured as **LoRaWAN OTAA Class A** mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
249
250
251
252 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
253
254
255 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
256
257
258 [[image:1675144005218-297.png]]
259
260
261 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
262
263
264 **Step 1**: Create a device in TTN with the OTAA keys from PS-LB.
265
266 Each PS-LB is shipped with a sticker with the default device EUI as below:
267
268 [[image:image-20230131134744-2.jpeg]]
269
270
271
272 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
273
274
275 **Register the device**
276
277 [[image:1675144099263-405.png]]
278
279
280 **Add APP EUI and DEV EUI**
281
282 [[image:1675144117571-832.png]]
283
284
285 **Add APP EUI in the application**
286
287
288 [[image:1675144143021-195.png]]
289
290
291 **Add APP KEY**
292
293 [[image:1675144157838-392.png]]
294
295 **Step 2**: Activate on PS-LB
296
297
298 Press the button for 5 seconds to activate the PS-LB.
299
300 **Green led** will fast blink 5 times, device will enter **OTA mode** for 3 seconds. And then start to JOIN LoRaWAN network. **Green led** will solidly turn on for 5 seconds after joined in network.
301
302 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
303
304
305
306 == 2.3 ​Uplink Payload ==
307
308
309 Uplink payloads have two types:
310
311 * Distance Value: Use FPORT=2
312 * Other control commands: Use other FPORT fields.
313
314 The application server should parse the correct value based on FPORT settings.
315
316
317 === 2.3.1 Device Status, FPORT~=5 ===
318
319
320 Include device configure status. Once PS-LB Joined the network, it will uplink this message to the server.
321
322 Users can also use the downlink command(0x26 01) to ask PS-LB to resend this uplink.
323
324
325 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
326 |(% colspan="6" %)**Device Status (FPORT=5)**
327 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
328 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
329
330 Example parse in TTNv3
331
332 [[image:1675144504430-490.png]]
333
334
335 **Sensor Model**: For PS-LB, this value is 0x16
336
337 **Firmware Version**: 0x0100, Means: v1.0.0 version
338
339 **Frequency Band**:
340
341 *0x01: EU868
342
343 *0x02: US915
344
345 *0x03: IN865
346
347 *0x04: AU915
348
349 *0x05: KZ865
350
351 *0x06: RU864
352
353 *0x07: AS923
354
355 *0x08: AS923-1
356
357 *0x09: AS923-2
358
359 *0x0a: AS923-3
360
361 *0x0b: CN470
362
363 *0x0c: EU433
364
365 *0x0d: KR920
366
367 *0x0e: MA869
368
369
370 **Sub-Band**:
371
372 AU915 and US915:value 0x00 ~~ 0x08
373
374 CN470: value 0x0B ~~ 0x0C
375
376 Other Bands: Always 0x00
377
378
379 **Battery Info**:
380
381 Check the battery voltage.
382
383 Ex1: 0x0B45 = 2885mV
384
385 Ex2: 0x0B49 = 2889mV
386
387
388 === 1.3.2 Sensor value, FPORT~=2 ===
389
390
391 Uplink payload includes in total 9 bytes.
392
393
394 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
395 |(% style="width:97px" %)(((
396 **Size(bytes)**
397 )))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1**
398 |(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>path:#bat]]|(% style="width:58px" %)[[Probe Model>>path:#Probe_Model]]|0 ~~ 20mA value|[[0 ~~~~ 30v value>>path:#Voltage_30v]]|[[IN1 &IN2 Interrupt  flag>>path:#Int_pin]]
399
400 [[image:1675144608950-310.png]]
401
402
403
404 === 2.3.3 Battery Info ===
405
406
407 Check the battery voltage for PS-LB.
408
409 Ex1: 0x0B45 = 2885mV
410
411 Ex2: 0x0B49 = 2889mV
412
413
414 === 2.3.4 Probe Model ===
415
416
417 PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
418
419
420 For example.
421
422 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
423 |(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
424 |(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
425 |(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
426
427 The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
428
429
430 === 2.3.5 0~~20mA value (IDC_IN) ===
431
432
433 The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
434
435 **Example**:
436
437 27AE(H) = 10158 (D)/1000 = 10.158mA.
438
439
440 === 2.3.6 0~~30V value ( pin VDC_IN) ===
441
442
443 Measure the voltage value. The range is 0 to 30V.
444
445 **Example**:
446
447 138E(H) = 5006(D)/1000= 5.006V
448
449
450 === 2.3.7 IN1&IN2&INT pin ===
451
452
453 IN1 and IN2 are used as digital input pins.
454
455 **Example**:
456
457 09 (H) :(0x09&0x08)>>3=1    IN1 pin is high level.
458
459 09 (H) :(0x09&0x04)>>2=0    IN2 pin is low level.
460
461
462 This data field shows if this packet is generated by **Interrupt Pin** or not. [[Click here>>path:#Int_mod]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
463
464 **Example:**
465
466 09 (H) : (0x09&0x02)>>1=1    The level of the interrupt pin.
467
468 09 (H) : 0x09&0x01=1              0x00: Normal uplink packet.
469
470 0x01: Interrupt Uplink Packet.
471
472
473 === 2.3.8 ​Decode payload in The Things Network ===
474
475
476 While using TTN network, you can add the payload format to decode the payload.
477
478
479 [[image:1675144839454-913.png]]
480
481
482 PS-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
483
484
485 == 2.4 Uplink Interval ==
486
487
488 The PS-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
489
490
491 == 2.5 Show Data in DataCake IoT Server ==
492
493
494 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
495
496
497 **Step 1: **Be sure that your device is programmed and properly connected to the network at this time.
498
499 **Step 2:** To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
500
501
502 [[image:1675144951092-237.png]]
503
504
505 [[image:1675144960452-126.png]]
506
507
508 **Step 3:** Create an account or log in Datacake.
509
510 **Step 4:** Create PS-LB product.
511
512 [[image:1675145004465-869.png]]
513
514
515 [[image:1675145018212-853.png]]
516
517
518
519
520 [[image:1675145029119-717.png]]
521
522
523 **Step 5: **add payload decode
524
525 [[image:1675145051360-659.png]]
526
527
528 [[image:1675145060812-420.png]]
529
530
531
532 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
533
534
535 [[image:1675145081239-376.png]]
536
537
538 == 2.6 Frequency Plans ==
539
540
541 The PS-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
542
543 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
544
545
546 == 2.7 ​Firmware Change Log ==
547
548
549 **Firmware download link:**
550
551 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
552
553
554
555 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
556
557
558 Use can configure PS-LB via AT Command or LoRaWAN Downlink.
559
560 * AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
561 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
562
563
564 There are two kinds of commands to configure PS-LB, they are:
565
566 * **General Commands**.
567
568 These commands are to configure:
569
570 * General system settings like: uplink interval.
571 * LoRaWAN protocol & radio related command.
572
573 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
574
575 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
576
577
578 * **Commands special design for PS-LB**
579
580 These commands only valid for PS-LB, as below:
581
582
583 == 3.1 Set Transmit Interval Time ==
584
585
586 Feature: Change LoRaWAN End Node Transmit Interval.
587
588 **AT Command: AT+TDC**
589
590 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
591 |**Command Example**|**Function**|**Response**
592 |AT+TDC=?|Show current transmit Interval|(((
593 30000
594
595 OK
596
597 the interval is 30000ms = 30s
598 )))
599 |AT+TDC=60000|Set Transmit Interval|(((
600 OK
601
602 Set transmit interval to 60000ms = 60 seconds
603 )))
604
605 **Downlink Command: 0x01**
606
607 Format: Command Code (0x01) followed by 3 bytes time value.
608
609 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
610
611 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
612 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
613
614
615 == 3.2 Set Interrupt Mode ==
616
617
618 Feature, Set Interrupt mode for GPIO_EXIT.
619
620 **AT Command: AT+INTMOD**
621
622 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
623 |**Command Example**|**Function**|**Response**
624 |AT+INTMOD=?|Show current interrupt mode|(((
625 0
626
627 OK
628
629 the mode is 0 = No interruption
630 )))
631 |AT+INTMOD=2|(((
632 Set Transmit Interval
633
634 ~1. (Disable Interrupt),
635
636 2. (Trigger by rising and falling edge),
637
638 3. (Trigger by falling edge)
639
640 4. (Trigger by rising edge)
641 )))|OK
642
643 **Downlink Command: 0x06**
644
645 Format: Command Code (0x06) followed by 3 bytes.
646
647 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
648
649 * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
650 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
651
652
653
654 == 3.3 Set the output time ==
655
656
657 Feature, Control the output 3V3 , 5V or 12V.
658
659 **AT Command: AT+3V3T**
660
661 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
662 |(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**
663 |(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
664 0
665
666 OK
667 )))
668 |(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
669 OK
670
671 default setting
672 )))
673 |(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
674 OK
675
676
677 )))
678 |(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
679 OK
680
681
682 )))
683
684
685 **AT Command: AT+5VT**
686
687 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
688 |(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**
689 |(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
690 0
691
692 OK
693 )))
694 |(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
695 OK
696
697 default setting
698 )))
699 |(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
700 OK
701
702
703 )))
704 |(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
705 OK
706
707
708 )))
709
710
711 **AT Command: AT+12VT**
712
713 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
714 |(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response**
715 |(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
716 0
717
718 OK
719 )))
720 |(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
721 |(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
722 OK
723
724
725 )))
726
727
728 **Downlink Command: 0x07**
729
730 Format: Command Code (0x07) followed by 3 bytes.
731
732 The first byte is which power, the second and third bytes are the time to turn on.
733
734 * Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
735 * Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
736 * Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
737 * Example 4: Downlink Payload: 07020000  -> AT+5VT=0
738 * Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
739 * Example 6: Downlink Payload: 07030000  -> AT+12VT=0
740
741
742
743 == 3.4 Set the Probe Model ==
744
745
746 **AT Command: AT** **+PROBE**
747
748 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
749 |(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response**
750 |(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
751 0
752
753 OK
754 )))
755 |(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
756 |(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
757 OK
758
759
760 )))
761 |(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
762 OK
763
764
765 )))
766
767 **Downlink Command: 0x08**
768
769 Format: Command Code (0x08) followed by 2 bytes.
770
771 * Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
772 * Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
773
774
775
776 = 4. Battery & how to replace =
777
778 == 4.1 Battery Type ==
779
780
781 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
782
783
784 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
785
786 [[image:1675146710956-626.png]]
787
788
789 Minimum Working Voltage for the PS-LB:
790
791 PS-LB:  2.45v ~~ 3.6v
792
793
794 == 4.2 Replace Battery ==
795
796
797 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
798
799 And make sure the positive and negative pins match.
800
801
802 == 4.3 Power Consumption Analyze ==
803
804
805 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
806
807
808 Instruction to use as below:
809
810
811 **Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
812
813 [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
814
815
816 **Step 2:** Open it and choose
817
818 * Product Model
819 * Uplink Interval
820 * Working Mode
821
822 And the Life expectation in difference case will be shown on the right.
823
824 [[image:1675146895108-304.png]]
825
826
827 The battery related documents as below:
828
829 * [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
830 * [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
831 * [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
832
833 [[image:image-20230131145708-3.png]]
834
835
836 === 4.3.1 ​Battery Note ===
837
838
839 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
840
841
842 === 4.3.2 Replace the battery ===
843
844
845 You can change the battery in the PS-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
846
847 The default battery pack of PS-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
848
849
850 = 5. Remote Configure device =
851
852 == 5.1 Connect via BLE ==
853
854
855 Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
856
857
858 == 5.2 AT Command Set ==
859
860
861
862 = 6. OTA firmware update =
863
864
865 Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
866
867
868 = 7. FAQ =
869
870 == 7.1 How to use AT Command to access device? ==
871
872
873 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
874
875
876 == 7.2 How to update firmware via UART port? ==
877
878
879 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
880
881
882 == 7.3 How to change the LoRa Frequency Bands/Region? ==
883
884
885 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
886 When downloading the images, choose the required image file for download. ​
887
888
889 = 8. Order Info =
890
891
892 [[image:image-20230131153105-4.png]]
893
894
895 = 9. ​Packing Info =
896
897
898 **Package Includes**:
899
900 * PS-LB LoRaWAN Pressure Sensor
901
902 **Dimension and weight**:
903
904 * Device Size: cm
905 * Device Weight: g
906 * Package Size / pcs : cm
907 * Weight / pcs : g
908
909
910
911 = 10. Support =
912
913
914 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
915 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
916
917
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0