Version 143.1 by Xiaoling on 2025/06/10 15:26

Show last authors
1
2
3
4 [[image:image-20240109154731-4.png||data-xwiki-image-style-alignment="center" height="546" width="769"]]
5
6
7
8
9
10
11
12 **Table of Contents :**
13
14 {{toc/}}
15
16
17
18
19
20
21 = 1. Introduction =
22
23 == 1.1 What is LoRaWAN Pressure Sensor ==
24
25
26 (((
27 The Dragino PS-LB/LS series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB/LS can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
28 )))
29
30 (((
31 The PS-LB/LS series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
32 )))
33
34 (((
35 The LoRa wireless technology used in PS-LB/LS allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 )))
37
38 (((
39 PS-LB/LS supports BLE configure and wireless OTA update which make user easy to use.
40 )))
41
42 (((
43 PS-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + Li-ion battery **(%%), it is designed for long term use up to 5 years.
44 )))
45
46 (((
47 Each PS-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
48 )))
49
50
51 == 1.2 ​Features ==
52
53
54 * LoRaWAN 1.0.3 Class A
55 * Ultra-low power consumption
56 * Measure air / gas or water pressure
57 * Different pressure range available
58 * Thread Installation Type or Immersion Type
59 * Monitor Battery Level
60 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 * Support Bluetooth v5.1 and LoRaWAN remote configure
62 * Support wireless OTA update firmware
63 * Uplink on periodically
64 * Downlink to change configure
65 * Controllable 3.3v,5v and 12v output to power external sensor
66 * 8500mAh Li/SOCl2 Battery (PS-LB)
67 * Solar panel + 3000mAh Li-ion battery (PS-LS)
68
69 == 1.3 Specification ==
70
71
72 (% style="color:#037691" %)**Micro Controller:**
73
74 * MCU: 48Mhz ARM
75 * Flash: 256KB
76 * RAM: 64KB
77
78 (% style="color:#037691" %)**Common DC Characteristics:**
79
80 * Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
81 * Operating Temperature: -40 ~~ 85°C
82
83 (% style="color:#037691" %)**LoRa Spec:**
84
85 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz,Band 2 (LF): 410 ~~ 528 Mhz
86 * Max +22 dBm constant RF output vs.
87 * RX sensitivity: down to -139 dBm.
88 * Excellent blocking immunity
89
90 (% style="color:#037691" %)**Current Input Measuring :**
91
92 * Range: 0 ~~ 20mA
93 * Accuracy: 0.02mA
94 * Resolution: 0.001mA
95
96 (% style="color:#037691" %)**Voltage Input Measuring:**
97
98 * Range: 0 ~~ 30v
99 * Accuracy: 0.02v
100 * Resolution: 0.001v
101
102 (% style="color:#037691" %)**Battery:**
103
104 * Li/SOCI2 un-chargeable battery
105 * Capacity: 8500mAh
106 * Self-Discharge: <1% / Year @ 25°C
107 * Max continuously current: 130mA
108 * Max boost current: 2A, 1 second
109
110 (% style="color:#037691" %)**Power Consumption**
111
112 * Sleep Mode: 5uA @ 3.3v
113 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
114
115 == 1.4 Probe Types ==
116
117 === 1.4.1 Thread Installation Type ===
118
119
120 [[image:1675071448299-229.png]]
121
122 * Hersman Pressure Transmitter
123 * Measuring Range: -0.1 ~~ 0 ~~ 60MPa, see order info.
124 * Accuracy: 0.2% F.S
125 * Long-Term Stability: 0.2% F.S ±0.05%
126 * Overload 200% F.S
127 * Zero Temperature Drift: 0.03% FS/℃(≤100Kpa), 0.02%FS/℃(>100Kpa)
128 * FS Temperature Drift: 0.003% FS/℃(≤100Kpa), 0.002%FS/℃(>100Kpa)
129 * Storage temperature: -30℃~~80℃
130 * Operating temperature: -20℃~~60℃
131 * Connector Type: Various Types, see order info
132
133 === 1.4.2 Immersion Type ===
134
135
136 [[image:image-20240109160445-5.png||height="199" width="150"]]
137
138 * Immersion Type, Probe IP Level: IP68
139 * Measuring Range: Measure range can be customized, up to 100m.
140 * Accuracy: 0.2% F.S
141 * Long-Term Stability: ±0.2% F.S / Year
142 * Storage temperature: -30°C~~80°C
143 * Operating temperature: 0°C~~50°C
144 * Probe Material: 316 stainless steels
145 * Cable model specifications: CGYPU 5*0.2mm2
146 * Usage characteristics of Cable
147 1) Operating temperature:-40℃— +70℃
148 2) -30℃ bending cable 15 times of outer diameter can work normally
149
150 === 1.4.3 Wireless Differential Air Pressure Sensor ===
151
152 [[image:image-20240511174954-1.png||height="193" width="193"]]
153
154 * Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
155 * Accuracy: 0.5% F.S, resolution is 0.05%.
156 * Overload: 300% F.S
157 * Zero temperature drift: ±0.03%F.S/°C
158 * Operating temperature: -20°C~~60°C
159 * Storage temperature:  -20°C~~60°C
160 * Compensation temperature: 0~~50°C
161
162 == 1.5 Application and Installation ==
163
164 === 1.5.1 Thread Installation Type ===
165
166
167 (% style="color:blue" %)**Application:**
168
169 * Hydraulic Pressure
170 * Petrochemical Industry
171 * Health and Medical
172 * Food & Beverage Processing
173 * Auto-controlling house
174 * Constant Pressure Water Supply
175 * Liquid Pressure measuring
176
177 Order the suitable thread size and install to measure the air / liquid pressure
178
179 [[image:1675071670469-145.png]]
180
181
182 === 1.5.2 Immersion Type ===
183
184
185 (% style="color:blue" %)**Application:**
186
187 Liquid & Water Pressure / Level detect.
188
189 [[image:1675071725288-579.png]]
190
191
192 Below is the wiring to for connect the probe to the device.
193
194 The Immersion Type Sensor has different variant which defined by Ixx. For example, this means two points:
195
196 * Cable Length: 10 Meters
197 * Water Detect Range: 0 ~~ 10 Meters.
198
199 [[image:1675071736646-450.png]]
200
201
202 [[image:1675071776102-240.png]]
203
204 Size of immersion type water depth sensor:
205
206 [[image:image-20250401102131-1.png||height="268" width="707"]]
207
208
209 === 1.5.3 Wireless Differential Air Pressure Sensor ===
210
211
212 (% style="color:blue" %)**Application:**
213
214 Indoor Air Control & Filter clogging Detect.
215
216 [[image:image-20240513100129-6.png]]
217
218 [[image:image-20240513100135-7.png]]
219
220
221 Below is the wiring to for connect the probe to the device.
222
223 [[image:image-20240513093957-1.png]]
224
225
226 Size of wind pressure transmitter:
227
228 [[image:image-20240513094047-2.png||height="462" width="518"]]
229
230 (% style="color:red" %)**Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.**
231
232
233 == 1.6 Sleep mode and working mode ==
234
235
236 **Deep Sleep Mode:** Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
237
238 **Working Mode: **In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
239
240
241 == 1.7 Button & LEDs ==
242
243
244 [[image:image-20250419092225-1.jpeg]]
245
246 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
247 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action
248 |[[image:1749521239729-288.png]] 1~~3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
249
250
251 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once.
252 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
253 )))
254 |[[image:1749521245437-170.png]] >3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
255
256
257 Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network.
258 Green led will solidly turn on for 5 seconds after joined in network.
259 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
260 )))
261 |[[image:1749521282079-419.png]] x5|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
262
263 == 1.8 Pin Mapping ==
264
265
266 [[image:1675072568006-274.png]]
267
268
269 == 1.9 BLE connection ==
270
271
272 PS-LB/LS support BLE remote configure.
273
274
275 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
276
277 * Press button to send an uplink
278 * Press button to active device.
279 * Device Power on or reset.
280
281 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
282
283
284 == 1.10 Mechanical ==
285
286 === 1.10.1 for LB version ===
287
288
289 [[image:image-20250401163530-1.jpeg]]
290
291
292 === 1.10.2 for LS version ===
293
294
295 [[image:image-20250401163539-2.jpeg]]
296
297
298 = 2. Configure PS-LB/LS to connect to LoRaWAN network =
299
300 == 2.1 How it works ==
301
302
303 The PS-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
304
305
306 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
307
308
309 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
310
311 [[image:image-20250419162538-1.png]]
312
313
314 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
315
316
317 (% style="color:blue" %)**Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.**
318
319 Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
320
321 [[image:image-20230426085320-1.png||height="234" width="504"]]
322
323
324 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
325
326 **Create the application.**
327
328 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
329
330 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
331
332
333 **Add devices to the created Application.**
334
335 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
336
337 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
338
339
340 **Enter end device specifics manually.**
341
342 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
343
344
345 **Add DevEUI and AppKey. Customize a platform ID for the device.**
346
347 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
348
349
350 (% style="color:blue" %)**Step 2: Add decoder.**
351
352 In TTN, user can add a custom payload so it shows friendly reading.
353
354 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
355
356 Below is TTN screen shot:
357
358 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
359
360 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png" height="562" width="1168"]]
361
362
363 (% style="color:blue" %)**Step 3: Activate on PS-LB/LS**
364
365 Press the button for 5 seconds to activate the PS-LB/LS.
366
367 Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network.
368
369 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
370
371
372 == 2.3 ​Uplink Payload ==
373
374 === 2.3.1 Device Status, FPORT~=5 ===
375
376
377 Include device configure status. Once PS-LB/LS Joined the network, it will uplink this message to the server.
378
379 Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
380
381 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
382 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
383 |(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2
384 |(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
385
386 Example parse in TTNv3
387
388 [[image:1675144504430-490.png]]
389
390
391 Sensor Model: For PS-LB/LS, this value is 0x16
392
393 Firmware Version: 0x0100, Means: v1.0.0 version
394
395 Frequency Band:
396
397 *0x01: EU868
398
399 *0x02: US915
400
401 *0x03: IN865
402
403 *0x04: AU915
404
405 *0x05: KZ865
406
407 *0x06: RU864
408
409 *0x07: AS923
410
411 *0x08: AS923-1
412
413 *0x09: AS923-2
414
415 *0x0a: AS923-3
416
417 *0x0b: CN470
418
419 *0x0c: EU433
420
421 *0x0d: KR920
422
423 *0x0e: MA869
424
425
426 Sub-Band:
427
428 AU915 and US915:value 0x00 ~~ 0x08
429
430 CN470: value 0x0B ~~ 0x0C
431
432 Other Bands: Always 0x00
433
434
435 Battery Info:
436
437 Check the battery voltage.
438
439 Ex1: 0x0B45 = 2885mV
440
441 Ex2: 0x0B49 = 2889mV
442
443
444 === 2.3.2 Sensor value, FPORT~=2 ===
445
446
447 Uplink payload includes in total 9 bytes.
448
449
450 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
451 |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
452 **Size(bytes)**
453 )))|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
454 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
455
456 [[image:1675144608950-310.png]]
457
458
459 === 2.3.3 Battery Info ===
460
461
462 Check the battery voltage for PS-LB/LS.
463
464 Ex1: 0x0B45 = 2885mV
465
466 Ex2: 0x0B49 = 2889mV
467
468
469 === 2.3.4 Probe Model ===
470
471
472 PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
473
474 For example.
475
476 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
477 |(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
478 |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
479 |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
480 |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
481
482 The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
483
484
485 When connecting to current sensors sold by our company, you can convert current readings to corresponding values by simply configuring the [[AT+PROBE>>||anchor="H3.3.4SettheProbeModel"]] command. If you prefer not to configure this command on the sensor, you can uniformly handle the conversion in the payload decoder instead.
486
487 **Examples for decoder implementation:**
488
489 ~1. For AT+PROBE=0005, add the following processing in your decoder:
490
491 [[image:image-20250512144042-1.png]]
492
493 [[image:image-20250512144122-2.png]]
494
495 2. For AT+PROBE=0102, add the following processing in your decoder(Corresponding to the position shown in the above screenshot).
496
497 bytes[i]=0x01;bytes[1+i]=0x02;
498
499 bytes[2]=0x01;bytes[3]=0x02;
500
501
502 === 2.3.5 0~~20mA value (IDC_IN) ===
503
504
505 The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
506
507 Example:
508
509 27AE(H) = 10158 (D)/1000 = 10.158mA.
510
511
512 Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
513
514 [[image:image-20230225154759-1.png||height="408" width="741"]]
515
516
517 === 2.3.6 0~~30V value (pin VDC_IN) ===
518
519
520 Measure the voltage value. The range is 0 to 30V.
521
522 Example:
523
524 138E(H) = 5006(D)/1000= 5.006V
525
526
527 === 2.3.7 IN1&IN2&INT pin ===
528
529
530 IN1 and IN2 are used as digital input pins.
531
532 Example:
533
534 09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
535
536 09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
537
538
539 This data field shows if this packet is generated by Interrupt Pin or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
540
541 Example:
542
543 09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
544
545 09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
546
547 0x01: Interrupt Uplink Packet.
548
549
550 === 2.3.8 Sensor value, FPORT~=7 ===
551
552
553 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
554 |(% style="background-color:#4f81bd; color:white; width:65px" %)(((
555 **Size(bytes)**
556 )))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
557 |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
558
559
560 Voltage value, each 2 bytes is a set of voltage values.
561 )))
562
563 [[image:image-20230220171300-1.png||height="207" width="863"]]
564
565 Multiple sets of data collected are displayed in this form:
566
567 [voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
568
569
570 === 2.3.9 ​Decode payload in The Things Network ===
571
572
573 While using TTN network, you can add the payload format to decode the payload.
574
575 [[image:1675144839454-913.png]]
576
577
578 PS-LB/LS TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
579
580
581 == 2.4 Uplink Interval ==
582
583
584 The PS-LB/LS by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
585
586
587 == 2.5 Show Data in DataCake IoT Server ==
588
589
590 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
591
592 Step 1: Be sure that your device is programmed and properly connected to the network at this time.
593
594 Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
595
596 [[image:1675144951092-237.png]]
597
598
599 [[image:1675144960452-126.png]]
600
601
602 Step 3: Create an account or log in Datacake.
603
604 Step 4: Create PS-LB/LS product.
605
606 [[image:1675145004465-869.png]]
607
608
609 [[image:1675145018212-853.png]]
610
611
612 [[image:1675145029119-717.png]]
613
614
615 Step 5: add payload decode
616
617 [[image:1675145051360-659.png]]
618
619
620 [[image:1675145060812-420.png]]
621
622
623 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
624
625 [[image:1675145081239-376.png]]
626
627
628 == 2.6 Datalog Feature (Since V1.1) ==
629
630
631 When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot.
632
633
634 === 2.6.1 Unix TimeStamp ===
635
636
637 PS-LB uses Unix TimeStamp format based on
638
639 [[image:image-20250401163826-3.jpeg]]
640
641 Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
642
643 Below is the converter example:
644
645 [[image:image-20250401163906-4.jpeg]]
646
647
648 === 2.6.2 Set Device Time ===
649
650
651 There are two ways to set the device's time:
652
653
654 ~1. Through LoRaWAN MAC Command (Default settings)
655
656 Users need to set SYNCMOD=1 to enable sync time via the MAC command.
657
658 Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
659
660 Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.
661
662
663 2. Manually Set Time
664
665 Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
666
667
668 === 2.6.3 Poll sensor value ===
669
670 Users can poll sensor values based on timestamps. Below is the downlink command.
671
672 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
673 |=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31)
674 |(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte
675 |(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)(((
676 Timestamp end
677 )))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval
678
679 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
680
681 For example, downlink command[[image:image-20250117104812-1.png]]
682
683 Is to check 2024/12/20 09:34:59 to 2024/12/20 14:34:59's data
684
685 Uplink Internal =5s,means PS-LB will send one packet every 5s. range 5~~255s.
686
687
688 === 2.6.4 Datalog Uplink payload (FPORT~=3) ===
689
690
691 The Datalog uplinks will use below payload format.
692
693 Retrieval data payload:
694
695 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
696 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
697 Size(bytes)
698 )))|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)2|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)4
699 |(% style="width:103px" %)Value|(% style="width:68px" %)(((
700 Probe_mod
701 )))|(% style="width:104px" %)(((
702 VDC_intput_V
703 )))|(% style="width:83px" %)(((
704 IDC_intput_mA
705 )))|(% style="width:201px" %)(((
706 IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status
707 )))|(% style="width:86px" %)Unix Time Stamp
708
709 IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:
710
711 [[image:image-20250117104847-4.png]]
712
713
714 No ACK Message:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
715
716 Poll Message Flag: 1: This message is a poll message reply.
717
718 * Poll Message Flag is set to 1.
719
720 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
721
722 For example, in US915 band, the max payload for different DR is:
723
724 a) DR0: max is 11 bytes so one entry of data
725
726 b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
727
728 c) DR2: total payload includes 11 entries of data
729
730 d) DR3: total payload includes 22 entries of data.
731
732 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
733
734 Example:
735
736 If PS-LB-NA has below data inside Flash:
737
738 [[image:image-20250117104837-3.png]]
739
740
741 If user sends below downlink command: 316788D9BF6788DB6305
742
743 Where : Start time: 6788D9BF = time 25/1/16 10:04:47
744
745 Stop time: 6788DB63 = time 25/1/16 10:11:47
746
747
748 PA-LB-NA will uplink this payload.
749
750 [[image:image-20250117104827-2.png]]
751
752
753 00001B620000406788D9BF  00000D130000406788D9FB  00000D120000406788DA37  00000D110000406788DA73  00000D100000406788DAAF  00000D100000406788DAEB  00000D0F0000406788DB27  00000D100000406788DB63
754
755
756 Where the first 11 bytes is for the first entry :
757
758
759 0000  0D10  0000  40  6788DB63
760
761
762 Probe_mod = 0x0000 = 0000
763
764
765 VDC_intput_V = 0x0D10/1000=3.344V
766
767 IDC_intput_mA = 0x0000/1000=0mA
768
769
770 IN1_pin_level = (0x40& 0x08)? "High":"Low" = 0(Low)
771
772 IN2_pin_level = (0x40& 0x04)? "High":"Low" = 0(Low)
773
774 Exti_pin_level = (0x40& 0x02)? "High":"Low" = 0(Low)
775
776 Exti_status = (0x40& 0x01)? "True":"False" = 0(False)
777
778
779 Unix time is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
780
781 Its data format is:
782
783 [Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
784
785 Note: water_deep in the data needs to be converted using decoding to get it.
786
787
788 === 2.6.5 Decoder in TTN V3 ===
789
790 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
791
792 Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
793
794
795 == 2.7 Frequency Plans ==
796
797
798 The PS-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
799
800 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/a>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
801
802
803 == 2.8 Report on Change Feature (Since firmware V1.2) ==
804
805 === 2.8.1 Uplink payload(Enable ROC) ===
806
807
808 Used to Monitor the IDC and VDC increments, and send ROC uplink when the IDC or VDC changes exceed.
809
810 With ROC enabled, the payload is as follows:
811
812 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
813 |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
814 Size(bytes)
815 )))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
816 |(% style="width:98px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
817 [[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag
818 )))
819
820 IN1 &IN2 , Interrupt  flag , ROC_flag:
821
822 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
823 |(% style="background-color:#4f81bd; color:white; width:50px" %)Size(bit)|(% style="background-color:#4f81bd; color:white; width:60px" %)bit7|(% style="background-color:#4f81bd; color:white; width:62px" %)bit6|(% style="background-color:#4f81bd; color:white; width:62px" %)bit5|(% style="background-color:#4f81bd; color:white; width:65px" %)bit4|(% style="background-color:#4f81bd; color:white; width:56px" %)bit3|(% style="background-color:#4f81bd; color:white; width:55px" %)bit2|(% style="background-color:#4f81bd; color:white; width:55px" %)bit1|(% style="background-color:#4f81bd; color:white; width:50px" %)bit0
824 |(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status
825
826 * IDC_Roc_flagL
827
828 80 (H): (0x80&0x80)=80(H)=1000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
829
830 60 (H): (0x60&0x80)=0  bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
831
832
833 * IDC_Roc_flagH
834
835 60 (H): (0x60&0x40)=60(H)=01000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
836
837 80 (H): (0x80&0x40)=0  bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
838
839
840 * VDC_Roc_flagL
841
842 20 (H): (0x20&0x20)=20(H)=0010 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
843
844 90 (H): (0x90&0x20)=0  bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
845
846
847 * VDC_Roc_flagH
848
849 90 (H): (0x90&0x10)=10(H)=0001 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
850
851 20 (H): (0x20&0x10)=0  bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
852
853
854 * IN1_pin_level & IN2_pin_level
855
856 IN1 and IN2 are used as digital input pins.
857
858 80 (H): (0x80&0x08)=0  IN1 pin is low level.
859
860 80 (H): (0x09&0x04)=0    IN2 pin is low level.
861
862
863 * Exti_pin_level &Exti_status
864
865 This data field shows whether the packet is generated by an interrupt pin.
866
867 Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the GPIO_EXTI pin.
868
869 Exti_pin_level:  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
870
871 Exti_status: 80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
872
873
874 === 2.8.2 Set the Report on Change ===
875
876
877 Feature: Get or Set the Report on Change.
878
879
880 ==== 2.8.2.1 Wave alarm mode ====
881
882
883 Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed.
884
885 * Change value: The amount by which the next detection value increases/decreases relative to the previous detection value.
886 * Comparison value: A parameter to compare with the latest ROC test.
887
888 AT Command: AT+ROC
889
890 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
891 |=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 193px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
892 |(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
893 0,0,0,0(default)
894 OK
895 )))
896 |(% colspan="1" rowspan="4" style="width:143px" %)(((
897 AT+ROC=a,b,c,d
898 )))|(% style="width:154px" %)(((
899 **a:** Enable or disable the ROC
900 )))|(% style="width:197px" %)(((
901 **0:** off
902 **1:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
903 **2:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
904 )))
905 |(% style="width:154px" %)**b:** Set the detection interval|(% style="width:197px" %)(((
906 Range:  0~~65535s
907 )))
908 |(% style="width:154px" %)**c:** Setting the IDC change value|(% style="width:197px" %)Unit: uA
909 |(% style="width:154px" %)**d:** Setting the VDC change value|(% style="width:197px" %)Unit: mV
910
911 Example:
912
913 * AT+ROC=0,0,0,0  ~/~/ The ROC function is not used.
914 * AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed.
915 * AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage.
916 * AT+ROC=2,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed.
917
918 Downlink Command: 0x09 aa bb cc dd
919
920 Format: Function code (0x09) followed by 4 bytes.
921
922 aa: 1 byte; Set the wave alarm mode.
923
924 bb: 2 bytes; Set the detection interval. (second)
925
926 cc: 2 bytes; Setting the IDC change threshold. (uA)
927
928 dd: 2 bytes; Setting the VDC change threshold. (mV)
929
930 Example:
931
932 * Downlink Payload: 09 01 00 3C 0B B8 01 F4  ~/~/ Equal to AT+ROC=1,60,3000, 500
933 * Downlink Payload: 09 01 00 3C 0B B8 00 00  ~/~/ Equal to AT+ROC=1,60,3000,0
934 * Downlink Payload: 09 02 00 3C 0B B8 00 00  ~/~/ Equal to AT+ROC=2,60,3000,0
935
936 Screenshot of parsing example in TTN:
937
938 * AT+ROC=1,60,3000, 500.
939
940 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB-NA--LoRaWAN_Analog_Sensor_User_Manual/WebHome/image-20241019170902-1.png?width=1454&height=450&rev=1.1||alt="image-20241019170902-1.png"]]
941
942
943 ==== 2.8.2.2 Over-threshold alarm mode ====
944
945
946 Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded.
947
948 AT Command: AT+ROC=3,a,b,c,d,e
949
950 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
951 |=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 187px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
952 |(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
953 0,0,0,0(default)
954 OK
955 )))
956 |(% colspan="1" rowspan="5" style="width:143px" %)(((
957 AT+ROC=3,a,b,c,d,e
958 )))|(% style="width:160px" %)(((
959 **a:** Set the detection interval
960 )))|(% style="width:185px" %)(((
961 Range:  0~~65535s
962 )))
963 |(% style="width:160px" %)**b:** Set the IDC alarm trigger condition|(% style="width:185px" %)(((
964 **0:** Less than the set IDC threshold, Alarm
965 **1:** Greater than the set IDC threshold, Alarm
966 )))
967 |(% style="width:160px" %)(((
968 **c: ** IDC alarm threshold
969 )))|(% style="width:185px" %)(((
970 Unit: uA
971 )))
972 |(% style="width:160px" %)**d:** Set the VDC alarm trigger condition|(% style="width:185px" %)(((
973 **0:** Less than the set VDC threshold, Alarm
974 **1:** Greater than the set VDC threshold, Alarm
975 )))
976 |(% style="width:160px" %)**e:** VDC alarm threshold|(% style="width:185px" %)Unit: mV
977
978 Example:
979
980 * AT+ROC=3,60,0,3000,0,5000  ~/~/ The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
981 * AT+ROC=3,180,1,3000,1,5000  ~/~/ The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
982 * AT+ROC=3,300,0,3000,1,5000  ~/~/ The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
983
984 Downlink Command: 0x09 03 aa bb cc dd ee
985
986 Format: Function code (0x09) followed by 03 and the remaining 5 bytes.
987
988 aa: 2 bytes; Set the detection interval.(second)
989
990 bb: 1 byte; Set the IDC alarm trigger condition.
991
992 cc: 2 bytes; IDC alarm threshold.(uA)
993
994
995 dd: 1 byte; Set the VDC alarm trigger condition.
996
997 ee: 2 bytes; VDC alarm threshold.(mV)
998
999 Example:
1000
1001 * Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/ Equal to AT+ROC=3,60,0,3000,0,5000
1002 * Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38  ~/~/ Equal to AT+ROC=3,60,1,3000,1,5000
1003 * Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38  ~/~/ Equal to AT+ROC=3,60,0,3000,1,5000
1004
1005 Screenshot of parsing example in TTN:
1006
1007 * AT+ROC=3,60,0,3000,0,5000
1008
1009 [[image:image-20250116180030-2.png]]
1010
1011
1012 == 2.9 ​Firmware Change Log ==
1013
1014
1015 Firmware download link:
1016
1017 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
1018
1019
1020 = 3. Configure PS-LB/LS =
1021
1022 == 3.1 Configure Methods ==
1023
1024
1025 PS-LB/LS supports below configure method:
1026
1027 * AT Command via Bluetooth Connection (Recommand Way): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1028 * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
1029 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
1030
1031 == 3.2 General Commands ==
1032
1033
1034 These commands are to configure:
1035
1036 * General system settings like: uplink interval.
1037 * LoRaWAN protocol & radio related command.
1038
1039 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
1040
1041 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1042
1043
1044 == 3.3 Commands special design for PS-LB/LS ==
1045
1046
1047 These commands only valid for PS-LB/LS, as below:
1048
1049
1050 === 3.3.1 Set Transmit Interval Time ===
1051
1052
1053 Feature: Change LoRaWAN End Node Transmit Interval.
1054
1055 AT Command: AT+TDC
1056
1057 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1058 |=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response
1059 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
1060 30000
1061 OK
1062 the interval is 30000ms = 30s
1063 )))
1064 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
1065 OK
1066 Set transmit interval to 60000ms = 60 seconds
1067 )))
1068
1069 Downlink Command: 0x01
1070
1071 Format: Command Code (0x01) followed by 3 bytes time value.
1072
1073 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1074
1075 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1076 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1077
1078 === 3.3.2 Set Interrupt Mode ===
1079
1080
1081 Feature, Set Interrupt mode for GPIO_EXIT.
1082
1083 AT Command: AT+INTMOD
1084
1085 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1086 |=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response
1087 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
1088 0
1089 OK
1090 the mode is 0 =Disable Interrupt
1091 )))
1092 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
1093 Set Transmit Interval
1094 0. (Disable Interrupt),
1095 ~1. (Trigger by rising and falling edge)
1096 2. (Trigger by falling edge)
1097 3. (Trigger by rising edge)
1098 )))|(% style="background-color:#f2f2f2; width:157px" %)OK
1099
1100 Downlink Command: 0x06
1101
1102 Format: Command Code (0x06) followed by 3 bytes.
1103
1104 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1105
1106 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
1107 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1108
1109 === 3.3.3 Set the output time ===
1110
1111
1112 Feature, Control the output 3V3 , 5V or 12V.
1113
1114 AT Command: AT+3V3T
1115
1116 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:474px" %)
1117 |=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1118 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
1119 0
1120 OK
1121 )))
1122 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1123 OK
1124 default setting
1125 )))
1126 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
1127 OK
1128 )))
1129 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1130 OK
1131 )))
1132
1133 AT Command: AT+5VT
1134
1135 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
1136 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1137 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1138 0
1139 OK
1140 )))
1141 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1142 OK
1143 default setting
1144 )))
1145 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
1146 OK
1147 )))
1148 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1149 OK
1150 )))
1151
1152 AT Command: AT+12VT
1153
1154 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:443px" %)
1155 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response
1156 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1157 0
1158 OK
1159 )))
1160 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
1161 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
1162 OK
1163 )))
1164
1165 Downlink Command: 0x07
1166
1167 Format: Command Code (0x07) followed by 3 bytes.
1168
1169 The first byte is which power, the second and third bytes are the time to turn on.
1170
1171 * Example 1: Downlink Payload: 070101F4  ~-~-->  AT+3V3T=500
1172 * Example 2: Downlink Payload: 0701FFFF   ~-~-->  AT+3V3T=65535
1173 * Example 3: Downlink Payload: 070203E8  ~-~-->  AT+5VT=1000
1174 * Example 4: Downlink Payload: 07020000  ~-~-->  AT+5VT=0
1175 * Example 5: Downlink Payload: 070301F4  ~-~-->  AT+12VT=500
1176 * Example 6: Downlink Payload: 07030000  ~-~-->  AT+12VT=0
1177
1178 Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.
1179
1180 Therefore, the corresponding downlink command is increased by one byte to five bytes.
1181
1182 Example:
1183
1184 * 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 01 01 D4 C0  ~-~-->  AT+3V3T=120000
1185 * 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 02 01 86 A0  ~-~-->  AT+5VT=100000
1186 * 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 03 01 38 80  ~-~-->  AT+12VT=80000
1187
1188 === 3.3.4 Set the Probe Model ===
1189
1190
1191 Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
1192
1193 AT Command: AT +PROBE
1194
1195 AT+PROBE=aabb
1196
1197 When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
1198
1199 When aa=01, it is the pressure mode, which converts the current into a pressure value;
1200
1201 bb represents which type of pressure sensor it is.
1202
1203 (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
1204
1205 When aa=02, it is the Differential Pressure Sensor , which converts the current into a pressure value;
1206
1207 bb represents which type of pressure sensor it is.
1208
1209 (0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C)
1210
1211 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1212 |(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1213 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
1214 OK
1215 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
1216 |(% style="background-color:#f2f2f2; width:154px" %)(((
1217 AT+PROBE=000A
1218 )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
1219 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
1220 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
1221 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
1222
1223 Downlink Command: 0x08
1224
1225 Format: Command Code (0x08) followed by 2 bytes.
1226
1227 * Example 1: Downlink Payload: 080003  ~-~-->  AT+PROBE=0003
1228 * Example 2: Downlink Payload: 080101  ~-~-->  AT+PROBE=0101
1229
1230 === 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
1231
1232
1233 Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time.
1234
1235 AT Command: AT +STDC
1236
1237 AT+STDC=aa,bb,cc
1238
1239 aa:
1240 0: means disable this function and use TDC to send packets.
1241 1: means that the function is enabled to send packets by collecting VDC data for multiple times.
1242 2: means that the function is enabled to send packets by collecting IDC data for multiple times.
1243 bb: Each collection interval (s), the value is 1~~65535
1244 cc: the number of collection times, the value is 1~~120
1245
1246 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1247 |(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1248 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
1249 OK
1250 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1251 Attention:Take effect after ATZ
1252 OK
1253 )))
1254 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
1255
1256
1257 Use the TDC interval to send packets.(default)
1258
1259
1260 )))|(% style="background-color:#f2f2f2" %)(((
1261 Attention:Take effect after ATZ
1262 OK
1263 )))
1264
1265 Downlink Command: 0xAE
1266
1267 Format: Command Code (0xAE) followed by 4 bytes.
1268
1269 * Example 1: Downlink Payload: AE 01 02 58 12 ~-~-->  AT+STDC=1,600,18
1270
1271 == 3.4 Print data entries base on page(Since v1.1.0) ==
1272
1273
1274 Feature: Print the sector data from start page to stop page (max is 416 pages).
1275
1276 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1277
1278 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1279 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1280 |(% style="width:156px" %)(((
1281 AT+PDTA=1,1
1282 Print page 1 to 1
1283 )))|(% style="width:311px" %)(((
1284 Stop Tx events when read sensor data
1285
1286 8031000 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1287
1288 8031010 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1289
1290 8031020 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1291
1292 8031030 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1293
1294 8031040 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1295
1296 8031050 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1297
1298 8031060 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1299
1300 8031070 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1301
1302 Start Tx events
1303
1304
1305 OK
1306 )))
1307
1308 (% style="color:#4f81bd" %)**Downlink Command:**
1309
1310 No downlink commands for feature
1311
1312
1313 == 3.5 Print last few data entries(Since v1.1.0) ==
1314
1315
1316 Feature: Print the last few data entries
1317
1318
1319 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1320
1321 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1322 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1323 |(% style="width:156px" %)(((
1324 AT+PLDTA=10
1325 Print last 10 entries
1326 )))|(% style="width:311px" %)(((
1327 Stop Tx events when read sensor data
1328
1329 0001 2025/5/19 06:16:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1330
1331 0002 2025/5/19 06:17:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1332
1333 0003 2025/5/19 06:18:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1334
1335 0004 2025/5/19 06:19:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1336
1337 0005 2025/5/19 06:20:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1338
1339 0006 2025/5/19 06:21:50 3246 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1340
1341 0007 2025/5/19 06:22:50 3240 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1342
1343 0008 2025/5/19 06:26:44 3276 in1:low in2:low exti:low status:false vdc:3.385 idc:0.000 proble:0000 water_deep:0.000
1344
1345 0009 2025/5/19 06:27:36 3246 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1346
1347 0010 2025/5/19 06:28:36 3240 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1348
1349 Start Tx events
1350
1351 OK
1352 )))
1353
1354 (% style="color:#4f81bd" %)**Downlink Command:**
1355
1356 No downlink commands for feature
1357
1358
1359 == 3.6 Clear Flash Record(Since v1.1.0) ==
1360
1361
1362 Feature: Clear flash storage for data log feature.
1363
1364 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1365
1366 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1367 |(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1368 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1369 Clear all stored sensor data…
1370
1371 OK
1372 )))
1373
1374 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1375
1376 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1377
1378 = 4. Battery & Power Consumption =
1379
1380
1381 PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1382
1383 [[Battery Info & Power Consumption Analyze>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1384
1385
1386 = 5. OTA firmware update =
1387
1388
1389 Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1390
1391
1392 = 6. FAQ =
1393
1394 == 6.1 How to use AT Command via UART to access device? ==
1395
1396
1397 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1398
1399
1400 == 6.2 How to update firmware via UART port? ==
1401
1402
1403 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1404
1405
1406 == 6.3 How to change the LoRa Frequency Bands/Region? ==
1407
1408
1409 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
1410 When downloading the images, choose the required image file for download. ​
1411
1412
1413 == 6.4 How to measure the depth of other liquids other than water? ==
1414
1415
1416 Test the current values at the depth of different liquids and convert them to a linear scale.
1417 Replace its ratio with the ratio of water to current in the decoder.
1418
1419 Example:
1420
1421 Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
1422
1423 Calculate scale factor:
1424 Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
1425
1426 Calculation formula:
1427
1428 Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
1429
1430 Actual calculations:
1431
1432 Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
1433
1434 Error:
1435
1436 0.009810726
1437
1438
1439 [[image:image-20240329175044-1.png]]
1440
1441
1442 == 6.5 Cable & Probe Material Compatibility(Immersion type) ==
1443
1444
1445 Since the installation method of immersion sensors requires immersion in a liquid environment, the discussion of liquids that can be safely installed is very important.
1446
1447 (% style="color:blue" %)**The material of the immersed part of the immersion sensor:**
1448
1449 * **Cable Jacket**: Black polyurethane (PU) – Resistant to water, oils, and mild chemicals.
1450 * **Probe Material**: 316 stainless steel – Corrosion-resistant in most industrial/marine environments.
1451
1452 (% style="color:blue" %)**Chemical Compatibility:**
1453
1454 * **Polyurethane (PU) Cable:** Resists water, oils, fuels, and mild chemicals but may degrade with prolonged exposure to strong acids, bases, or solvents (e.g., acetone, chlorinated hydrocarbons).
1455 * 3**16 Stainless Steel Probe:** Suitable for water, seawater, mild acids/alkalis, and industrial fluids. Avoid highly concentrated acids (e.g., hydrochloric acid) or chlorides at high temperatures.
1456
1457 **Chemical Resistance Chart for Polyurethane (PU) Cable**
1458
1459 [[image:image-20250603171424-1.png||height="429" width="625"]]
1460
1461 **Chemical Resistance Chart for 316 Stainless Steel Probe**
1462
1463 [[image:image-20250603171503-2.png||height="350" width="616"]]
1464
1465
1466 = 7. Troubleshooting =
1467
1468 == 7.1 Water Depth Always shows 0 in payload ==
1469
1470
1471 If your device's IDC_intput_mA is normal, but your reading always shows 0, please refer to the following points:
1472
1473 ~1. Please set it to mod1
1474
1475 2. Please set the command [[AT+PROBE>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB%20--%20LoRaWAN%20Pressure%20Sensor/#H3.3.4SettheProbeModel]] according to the model of your sensor
1476
1477 3. Check the connection status of the sensor
1478
1479
1480 = 8. Order Info =
1481
1482 == 8.1 Thread Installation Type & Immersion Type Pressure Sensor ==
1483
1484
1485 Part Number: (% style="color:blue" %)**PS-NB/NS-Txx-YY  or  PS-NB/NS-Ixx-YY**
1486
1487 (% style="color:blue" %)**XX:**(%%)** Pressure Range and Thread Type **
1488
1489 (% style="color:blue" %)**YY:**(%%)** The default frequency band**
1490
1491 * YY: Frequency Bands, options: EU433,CN470,EU868,IN865,KR920,AS923,AU915,US915
1492
1493 [[image:image-20241021093209-1.png]]
1494
1495
1496 == 8.2 Wireless Differential Air Pressure Sensor ==
1497
1498
1499 Part Number: (% style="color:blue" %)**PS-LB-Dxx-YY  or  PS-LS-Dxx-YY **
1500
1501 (% style="color:blue" %)**XX:**(%%)** Differential Pressure Range**
1502
1503 (% style="color:blue" %)**YY:**(%%)** The default frequency band**
1504
1505 * YY: Frequency Bands, options: EU433,CN470,EU868,IN865,KR920,AS923,AU915,US915
1506
1507 [[image:image-20250401174215-1.png||height="486" width="656"]]
1508
1509
1510 = 9. ​Packing Info =
1511
1512
1513 Package Includes:
1514
1515 * PS-LB/LS-Txx/Ixx, PS-LB/LS-Dxx   LoRaWAN Pressure Sensor
1516
1517 Dimension and weight:
1518
1519 * Device Size: cm
1520 * Device Weight: g
1521 * Package Size / pcs : cm
1522 * Weight / pcs : g
1523
1524 = 10. Support =
1525
1526
1527 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1528
1529 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].