Version 42.32 by Xiaoling on 2023/01/31 17:18

Show last authors
1 [[image:image-20230131115217-1.png]]
2
3
4
5 **Table of Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is LoRaWAN Pressure Sensor ==
17
18
19 (((
20 The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 )))
22
23 (((
24 The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 )))
26
27 (((
28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 )))
30
31 (((
32 PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 )))
34
35 (((
36 PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 )))
38
39 (((
40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 )))
42
43 [[image:1675071321348-194.png]]
44
45
46 == 1.2 ​Features ==
47
48
49 * LoRaWAN 1.0.3 Class A
50 * Ultra-low power consumption
51 * Measure air / gas or water pressure
52 * Different pressure range available
53 * Thread Installation Type or Immersion Type
54 * Monitor Battery Level
55 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
56 * Support Bluetooth v5.1 and LoRaWAN remote configure
57 * Support wireless OTA update firmware
58 * Uplink on periodically
59 * Downlink to change configure
60 * 8500mAh Battery for long term use
61
62
63
64 == 1.3 Specification ==
65
66
67 (% style="color:#037691" %)**Micro Controller:**
68
69 * MCU: 48Mhz ARM
70 * Flash: 256KB
71 * RAM: 64KB
72
73 (% style="color:#037691" %)**Common DC Characteristics:**
74
75 * Supply Voltage: 2.5v ~~ 3.6v
76 * Operating Temperature: -40 ~~ 85°C
77
78 (% style="color:#037691" %)**LoRa Spec:**
79
80 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
81 * Max +22 dBm constant RF output vs.
82 * RX sensitivity: down to -139 dBm.
83 * Excellent blocking immunity
84
85 (% style="color:#037691" %)**Current Input Measuring :**
86
87 * Range: 0 ~~ 20mA
88 * Accuracy: 0.02mA
89 * Resolution: 0.001mA
90
91 (% style="color:#037691" %)**Voltage Input Measuring:**
92
93 * Range: 0 ~~ 30v
94 * Accuracy: 0.02v
95 * Resolution: 0.001v
96
97 (% style="color:#037691" %)**Battery:**
98
99 * Li/SOCI2 un-chargeable battery
100 * Capacity: 8500mAh
101 * Self-Discharge: <1% / Year @ 25°C
102 * Max continuously current: 130mA
103 * Max boost current: 2A, 1 second
104
105 (% style="color:#037691" %)**Power Consumption**
106
107 * Sleep Mode: 5uA @ 3.3v
108 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
109
110
111
112 == 1.4 Probe Types ==
113
114 === 1.4.1 Thread Installation Type ===
115
116
117 [[image:1675071448299-229.png]]
118
119 * Hersman Pressure Transmitter
120 * Measuring Range: -0.1 ~~ 0 ~~ 60MPa, see order info.
121 * Accuracy: 0.2% F.S
122 * Long-Term Stability: 0.2% F.S ±0.05%
123 * Overload 200% F.S
124 * Zero Temperature Drift: 0.03% FS/℃(≤100Kpa), 0.02%FS/℃(>100Kpa)
125 * FS Temperature Drift: 0.003% FS/℃(≤100Kpa), 0.002%FS/℃(>100Kpa)
126 * Storage temperature: -30℃~~80℃
127 * Operating temperature: -20℃~~60℃
128 * Connector Type: Various Types, see order info
129
130
131
132 === 1.4.2 Immersion Type ===
133
134
135 [[image:1675071521308-426.png]]
136
137 * Immersion Type, Probe IP Level: IP68
138 * Measuring Range: Measure range can be customized, up to 100m.
139 * Accuracy: 0.2% F.S
140 * Long-Term Stability: ±0.2% F.S / Year
141 * Overload 200% F.S
142 * Zero Temperature Drift: ±2% F.S)
143 * FS Temperature Drift: ±2% F.S
144 * Storage temperature: -30℃~~80℃
145 * Operating temperature: -40℃~~85℃
146 * Material: 316 stainless steels
147
148
149
150 == 1.5 Probe Dimension ==
151
152
153
154 == 1.6 Application and Installation ==
155
156 === 1.6.1 Thread Installation Type ===
157
158
159 (% style="color:blue" %)**Application:**
160
161 * Hydraulic Pressure
162 * Petrochemical Industry
163 * Health and Medical
164 * Food & Beverage Processing
165 * Auto-controlling house
166 * Constant Pressure Water Supply
167 * Liquid Pressure measuring
168
169 Order the suitable thread size and install to measure the air / liquid pressure
170
171 [[image:1675071670469-145.png]]
172
173
174 === 1.6.2 Immersion Type ===
175
176
177 (% style="color:blue" %)**Application:**
178
179 Liquid & Water Pressure / Level detect.
180
181 [[image:1675071725288-579.png]]
182
183
184 The Immersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.
185
186
187 [[image:1675071736646-450.png]]
188
189
190 [[image:1675071776102-240.png]]
191
192
193 == 1.7 Sleep mode and working mode ==
194
195
196 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
197
198 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
199
200
201 == 1.8 Button & LEDs ==
202
203
204 [[image:1675071855856-879.png]]
205
206
207 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
208 |=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
209 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
210 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
211 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
212 )))
213 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
214 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
215 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
216 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
217 )))
218 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
219
220
221
222 == 1.9 Pin Mapping ==
223
224
225 [[image:1675072568006-274.png]]
226
227
228 == 1.10 BLE connection ==
229
230
231 PS-LB support BLE remote configure.
232
233
234 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
235
236 * Press button to send an uplink
237 * Press button to active device.
238 * Device Power on or reset.
239
240 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
241
242
243 == 1.11 Mechanical ==
244
245
246
247
248 [[image:1675143884058-338.png]]
249
250
251 [[image:1675143899218-599.png]]
252
253
254 [[image:1675143909447-639.png]]
255
256
257 = 2. Configure PS-LB to connect to LoRaWAN network =
258
259 == 2.1 How it works ==
260
261
262 The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
263
264
265 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
266
267
268 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
269
270
271 [[image:1675144005218-297.png]]
272
273
274 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
275
276
277 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
278
279 Each PS-LB is shipped with a sticker with the default device EUI as below:
280
281 [[image:image-20230131134744-2.jpeg]]
282
283
284
285 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
286
287
288 (% style="color:blue" %)**Register the device**
289
290 [[image:1675144099263-405.png]]
291
292
293 (% style="color:blue" %)**Add APP EUI and DEV EUI**
294
295 [[image:1675144117571-832.png]]
296
297
298 (% style="color:blue" %)**Add APP EUI in the application**
299
300
301 [[image:1675144143021-195.png]]
302
303
304 (% style="color:blue" %)**Add APP KEY**
305
306 [[image:1675144157838-392.png]]
307
308 (% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
309
310
311 Press the button for 5 seconds to activate the PS-LB.
312
313 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
314
315 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
316
317
318
319 == 2.3 ​Uplink Payload ==
320
321
322 Uplink payloads have two types:
323
324 * Distance Value: Use FPORT=2
325 * Other control commands: Use other FPORT fields.
326
327 The application server should parse the correct value based on FPORT settings.
328
329
330 === 2.3.1 Device Status, FPORT~=5 ===
331
332
333 Include device configure status. Once PS-LB Joined the network, it will uplink this message to the server.
334
335 Users can also use the downlink command(0x26 01) to ask PS-LB to resend this uplink.
336
337
338 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
339 |(% colspan="6" %)**Device Status (FPORT=5)**
340 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
341 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
342
343 Example parse in TTNv3
344
345 [[image:1675144504430-490.png]]
346
347
348 (% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
349
350 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
351
352 (% style="color:#037691" %)**Frequency Band**:
353
354 *0x01: EU868
355
356 *0x02: US915
357
358 *0x03: IN865
359
360 *0x04: AU915
361
362 *0x05: KZ865
363
364 *0x06: RU864
365
366 *0x07: AS923
367
368 *0x08: AS923-1
369
370 *0x09: AS923-2
371
372 *0x0a: AS923-3
373
374 *0x0b: CN470
375
376 *0x0c: EU433
377
378 *0x0d: KR920
379
380 *0x0e: MA869
381
382
383 (% style="color:#037691" %)**Sub-Band**:
384
385 AU915 and US915:value 0x00 ~~ 0x08
386
387 CN470: value 0x0B ~~ 0x0C
388
389 Other Bands: Always 0x00
390
391
392 (% style="color:#037691" %)**Battery Info**:
393
394 Check the battery voltage.
395
396 Ex1: 0x0B45 = 2885mV
397
398 Ex2: 0x0B49 = 2889mV
399
400
401 === 2.3.2 Sensor value, FPORT~=2 ===
402
403
404 Uplink payload includes in total 9 bytes.
405
406
407 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
408 |(% style="width:97px" %)(((
409 **Size(bytes)**
410 )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
411 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
412
413 [[image:1675144608950-310.png]]
414
415
416
417 === 2.3.3 Battery Info ===
418
419
420 Check the battery voltage for PS-LB.
421
422 Ex1: 0x0B45 = 2885mV
423
424 Ex2: 0x0B49 = 2889mV
425
426
427 === 2.3.4 Probe Model ===
428
429
430 PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
431
432
433 For example.
434
435 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
436 |(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
437 |(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
438 |(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
439
440 The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
441
442
443 === 2.3.5 0~~20mA value (IDC_IN) ===
444
445
446 The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
447
448 (% style="color:#037691" %)**Example**:
449
450 27AE(H) = 10158 (D)/1000 = 10.158mA.
451
452
453 === 2.3.6 0~~30V value ( pin VDC_IN) ===
454
455
456 Measure the voltage value. The range is 0 to 30V.
457
458 (% style="color:#037691" %)**Example**:
459
460 138E(H) = 5006(D)/1000= 5.006V
461
462
463 === 2.3.7 IN1&IN2&INT pin ===
464
465
466 IN1 and IN2 are used as digital input pins.
467
468 (% style="color:#037691" %)**Example**:
469
470 09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
471
472 09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
473
474
475 This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
476
477 (% style="color:#037691" %)**Example:**
478
479 09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
480
481 09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
482
483 0x01: Interrupt Uplink Packet.
484
485
486 === 2.3.8 ​Decode payload in The Things Network ===
487
488
489 While using TTN network, you can add the payload format to decode the payload.
490
491
492 [[image:1675144839454-913.png]]
493
494
495 PS-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
496
497
498 == 2.4 Uplink Interval ==
499
500
501 The PS-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
502
503
504 == 2.5 Show Data in DataCake IoT Server ==
505
506
507 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
508
509
510 (% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
511
512 (% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
513
514
515 [[image:1675144951092-237.png]]
516
517
518 [[image:1675144960452-126.png]]
519
520
521 (% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
522
523 (% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
524
525 [[image:1675145004465-869.png]]
526
527
528 [[image:1675145018212-853.png]]
529
530
531
532
533 [[image:1675145029119-717.png]]
534
535
536 (% style="color:blue" %)**Step 5: **(%%)add payload decode
537
538 [[image:1675145051360-659.png]]
539
540
541 [[image:1675145060812-420.png]]
542
543
544 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
545
546
547 [[image:1675145081239-376.png]]
548
549
550 == 2.6 Frequency Plans ==
551
552
553 The PS-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
554
555 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
556
557
558 == 2.7 ​Firmware Change Log ==
559
560
561 **Firmware download link:**
562
563 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
564
565
566
567 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
568
569
570 Use can configure PS-LB via AT Command or LoRaWAN Downlink.
571
572 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
573 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
574
575 There are two kinds of commands to configure PS-LB, they are:
576
577 * (% style="color:#037691" %)**General Commands**
578
579 These commands are to configure:
580
581 * General system settings like: uplink interval.
582 * LoRaWAN protocol & radio related command.
583
584 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
585
586 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
587
588
589 * (% style="color:#037691" %)**Commands special design for PS-LB**
590
591 These commands only valid for PS-LB, as below:
592
593
594 == 3.1 Set Transmit Interval Time ==
595
596
597 Feature: Change LoRaWAN End Node Transmit Interval.
598
599 (% style="color:blue" %)**AT Command: AT+TDC**
600
601 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
602 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
603 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
604 30000
605 OK
606 the interval is 30000ms = 30s
607 )))
608 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
609 OK
610 Set transmit interval to 60000ms = 60 seconds
611 )))
612
613
614 (% style="color:blue" %)**Downlink Command: 0x01**
615
616 Format: Command Code (0x01) followed by 3 bytes time value.
617
618 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
619
620 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
621 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
622
623
624
625 == 3.2 Set Interrupt Mode ==
626
627
628 Feature, Set Interrupt mode for GPIO_EXIT.
629
630 (% style="color:blue" %)**AT Command: AT+INTMOD**
631
632 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
633 |=**Command Example**|=**Function**|=**Response**
634 |AT+INTMOD=?|Show current interrupt mode|(((
635 0
636 OK
637 the mode is 0 = No interruption
638 )))
639 |AT+INTMOD=2|(((
640 Set Transmit Interval
641 ~1. (Disable Interrupt),
642 2. (Trigger by rising and falling edge)
643 3. (Trigger by falling edge)
644 4. (Trigger by rising edge)
645 )))|OK
646
647
648 (% style="color:blue" %)**Downlink Command: 0x06**
649
650 Format: Command Code (0x06) followed by 3 bytes.
651
652 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
653
654 * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
655 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
656
657
658
659 == 3.3 Set the output time ==
660
661
662 Feature, Control the output 3V3 , 5V or 12V.
663
664 (% style="color:blue" %)**AT Command: AT+3V3T**
665
666 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
667 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
668 |(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
669 0
670 OK
671 )))
672 |(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
673 OK
674 default setting
675 )))
676 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
677 OK
678 )))
679 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
680 OK
681 )))
682
683
684 (% style="color:blue" %)**AT Command: AT+5VT**
685
686 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
687 |=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
688 |(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
689 0
690 OK
691 )))
692 |(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
693 OK
694 default setting
695 )))
696 |(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
697 OK
698 )))
699 |(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
700 OK
701 )))
702
703
704 (% style="color:blue" %)**AT Command: AT+12VT**
705
706 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
707 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
708 |(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
709 0
710 OK
711 )))
712 |(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
713 |(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
714 OK
715 )))
716
717
718 (% style="color:blue" %)**Downlink Command: 0x07**
719
720 Format: Command Code (0x07) followed by 3 bytes.
721
722 The first byte is which power, the second and third bytes are the time to turn on.
723
724 * Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
725 * Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
726 * Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
727 * Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
728 * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
729 * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
730
731
732
733 == 3.4 Set the Probe Model ==
734
735
736 (% style="color:blue" %)**AT Command: AT** **+PROBE**
737
738 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:448px" %)
739 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 204px;" %)**Function**|=(% style="width: 85px;" %)**Response**
740 |(% style="width:154px" %)AT +PROBE =?|(% style="width:204px" %)Get or Set the probe model.|(% style="width:85px" %)(((
741 0
742 OK
743 )))
744 |(% style="width:154px" %)AT +PROBE =0003|(% style="width:204px" %)Set water depth sensor mode, 3m type.|(% style="width:85px" %)OK
745 |(% style="width:154px" %)AT +PROBE =0101|(% style="width:204px" %)Set pressure transmitters mode, first type.|(% style="width:85px" %)(((
746 OK
747 )))
748 |(% style="width:154px" %)AT +PROBE =0000|(% style="width:204px" %)Initial state, no settings.|(% style="width:85px" %)(((
749 OK
750 )))
751
752
753 (% style="color:blue" %)**Downlink Command: 0x08**
754
755 Format: Command Code (0x08) followed by 2 bytes.
756
757 * Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
758 * Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
759
760
761
762 = 4. Battery & how to replace =
763
764 == 4.1 Battery Type ==
765
766
767 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
768
769
770 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
771
772 [[image:1675146710956-626.png]]
773
774
775 Minimum Working Voltage for the PS-LB:
776
777 PS-LB:  2.45v ~~ 3.6v
778
779
780 == 4.2 Replace Battery ==
781
782
783 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
784
785 And make sure the positive and negative pins match.
786
787
788 == 4.3 Power Consumption Analyze ==
789
790
791 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
792
793 Instruction to use as below:
794
795 (% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
796
797 (% style="color:blue" %)**Step 2:**(%%) Open it and choose
798
799 * Product Model
800 * Uplink Interval
801 * Working Mode
802
803 And the Life expectation in difference case will be shown on the right.
804
805 [[image:1675146895108-304.png]]
806
807
808 The battery related documents as below:
809
810 * [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
811 * [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
812 * [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
813
814 [[image:image-20230131145708-3.png]]
815
816
817 === 4.3.1 ​Battery Note ===
818
819
820 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
821
822
823 === 4.3.2 Replace the battery ===
824
825
826 You can change the battery in the PS-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
827
828 The default battery pack of PS-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
829
830
831 = 5. Remote Configure device =
832
833 == 5.1 Connect via BLE ==
834
835
836 Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
837
838
839 == 5.2 AT Command Set ==
840
841
842
843 = 6. OTA firmware update =
844
845
846 Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
847
848
849 = 7. FAQ =
850
851 == 7.1 How to use AT Command to access device? ==
852
853
854 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
855
856
857 == 7.2 How to update firmware via UART port? ==
858
859
860 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
861
862
863 == 7.3 How to change the LoRa Frequency Bands/Region? ==
864
865
866 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
867 When downloading the images, choose the required image file for download. ​
868
869
870 = 8. Order Info =
871
872
873 [[image:image-20230131153105-4.png]]
874
875
876 = 9. ​Packing Info =
877
878
879 (% style="color:#037691" %)**Package Includes**:
880
881 * PS-LB LoRaWAN Pressure Sensor
882
883 (% style="color:#037691" %)**Dimension and weight**:
884
885 * Device Size: cm
886 * Device Weight: g
887 * Package Size / pcs : cm
888 * Weight / pcs : g
889
890
891
892 = 10. Support =
893
894
895 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
896
897 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
898
899
900
901
902
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0