Version 139.1 by Mengting Qiu on 2025/06/03 16:12

Show last authors
1
2
3
4 (% style="text-align:center" %)
5 [[image:image-20240109154731-4.png||height="546" width="769"]]
6
7
8
9
10
11
12
13 **Table of Contents :**
14
15 {{toc/}}
16
17
18
19
20
21
22 = 1. Introduction =
23
24 == 1.1 What is LoRaWAN Pressure Sensor ==
25
26
27 (((
28 The Dragino PS-LB/LS series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB/LS can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
29 )))
30
31 (((
32 The PS-LB/LS series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
33 )))
34
35 (((
36 The LoRa wireless technology used in PS-LB/LS allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
37 )))
38
39 (((
40 PS-LB/LS supports BLE configure and wireless OTA update which make user easy to use.
41 )))
42
43 (((
44 PS-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + Li-ion battery **(%%), it is designed for long term use up to 5 years.
45 )))
46
47 (((
48 Each PS-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
49 )))
50
51
52 == 1.2 ​Features ==
53
54
55 * LoRaWAN 1.0.3 Class A
56 * Ultra-low power consumption
57 * Measure air / gas or water pressure
58 * Different pressure range available
59 * Thread Installation Type or Immersion Type
60 * Monitor Battery Level
61 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
62 * Support Bluetooth v5.1 and LoRaWAN remote configure
63 * Support wireless OTA update firmware
64 * Uplink on periodically
65 * Downlink to change configure
66 * Controllable 3.3v,5v and 12v output to power external sensor
67 * 8500mAh Li/SOCl2 Battery (PS-LB)
68 * Solar panel + 3000mAh Li-ion battery (PS-LS)
69
70 == 1.3 Specification ==
71
72
73 (% style="color:#037691" %)**Micro Controller:**
74
75 * MCU: 48Mhz ARM
76 * Flash: 256KB
77 * RAM: 64KB
78
79 (% style="color:#037691" %)**Common DC Characteristics:**
80
81 * Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
82 * Operating Temperature: -40 ~~ 85°C
83
84 (% style="color:#037691" %)**LoRa Spec:**
85
86 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz,Band 2 (LF): 410 ~~ 528 Mhz
87 * Max +22 dBm constant RF output vs.
88 * RX sensitivity: down to -139 dBm.
89 * Excellent blocking immunity
90
91 (% style="color:#037691" %)**Current Input Measuring :**
92
93 * Range: 0 ~~ 20mA
94 * Accuracy: 0.02mA
95 * Resolution: 0.001mA
96
97 (% style="color:#037691" %)**Voltage Input Measuring:**
98
99 * Range: 0 ~~ 30v
100 * Accuracy: 0.02v
101 * Resolution: 0.001v
102
103 (% style="color:#037691" %)**Battery:**
104
105 * Li/SOCI2 un-chargeable battery
106 * Capacity: 8500mAh
107 * Self-Discharge: <1% / Year @ 25°C
108 * Max continuously current: 130mA
109 * Max boost current: 2A, 1 second
110
111 (% style="color:#037691" %)**Power Consumption**
112
113 * Sleep Mode: 5uA @ 3.3v
114 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
115
116 == 1.4 Probe Types ==
117
118 === 1.4.1 Thread Installation Type ===
119
120
121 [[image:1675071448299-229.png]]
122
123 * Hersman Pressure Transmitter
124 * Measuring Range: -0.1 ~~ 0 ~~ 60MPa, see order info.
125 * Accuracy: 0.2% F.S
126 * Long-Term Stability: 0.2% F.S ±0.05%
127 * Overload 200% F.S
128 * Zero Temperature Drift: 0.03% FS/℃(≤100Kpa), 0.02%FS/℃(>100Kpa)
129 * FS Temperature Drift: 0.003% FS/℃(≤100Kpa), 0.002%FS/℃(>100Kpa)
130 * Storage temperature: -30℃~~80℃
131 * Operating temperature: -20℃~~60℃
132 * Connector Type: Various Types, see order info
133
134 === 1.4.2 Immersion Type ===
135
136
137 [[image:image-20240109160445-5.png||height="199" width="150"]]
138
139 * Immersion Type, Probe IP Level: IP68
140 * Measuring Range: Measure range can be customized, up to 100m.
141 * Accuracy: 0.2% F.S
142 * Long-Term Stability: ±0.2% F.S / Year
143 * Storage temperature: -30°C~~80°C
144 * Operating temperature: 0°C~~50°C
145 * Probe Material: 316 stainless steels
146 * Cable model specifications: CGYPU 5*0.2mm2
147 * Usage characteristics of Cable
148 1) Operating temperature:-40℃— +70℃
149 2) -30℃ bending cable 15 times of outer diameter can work normally
150
151 === 1.4.3 Wireless Differential Air Pressure Sensor ===
152
153 [[image:image-20240511174954-1.png||height="193" width="193"]]
154
155 * Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
156 * Accuracy: 0.5% F.S, resolution is 0.05%.
157 * Overload: 300% F.S
158 * Zero temperature drift: ±0.03%F.S/°C
159 * Operating temperature: -20°C~~60°C
160 * Storage temperature:  -20°C~~60°C
161 * Compensation temperature: 0~~50°C
162
163 == 1.5 Application and Installation ==
164
165 === 1.5.1 Thread Installation Type ===
166
167
168 (% style="color:blue" %)**Application:**
169
170 * Hydraulic Pressure
171 * Petrochemical Industry
172 * Health and Medical
173 * Food & Beverage Processing
174 * Auto-controlling house
175 * Constant Pressure Water Supply
176 * Liquid Pressure measuring
177
178 Order the suitable thread size and install to measure the air / liquid pressure
179
180 [[image:1675071670469-145.png]]
181
182
183 === 1.5.2 Immersion Type ===
184
185
186 (% style="color:blue" %)**Application:**
187
188 Liquid & Water Pressure / Level detect.
189
190 [[image:1675071725288-579.png]]
191
192
193 Below is the wiring to for connect the probe to the device.
194
195 The Immersion Type Sensor has different variant which defined by Ixx. For example, this means two points:
196
197 * Cable Length: 10 Meters
198 * Water Detect Range: 0 ~~ 10 Meters.
199
200 [[image:1675071736646-450.png]]
201
202
203 [[image:1675071776102-240.png]]
204
205 Size of immersion type water depth sensor:
206
207 [[image:image-20250401102131-1.png||height="268" width="707"]]
208
209
210 === 1.5.3 Wireless Differential Air Pressure Sensor ===
211
212
213 (% style="color:blue" %)**Application:**
214
215 Indoor Air Control & Filter clogging Detect.
216
217 [[image:image-20240513100129-6.png]]
218
219 [[image:image-20240513100135-7.png]]
220
221
222 Below is the wiring to for connect the probe to the device.
223
224 [[image:image-20240513093957-1.png]]
225
226
227 Size of wind pressure transmitter:
228
229 [[image:image-20240513094047-2.png||height="462" width="518"]]
230
231 (% style="color:red" %)**Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.**
232
233
234 == 1.6 Sleep mode and working mode ==
235
236
237 **Deep Sleep Mode:** Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
238
239 **Working Mode: **In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
240
241
242 == 1.7 Button & LEDs ==
243
244
245 [[image:image-20250419092225-1.jpeg]]
246
247 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
248 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action
249 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
250
251
252 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once.
253 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
254 )))
255 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
256
257
258 Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network.
259 Green led will solidly turn on for 5 seconds after joined in network.
260 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
261 )))
262 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
263
264 == 1.8 Pin Mapping ==
265
266
267 [[image:1675072568006-274.png]]
268
269
270 == 1.9 BLE connection ==
271
272
273 PS-LB/LS support BLE remote configure.
274
275
276 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
277
278 * Press button to send an uplink
279 * Press button to active device.
280 * Device Power on or reset.
281
282 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
283
284
285 == 1.10 Mechanical ==
286
287 === 1.10.1 for LB version ===
288
289
290 [[image:image-20250401163530-1.jpeg]]
291
292
293 === 1.10.2 for LS version ===
294
295
296 [[image:image-20250401163539-2.jpeg]]
297
298
299 = 2. Configure PS-LB/LS to connect to LoRaWAN network =
300
301 == 2.1 How it works ==
302
303
304 The PS-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
305
306
307 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
308
309
310 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
311
312 [[image:image-20250419162538-1.png]]
313
314
315 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
316
317
318 (% style="color:blue" %)**Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.**
319
320 Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
321
322 [[image:image-20230426085320-1.png||height="234" width="504"]]
323
324
325 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
326
327 **Create the application.**
328
329 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
330
331 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
332
333
334 **Add devices to the created Application.**
335
336 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
337
338 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
339
340
341 **Enter end device specifics manually.**
342
343 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
344
345
346 **Add DevEUI and AppKey. Customize a platform ID for the device.**
347
348 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
349
350
351 (% style="color:blue" %)**Step 2: Add decoder.**
352
353 In TTN, user can add a custom payload so it shows friendly reading.
354
355 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
356
357 Below is TTN screen shot:
358
359 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
360
361 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png" height="562" width="1168"]]
362
363
364 (% style="color:blue" %)**Step 3: Activate on PS-LB/LS**
365
366 Press the button for 5 seconds to activate the PS-LB/LS.
367
368 Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network.
369
370 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
371
372
373 == 2.3 ​Uplink Payload ==
374
375 === 2.3.1 Device Status, FPORT~=5 ===
376
377
378 Include device configure status. Once PS-LB/LS Joined the network, it will uplink this message to the server.
379
380 Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
381
382 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
383 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
384 |(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2
385 |(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
386
387 Example parse in TTNv3
388
389 [[image:1675144504430-490.png]]
390
391
392 Sensor Model: For PS-LB/LS, this value is 0x16
393
394 Firmware Version: 0x0100, Means: v1.0.0 version
395
396 Frequency Band:
397
398 *0x01: EU868
399
400 *0x02: US915
401
402 *0x03: IN865
403
404 *0x04: AU915
405
406 *0x05: KZ865
407
408 *0x06: RU864
409
410 *0x07: AS923
411
412 *0x08: AS923-1
413
414 *0x09: AS923-2
415
416 *0x0a: AS923-3
417
418 *0x0b: CN470
419
420 *0x0c: EU433
421
422 *0x0d: KR920
423
424 *0x0e: MA869
425
426
427 Sub-Band:
428
429 AU915 and US915:value 0x00 ~~ 0x08
430
431 CN470: value 0x0B ~~ 0x0C
432
433 Other Bands: Always 0x00
434
435
436 Battery Info:
437
438 Check the battery voltage.
439
440 Ex1: 0x0B45 = 2885mV
441
442 Ex2: 0x0B49 = 2889mV
443
444
445 === 2.3.2 Sensor value, FPORT~=2 ===
446
447
448 Uplink payload includes in total 9 bytes.
449
450
451 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
452 |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
453 **Size(bytes)**
454 )))|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
455 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
456
457 [[image:1675144608950-310.png]]
458
459
460 === 2.3.3 Battery Info ===
461
462
463 Check the battery voltage for PS-LB/LS.
464
465 Ex1: 0x0B45 = 2885mV
466
467 Ex2: 0x0B49 = 2889mV
468
469
470 === 2.3.4 Probe Model ===
471
472
473 PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
474
475 For example.
476
477 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
478 |(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
479 |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
480 |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
481 |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
482
483 The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
484
485
486 When connecting to current sensors sold by our company, you can convert current readings to corresponding values by simply configuring the [[AT+PROBE>>||anchor="H3.3.4SettheProbeModel"]] command. If you prefer not to configure this command on the sensor, you can uniformly handle the conversion in the payload decoder instead.
487
488 **Examples for decoder implementation:**
489
490 ~1. For AT+PROBE=0005, add the following processing in your decoder:
491
492 [[image:image-20250512144042-1.png]]
493
494 [[image:image-20250512144122-2.png]]
495
496 2. For AT+PROBE=0102, add the following processing in your decoder(Corresponding to the position shown in the above screenshot).
497
498 bytes[i]=0x01;bytes[1+i]=0x02;
499
500 bytes[2]=0x01;bytes[3]=0x02;
501
502
503 === 2.3.5 0~~20mA value (IDC_IN) ===
504
505
506 The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
507
508 Example:
509
510 27AE(H) = 10158 (D)/1000 = 10.158mA.
511
512
513 Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
514
515 [[image:image-20230225154759-1.png||height="408" width="741"]]
516
517
518 === 2.3.6 0~~30V value (pin VDC_IN) ===
519
520
521 Measure the voltage value. The range is 0 to 30V.
522
523 Example:
524
525 138E(H) = 5006(D)/1000= 5.006V
526
527
528 === 2.3.7 IN1&IN2&INT pin ===
529
530
531 IN1 and IN2 are used as digital input pins.
532
533 Example:
534
535 09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
536
537 09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
538
539
540 This data field shows if this packet is generated by Interrupt Pin or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
541
542 Example:
543
544 09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
545
546 09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
547
548 0x01: Interrupt Uplink Packet.
549
550
551 === 2.3.8 Sensor value, FPORT~=7 ===
552
553
554 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
555 |(% style="background-color:#4f81bd; color:white; width:65px" %)(((
556 **Size(bytes)**
557 )))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
558 |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
559
560
561 Voltage value, each 2 bytes is a set of voltage values.
562 )))
563
564 [[image:image-20230220171300-1.png||height="207" width="863"]]
565
566 Multiple sets of data collected are displayed in this form:
567
568 [voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
569
570
571 === 2.3.9 ​Decode payload in The Things Network ===
572
573
574 While using TTN network, you can add the payload format to decode the payload.
575
576 [[image:1675144839454-913.png]]
577
578
579 PS-LB/LS TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
580
581
582 == 2.4 Uplink Interval ==
583
584
585 The PS-LB/LS by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
586
587
588 == 2.5 Show Data in DataCake IoT Server ==
589
590
591 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
592
593 Step 1: Be sure that your device is programmed and properly connected to the network at this time.
594
595 Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
596
597 [[image:1675144951092-237.png]]
598
599
600 [[image:1675144960452-126.png]]
601
602
603 Step 3: Create an account or log in Datacake.
604
605 Step 4: Create PS-LB/LS product.
606
607 [[image:1675145004465-869.png]]
608
609
610 [[image:1675145018212-853.png]]
611
612
613 [[image:1675145029119-717.png]]
614
615
616 Step 5: add payload decode
617
618 [[image:1675145051360-659.png]]
619
620
621 [[image:1675145060812-420.png]]
622
623
624 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
625
626 [[image:1675145081239-376.png]]
627
628
629 == 2.6 Datalog Feature (Since V1.1) ==
630
631
632 When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot.
633
634
635 === 2.6.1 Unix TimeStamp ===
636
637
638 PS-LB uses Unix TimeStamp format based on
639
640 [[image:image-20250401163826-3.jpeg]]
641
642 Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
643
644 Below is the converter example:
645
646 [[image:image-20250401163906-4.jpeg]]
647
648
649 === 2.6.2 Set Device Time ===
650
651
652 There are two ways to set the device's time:
653
654
655 ~1. Through LoRaWAN MAC Command (Default settings)
656
657 Users need to set SYNCMOD=1 to enable sync time via the MAC command.
658
659 Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
660
661 Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.
662
663
664 2. Manually Set Time
665
666 Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
667
668
669 === 2.6.3 Poll sensor value ===
670
671 Users can poll sensor values based on timestamps. Below is the downlink command.
672
673 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
674 |=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31)
675 |(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte
676 |(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)(((
677 Timestamp end
678 )))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval
679
680 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
681
682 For example, downlink command[[image:image-20250117104812-1.png]]
683
684 Is to check 2024/12/20 09:34:59 to 2024/12/20 14:34:59's data
685
686 Uplink Internal =5s,means PS-LB will send one packet every 5s. range 5~~255s.
687
688
689 === 2.6.4 Datalog Uplink payload (FPORT~=3) ===
690
691
692 The Datalog uplinks will use below payload format.
693
694 Retrieval data payload:
695
696 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
697 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
698 Size(bytes)
699 )))|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)2|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)4
700 |(% style="width:103px" %)Value|(% style="width:68px" %)(((
701 Probe_mod
702 )))|(% style="width:104px" %)(((
703 VDC_intput_V
704 )))|(% style="width:83px" %)(((
705 IDC_intput_mA
706 )))|(% style="width:201px" %)(((
707 IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status
708 )))|(% style="width:86px" %)Unix Time Stamp
709
710 IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:
711
712 [[image:image-20250117104847-4.png]]
713
714
715 No ACK Message:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
716
717 Poll Message Flag: 1: This message is a poll message reply.
718
719 * Poll Message Flag is set to 1.
720
721 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
722
723 For example, in US915 band, the max payload for different DR is:
724
725 a) DR0: max is 11 bytes so one entry of data
726
727 b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
728
729 c) DR2: total payload includes 11 entries of data
730
731 d) DR3: total payload includes 22 entries of data.
732
733 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
734
735 Example:
736
737 If PS-LB-NA has below data inside Flash:
738
739 [[image:image-20250117104837-3.png]]
740
741
742 If user sends below downlink command: 316788D9BF6788DB6305
743
744 Where : Start time: 6788D9BF = time 25/1/16 10:04:47
745
746 Stop time: 6788DB63 = time 25/1/16 10:11:47
747
748
749 PA-LB-NA will uplink this payload.
750
751 [[image:image-20250117104827-2.png]]
752
753
754 00001B620000406788D9BF  00000D130000406788D9FB  00000D120000406788DA37  00000D110000406788DA73  00000D100000406788DAAF  00000D100000406788DAEB  00000D0F0000406788DB27  00000D100000406788DB63
755
756
757 Where the first 11 bytes is for the first entry :
758
759
760 0000  0D10  0000  40  6788DB63
761
762
763 Probe_mod = 0x0000 = 0000
764
765
766 VDC_intput_V = 0x0D10/1000=3.344V
767
768 IDC_intput_mA = 0x0000/1000=0mA
769
770
771 IN1_pin_level = (0x40& 0x08)? "High":"Low" = 0(Low)
772
773 IN2_pin_level = (0x40& 0x04)? "High":"Low" = 0(Low)
774
775 Exti_pin_level = (0x40& 0x02)? "High":"Low" = 0(Low)
776
777 Exti_status = (0x40& 0x01)? "True":"False" = 0(False)
778
779
780 Unix time is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
781
782 Its data format is:
783
784 [Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
785
786 Note: water_deep in the data needs to be converted using decoding to get it.
787
788
789 === 2.6.5 Decoder in TTN V3 ===
790
791 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
792
793 Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
794
795
796 == 2.7 Frequency Plans ==
797
798
799 The PS-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
800
801 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/a>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
802
803
804 == 2.8 Report on Change Feature (Since firmware V1.2) ==
805
806 === 2.8.1 Uplink payload(Enable ROC) ===
807
808
809 Used to Monitor the IDC and VDC increments, and send ROC uplink when the IDC or VDC changes exceed.
810
811 With ROC enabled, the payload is as follows:
812
813 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
814 |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
815 Size(bytes)
816 )))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
817 |(% style="width:98px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
818 [[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag
819 )))
820
821 IN1 &IN2 , Interrupt  flag , ROC_flag:
822
823 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
824 |(% style="background-color:#4f81bd; color:white; width:50px" %)Size(bit)|(% style="background-color:#4f81bd; color:white; width:60px" %)bit7|(% style="background-color:#4f81bd; color:white; width:62px" %)bit6|(% style="background-color:#4f81bd; color:white; width:62px" %)bit5|(% style="background-color:#4f81bd; color:white; width:65px" %)bit4|(% style="background-color:#4f81bd; color:white; width:56px" %)bit3|(% style="background-color:#4f81bd; color:white; width:55px" %)bit2|(% style="background-color:#4f81bd; color:white; width:55px" %)bit1|(% style="background-color:#4f81bd; color:white; width:50px" %)bit0
825 |(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status
826
827 * IDC_Roc_flagL
828
829 80 (H): (0x80&0x80)=80(H)=1000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
830
831 60 (H): (0x60&0x80)=0  bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
832
833
834 * IDC_Roc_flagH
835
836 60 (H): (0x60&0x40)=60(H)=01000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
837
838 80 (H): (0x80&0x40)=0  bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
839
840
841 * VDC_Roc_flagL
842
843 20 (H): (0x20&0x20)=20(H)=0010 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
844
845 90 (H): (0x90&0x20)=0  bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
846
847
848 * VDC_Roc_flagH
849
850 90 (H): (0x90&0x10)=10(H)=0001 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
851
852 20 (H): (0x20&0x10)=0  bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
853
854
855 * IN1_pin_level & IN2_pin_level
856
857 IN1 and IN2 are used as digital input pins.
858
859 80 (H): (0x80&0x08)=0  IN1 pin is low level.
860
861 80 (H): (0x09&0x04)=0    IN2 pin is low level.
862
863
864 * Exti_pin_level &Exti_status
865
866 This data field shows whether the packet is generated by an interrupt pin.
867
868 Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the GPIO_EXTI pin.
869
870 Exti_pin_level:  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
871
872 Exti_status: 80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
873
874
875 === 2.8.2 Set the Report on Change ===
876
877
878 Feature: Get or Set the Report on Change.
879
880
881 ==== 2.8.2.1 Wave alarm mode ====
882
883
884 Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed.
885
886 * Change value: The amount by which the next detection value increases/decreases relative to the previous detection value.
887 * Comparison value: A parameter to compare with the latest ROC test.
888
889 AT Command: AT+ROC
890
891 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
892 |=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 193px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
893 |(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
894 0,0,0,0(default)
895 OK
896 )))
897 |(% colspan="1" rowspan="4" style="width:143px" %)(((
898 AT+ROC=a,b,c,d
899 )))|(% style="width:154px" %)(((
900 **a:** Enable or disable the ROC
901 )))|(% style="width:197px" %)(((
902 **0:** off
903 **1:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
904 **2:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
905 )))
906 |(% style="width:154px" %)**b:** Set the detection interval|(% style="width:197px" %)(((
907 Range:  0~~65535s
908 )))
909 |(% style="width:154px" %)**c:** Setting the IDC change value|(% style="width:197px" %)Unit: uA
910 |(% style="width:154px" %)**d:** Setting the VDC change value|(% style="width:197px" %)Unit: mV
911
912 Example:
913
914 * AT+ROC=0,0,0,0  ~/~/ The ROC function is not used.
915 * AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed.
916 * AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage.
917 * AT+ROC=2,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed.
918
919 Downlink Command: 0x09 aa bb cc dd
920
921 Format: Function code (0x09) followed by 4 bytes.
922
923 aa: 1 byte; Set the wave alarm mode.
924
925 bb: 2 bytes; Set the detection interval. (second)
926
927 cc: 2 bytes; Setting the IDC change threshold. (uA)
928
929 dd: 2 bytes; Setting the VDC change threshold. (mV)
930
931 Example:
932
933 * Downlink Payload: 09 01 00 3C 0B B8 01 F4  ~/~/ Equal to AT+ROC=1,60,3000, 500
934 * Downlink Payload: 09 01 00 3C 0B B8 00 00  ~/~/ Equal to AT+ROC=1,60,3000,0
935 * Downlink Payload: 09 02 00 3C 0B B8 00 00  ~/~/ Equal to AT+ROC=2,60,3000,0
936
937 Screenshot of parsing example in TTN:
938
939 * AT+ROC=1,60,3000, 500.
940
941 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB-NA--LoRaWAN_Analog_Sensor_User_Manual/WebHome/image-20241019170902-1.png?width=1454&height=450&rev=1.1||alt="image-20241019170902-1.png"]]
942
943
944 ==== 2.8.2.2 Over-threshold alarm mode ====
945
946
947 Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded.
948
949 AT Command: AT+ROC=3,a,b,c,d,e
950
951 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
952 |=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 187px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
953 |(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
954 0,0,0,0(default)
955 OK
956 )))
957 |(% colspan="1" rowspan="5" style="width:143px" %)(((
958 AT+ROC=3,a,b,c,d,e
959 )))|(% style="width:160px" %)(((
960 **a:** Set the detection interval
961 )))|(% style="width:185px" %)(((
962 Range:  0~~65535s
963 )))
964 |(% style="width:160px" %)**b:** Set the IDC alarm trigger condition|(% style="width:185px" %)(((
965 **0:** Less than the set IDC threshold, Alarm
966 **1:** Greater than the set IDC threshold, Alarm
967 )))
968 |(% style="width:160px" %)(((
969 **c: ** IDC alarm threshold
970 )))|(% style="width:185px" %)(((
971 Unit: uA
972 )))
973 |(% style="width:160px" %)**d:** Set the VDC alarm trigger condition|(% style="width:185px" %)(((
974 **0:** Less than the set VDC threshold, Alarm
975 **1:** Greater than the set VDC threshold, Alarm
976 )))
977 |(% style="width:160px" %)**e:** VDC alarm threshold|(% style="width:185px" %)Unit: mV
978
979 Example:
980
981 * AT+ROC=3,60,0,3000,0,5000  ~/~/ The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
982 * AT+ROC=3,180,1,3000,1,5000  ~/~/ The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
983 * AT+ROC=3,300,0,3000,1,5000  ~/~/ The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
984
985 Downlink Command: 0x09 03 aa bb cc dd ee
986
987 Format: Function code (0x09) followed by 03 and the remaining 5 bytes.
988
989 aa: 2 bytes; Set the detection interval.(second)
990
991 bb: 1 byte; Set the IDC alarm trigger condition.
992
993 cc: 2 bytes; IDC alarm threshold.(uA)
994
995
996 dd: 1 byte; Set the VDC alarm trigger condition.
997
998 ee: 2 bytes; VDC alarm threshold.(mV)
999
1000 Example:
1001
1002 * Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/ Equal to AT+ROC=3,60,0,3000,0,5000
1003 * Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38  ~/~/ Equal to AT+ROC=3,60,1,3000,1,5000
1004 * Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38  ~/~/ Equal to AT+ROC=3,60,0,3000,1,5000
1005
1006 Screenshot of parsing example in TTN:
1007
1008 * AT+ROC=3,60,0,3000,0,5000
1009
1010 [[image:image-20250116180030-2.png]]
1011
1012
1013 == 2.9 ​Firmware Change Log ==
1014
1015
1016 Firmware download link:
1017
1018 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
1019
1020
1021 = 3. Configure PS-LB/LS =
1022
1023 == 3.1 Configure Methods ==
1024
1025
1026 PS-LB/LS supports below configure method:
1027
1028 * AT Command via Bluetooth Connection (Recommand Way): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1029 * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
1030 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
1031
1032 == 3.2 General Commands ==
1033
1034
1035 These commands are to configure:
1036
1037 * General system settings like: uplink interval.
1038 * LoRaWAN protocol & radio related command.
1039
1040 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
1041
1042 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1043
1044
1045 == 3.3 Commands special design for PS-LB/LS ==
1046
1047
1048 These commands only valid for PS-LB/LS, as below:
1049
1050
1051 === 3.3.1 Set Transmit Interval Time ===
1052
1053
1054 Feature: Change LoRaWAN End Node Transmit Interval.
1055
1056 AT Command: AT+TDC
1057
1058 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1059 |=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response
1060 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
1061 30000
1062 OK
1063 the interval is 30000ms = 30s
1064 )))
1065 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
1066 OK
1067 Set transmit interval to 60000ms = 60 seconds
1068 )))
1069
1070 Downlink Command: 0x01
1071
1072 Format: Command Code (0x01) followed by 3 bytes time value.
1073
1074 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1075
1076 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1077 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1078
1079 === 3.3.2 Set Interrupt Mode ===
1080
1081
1082 Feature, Set Interrupt mode for GPIO_EXIT.
1083
1084 AT Command: AT+INTMOD
1085
1086 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1087 |=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response
1088 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
1089 0
1090 OK
1091 the mode is 0 =Disable Interrupt
1092 )))
1093 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
1094 Set Transmit Interval
1095 0. (Disable Interrupt),
1096 ~1. (Trigger by rising and falling edge)
1097 2. (Trigger by falling edge)
1098 3. (Trigger by rising edge)
1099 )))|(% style="background-color:#f2f2f2; width:157px" %)OK
1100
1101 Downlink Command: 0x06
1102
1103 Format: Command Code (0x06) followed by 3 bytes.
1104
1105 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1106
1107 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
1108 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1109
1110 === 3.3.3 Set the output time ===
1111
1112
1113 Feature, Control the output 3V3 , 5V or 12V.
1114
1115 AT Command: AT+3V3T
1116
1117 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:474px" %)
1118 |=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1119 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
1120 0
1121 OK
1122 )))
1123 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1124 OK
1125 default setting
1126 )))
1127 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
1128 OK
1129 )))
1130 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1131 OK
1132 )))
1133
1134 AT Command: AT+5VT
1135
1136 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
1137 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1138 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1139 0
1140 OK
1141 )))
1142 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1143 OK
1144 default setting
1145 )))
1146 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
1147 OK
1148 )))
1149 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1150 OK
1151 )))
1152
1153 AT Command: AT+12VT
1154
1155 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:443px" %)
1156 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response
1157 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1158 0
1159 OK
1160 )))
1161 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
1162 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
1163 OK
1164 )))
1165
1166 Downlink Command: 0x07
1167
1168 Format: Command Code (0x07) followed by 3 bytes.
1169
1170 The first byte is which power, the second and third bytes are the time to turn on.
1171
1172 * Example 1: Downlink Payload: 070101F4  ~-~-->  AT+3V3T=500
1173 * Example 2: Downlink Payload: 0701FFFF   ~-~-->  AT+3V3T=65535
1174 * Example 3: Downlink Payload: 070203E8  ~-~-->  AT+5VT=1000
1175 * Example 4: Downlink Payload: 07020000  ~-~-->  AT+5VT=0
1176 * Example 5: Downlink Payload: 070301F4  ~-~-->  AT+12VT=500
1177 * Example 6: Downlink Payload: 07030000  ~-~-->  AT+12VT=0
1178
1179 Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.
1180
1181 Therefore, the corresponding downlink command is increased by one byte to five bytes.
1182
1183 Example:
1184
1185 * 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 01 01 D4 C0  ~-~-->  AT+3V3T=120000
1186 * 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 02 01 86 A0  ~-~-->  AT+5VT=100000
1187 * 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 03 01 38 80  ~-~-->  AT+12VT=80000
1188
1189 === 3.3.4 Set the Probe Model ===
1190
1191
1192 Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
1193
1194 AT Command: AT +PROBE
1195
1196 AT+PROBE=aabb
1197
1198 When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
1199
1200 When aa=01, it is the pressure mode, which converts the current into a pressure value;
1201
1202 bb represents which type of pressure sensor it is.
1203
1204 (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
1205
1206 When aa=02, it is the Differential Pressure Sensor , which converts the current into a pressure value;
1207
1208 bb represents which type of pressure sensor it is.
1209
1210 (0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C)
1211
1212 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1213 |(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1214 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
1215 OK
1216 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
1217 |(% style="background-color:#f2f2f2; width:154px" %)(((
1218 AT+PROBE=000A
1219 )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
1220 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
1221 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
1222 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
1223
1224 Downlink Command: 0x08
1225
1226 Format: Command Code (0x08) followed by 2 bytes.
1227
1228 * Example 1: Downlink Payload: 080003  ~-~-->  AT+PROBE=0003
1229 * Example 2: Downlink Payload: 080101  ~-~-->  AT+PROBE=0101
1230
1231 === 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
1232
1233
1234 Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time.
1235
1236 AT Command: AT +STDC
1237
1238 AT+STDC=aa,bb,cc
1239
1240 aa:
1241 0: means disable this function and use TDC to send packets.
1242 1: means that the function is enabled to send packets by collecting VDC data for multiple times.
1243 2: means that the function is enabled to send packets by collecting IDC data for multiple times.
1244 bb: Each collection interval (s), the value is 1~~65535
1245 cc: the number of collection times, the value is 1~~120
1246
1247 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1248 |(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1249 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
1250 OK
1251 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1252 Attention:Take effect after ATZ
1253 OK
1254 )))
1255 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
1256
1257
1258 Use the TDC interval to send packets.(default)
1259
1260
1261 )))|(% style="background-color:#f2f2f2" %)(((
1262 Attention:Take effect after ATZ
1263 OK
1264 )))
1265
1266 Downlink Command: 0xAE
1267
1268 Format: Command Code (0xAE) followed by 4 bytes.
1269
1270 * Example 1: Downlink Payload: AE 01 02 58 12 ~-~-->  AT+STDC=1,600,18
1271
1272 == 3.4 Print data entries base on page(Since v1.1.0) ==
1273
1274
1275 Feature: Print the sector data from start page to stop page (max is 416 pages).
1276
1277 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1278
1279 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1280 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1281 |(% style="width:156px" %)(((
1282 AT+PDTA=1,1
1283 Print page 1 to 1
1284 )))|(% style="width:311px" %)(((
1285 Stop Tx events when read sensor data
1286
1287 8031000 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1288
1289 8031010 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1290
1291 8031020 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1292
1293 8031030 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1294
1295 8031040 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1296
1297 8031050 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1298
1299 8031060 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1300
1301 8031070 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1302
1303 Start Tx events
1304
1305
1306 OK
1307 )))
1308
1309 (% style="color:#4f81bd" %)**Downlink Command:**
1310
1311 No downlink commands for feature
1312
1313
1314 == 3.5 Print last few data entries(Since v1.1.0) ==
1315
1316
1317 Feature: Print the last few data entries
1318
1319
1320 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1321
1322 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1323 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1324 |(% style="width:156px" %)(((
1325 AT+PLDTA=10
1326 Print last 10 entries
1327 )))|(% style="width:311px" %)(((
1328 Stop Tx events when read sensor data
1329
1330 0001 2025/5/19 06:16:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1331
1332 0002 2025/5/19 06:17:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1333
1334 0003 2025/5/19 06:18:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1335
1336 0004 2025/5/19 06:19:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1337
1338 0005 2025/5/19 06:20:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1339
1340 0006 2025/5/19 06:21:50 3246 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1341
1342 0007 2025/5/19 06:22:50 3240 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1343
1344 0008 2025/5/19 06:26:44 3276 in1:low in2:low exti:low status:false vdc:3.385 idc:0.000 proble:0000 water_deep:0.000
1345
1346 0009 2025/5/19 06:27:36 3246 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1347
1348 0010 2025/5/19 06:28:36 3240 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1349
1350 Start Tx events
1351
1352 OK
1353 )))
1354
1355 (% style="color:#4f81bd" %)**Downlink Command:**
1356
1357 No downlink commands for feature
1358
1359
1360 == 3.6 Clear Flash Record(Since v1.1.0) ==
1361
1362
1363 Feature: Clear flash storage for data log feature.
1364
1365 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1366
1367 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1368 |(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1369 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1370 Clear all stored sensor data…
1371
1372 OK
1373 )))
1374
1375 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1376
1377 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1378
1379 = 4. Battery & Power Consumption =
1380
1381
1382 PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1383
1384 [[Battery Info & Power Consumption Analyze>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1385
1386
1387 = 5. OTA firmware update =
1388
1389
1390 Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1391
1392
1393 = 6. FAQ =
1394
1395 == 6.1 How to use AT Command via UART to access device? ==
1396
1397
1398 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1399
1400
1401 == 6.2 How to update firmware via UART port? ==
1402
1403
1404 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1405
1406
1407 == 6.3 How to change the LoRa Frequency Bands/Region? ==
1408
1409
1410 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
1411 When downloading the images, choose the required image file for download. ​
1412
1413
1414 == 6.4 How to measure the depth of other liquids other than water? ==
1415
1416
1417 Test the current values at the depth of different liquids and convert them to a linear scale.
1418 Replace its ratio with the ratio of water to current in the decoder.
1419
1420 Example:
1421
1422 Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
1423
1424 Calculate scale factor:
1425 Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
1426
1427 Calculation formula:
1428
1429 Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
1430
1431 Actual calculations:
1432
1433 Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
1434
1435 Error:
1436
1437 0.009810726
1438
1439
1440 [[image:image-20240329175044-1.png]]
1441
1442
1443 = 7. Troubleshooting =
1444
1445 == 7.1 Water Depth Always shows 0 in payload ==
1446
1447
1448 If your device's IDC_intput_mA is normal, but your reading always shows 0, please refer to the following points:
1449
1450 ~1. Please set it to mod1
1451
1452 2. Please set the command [[AT+PROBE>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB%20--%20LoRaWAN%20Pressure%20Sensor/#H3.3.4SettheProbeModel]] according to the model of your sensor
1453
1454 3. Check the connection status of the sensor
1455
1456
1457 = 8. Order Info =
1458
1459 == 8.1 Thread Installation Type & Immersion Type Pressure Sensor ==
1460
1461
1462 Part Number: (% style="color:blue" %)**PS-NB/NS-Txx-YY  or  PS-NB/NS-Ixx-YY**
1463
1464 (% style="color:blue" %)**XX:**(%%)** Pressure Range and Thread Type **
1465
1466 (% style="color:blue" %)**YY:**(%%)** The default frequency band**
1467
1468 * YY: Frequency Bands, options: EU433,CN470,EU868,IN865,KR920,AS923,AU915,US915
1469
1470 [[image:image-20241021093209-1.png]]
1471
1472
1473 == 8.2 Wireless Differential Air Pressure Sensor ==
1474
1475
1476 Part Number: (% style="color:blue" %)**PS-LB-Dxx-YY  or  PS-LS-Dxx-YY **
1477
1478 (% style="color:blue" %)**XX:**(%%)** Differential Pressure Range**
1479
1480 (% style="color:blue" %)**YY:**(%%)** The default frequency band**
1481
1482 * YY: Frequency Bands, options: EU433,CN470,EU868,IN865,KR920,AS923,AU915,US915
1483
1484 [[image:image-20250401174215-1.png||height="486" width="656"]]
1485
1486
1487 = 9. ​Packing Info =
1488
1489
1490 Package Includes:
1491
1492 * PS-LB/LS-Txx/Ixx, PS-LB/LS-Dxx   LoRaWAN Pressure Sensor
1493
1494 Dimension and weight:
1495
1496 * Device Size: cm
1497 * Device Weight: g
1498 * Package Size / pcs : cm
1499 * Weight / pcs : g
1500
1501 = 10. Support =
1502
1503
1504 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1505
1506 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].