Show last authors
1
2
3
4 (% style="text-align:center" %)
5 [[image:image-20240109154731-4.png||height="546" width="769"]]
6
7
8
9
10
11
12
13 **Table of Contents :**
14
15 {{toc/}}
16
17
18
19
20
21
22 = 1. Introduction =
23
24 == 1.1 What is LoRaWAN Pressure Sensor ==
25
26
27 (((
28 The Dragino PS-LB/LS series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB/LS can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
29 )))
30
31 (((
32 The PS-LB/LS series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
33 )))
34
35 (((
36 The LoRa wireless technology used in PS-LB/LS allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
37 )))
38
39 (((
40 PS-LB/LS supports BLE configure and wireless OTA update which make user easy to use.
41 )))
42
43 (((
44 PS-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + Li-ion battery **(%%), it is designed for long term use up to 5 years.
45 )))
46
47 (((
48 Each PS-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
49 )))
50
51
52 == 1.2 ​Features ==
53
54
55 * LoRaWAN 1.0.3 Class A
56 * Ultra-low power consumption
57 * Measure air / gas or water pressure
58 * Different pressure range available
59 * Thread Installation Type or Immersion Type
60 * Monitor Battery Level
61 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
62 * Support Bluetooth v5.1 and LoRaWAN remote configure
63 * Support wireless OTA update firmware
64 * Uplink on periodically
65 * Downlink to change configure
66 * Controllable 3.3v,5v and 12v output to power external sensor
67 * 8500mAh Li/SOCl2 Battery (PS-LB)
68 * Solar panel + 3000mAh Li-ion battery (PS-LS)
69
70 == 1.3 Specification ==
71
72
73 (% style="color:#037691" %)**Micro Controller:**
74
75 * MCU: 48Mhz ARM
76 * Flash: 256KB
77 * RAM: 64KB
78
79 (% style="color:#037691" %)**Common DC Characteristics:**
80
81 * Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
82 * Operating Temperature: -40 ~~ 85°C
83
84 (% style="color:#037691" %)**LoRa Spec:**
85
86 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz,Band 2 (LF): 410 ~~ 528 Mhz
87 * Max +22 dBm constant RF output vs.
88 * RX sensitivity: down to -139 dBm.
89 * Excellent blocking immunity
90
91 (% style="color:#037691" %)**Current Input Measuring :**
92
93 * Range: 0 ~~ 20mA
94 * Accuracy: 0.02mA
95 * Resolution: 0.001mA
96
97 (% style="color:#037691" %)**Voltage Input Measuring:**
98
99 * Range: 0 ~~ 30v
100 * Accuracy: 0.02v
101 * Resolution: 0.001v
102
103 (% style="color:#037691" %)**Battery:**
104
105 * Li/SOCI2 un-chargeable battery
106 * Capacity: 8500mAh
107 * Self-Discharge: <1% / Year @ 25°C
108 * Max continuously current: 130mA
109 * Max boost current: 2A, 1 second
110
111 (% style="color:#037691" %)**Power Consumption**
112
113 * Sleep Mode: 5uA @ 3.3v
114 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
115
116 == 1.4 Probe Types ==
117
118 === 1.4.1 Thread Installation Type ===
119
120
121 [[image:1675071448299-229.png]]
122
123 * Hersman Pressure Transmitter
124 * Measuring Range: -0.1 ~~ 0 ~~ 60MPa, see order info.
125 * Accuracy: 0.2% F.S
126 * Long-Term Stability: 0.2% F.S ±0.05%
127 * Overload 200% F.S
128 * Zero Temperature Drift: 0.03% FS/℃(≤100Kpa), 0.02%FS/℃(>100Kpa)
129 * FS Temperature Drift: 0.003% FS/℃(≤100Kpa), 0.002%FS/℃(>100Kpa)
130 * Storage temperature: -30℃~~80℃
131 * Operating temperature: -20℃~~60℃
132 * Connector Type: Various Types, see order info
133
134 === 1.4.2 Immersion Type ===
135
136
137 [[image:image-20240109160445-5.png||height="199" width="150"]]
138
139 * Immersion Type, Probe IP Level: IP68
140 * Measuring Range: Measure range can be customized, up to 100m.
141 * Accuracy: 0.2% F.S
142 * Long-Term Stability: ±0.2% F.S / Year
143 * Storage temperature: -30°C~~80°C
144 * Operating temperature: 0°C~~50°C
145 * Material: 316 stainless steels
146
147 === 1.4.3 Wireless Differential Air Pressure Sensor ===
148
149 [[image:image-20240511174954-1.png||height="193" width="193"]]
150
151 * Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
152 * Accuracy: 0.5% F.S, resolution is 0.05%.
153 * Overload: 300% F.S
154 * Zero temperature drift: ±0.03%F.S/°C
155 * Operating temperature: -20°C~~60°C
156 * Storage temperature:  -20°C~~60°C
157 * Compensation temperature: 0~~50°C
158
159 == 1.5 Application and Installation ==
160
161 === 1.5.1 Thread Installation Type ===
162
163
164 (% style="color:blue" %)**Application:**
165
166 * Hydraulic Pressure
167 * Petrochemical Industry
168 * Health and Medical
169 * Food & Beverage Processing
170 * Auto-controlling house
171 * Constant Pressure Water Supply
172 * Liquid Pressure measuring
173
174 Order the suitable thread size and install to measure the air / liquid pressure
175
176 [[image:1675071670469-145.png]]
177
178
179 === 1.5.2 Immersion Type ===
180
181
182 (% style="color:blue" %)**Application:**
183
184 Liquid & Water Pressure / Level detect.
185
186 [[image:1675071725288-579.png]]
187
188
189 Below is the wiring to for connect the probe to the device.
190
191 The Immersion Type Sensor has different variant which defined by Ixx. For example, this means two points:
192
193 * Cable Length: 10 Meters
194 * Water Detect Range: 0 ~~ 10 Meters.
195
196 [[image:1675071736646-450.png]]
197
198
199 [[image:1675071776102-240.png]]
200
201 Size of immersion type water depth sensor:
202
203 [[image:image-20250401102131-1.png||height="268" width="707"]]
204
205
206 === 1.5.3 Wireless Differential Air Pressure Sensor ===
207
208
209 (% style="color:blue" %)**Application:**
210
211 Indoor Air Control & Filter clogging Detect.
212
213 [[image:image-20240513100129-6.png]]
214
215 [[image:image-20240513100135-7.png]]
216
217
218 Below is the wiring to for connect the probe to the device.
219
220 [[image:image-20240513093957-1.png]]
221
222
223 Size of wind pressure transmitter:
224
225 [[image:image-20240513094047-2.png||height="462" width="518"]]
226
227 (% style="color:red" %)**Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.**
228
229
230 == 1.6 Sleep mode and working mode ==
231
232
233 **Deep Sleep Mode:** Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
234
235 **Working Mode: **In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
236
237
238 == 1.7 Button & LEDs ==
239
240
241 [[image:image-20250419092225-1.jpeg]]
242
243 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
244 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action
245 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
246
247
248 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once.
249 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
250 )))
251 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
252
253
254 Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network.
255 Green led will solidly turn on for 5 seconds after joined in network.
256 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
257 )))
258 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
259
260 == 1.8 Pin Mapping ==
261
262
263 [[image:1675072568006-274.png]]
264
265
266 == 1.9 BLE connection ==
267
268
269 PS-LB/LS support BLE remote configure.
270
271
272 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
273
274 * Press button to send an uplink
275 * Press button to active device.
276 * Device Power on or reset.
277
278 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
279
280
281 == 1.10 Mechanical ==
282
283 === 1.10.1 for LB version ===
284
285
286 [[image:image-20250401163530-1.jpeg]]
287
288
289 === 1.10.2 for LS version ===
290
291
292 [[image:image-20250401163539-2.jpeg]]
293
294
295 = 2. Configure PS-LB/LS to connect to LoRaWAN network =
296
297 == 2.1 How it works ==
298
299
300 The PS-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
301
302
303 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
304
305
306 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
307
308 [[image:image-20250419162538-1.png]]
309
310
311 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
312
313
314 (% style="color:blue" %)**Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.**
315
316 Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
317
318 [[image:image-20230426085320-1.png||height="234" width="504"]]
319
320
321 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
322
323 **Create the application.**
324
325 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
326
327 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
328
329
330 **Add devices to the created Application.**
331
332 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
333
334 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
335
336
337 **Enter end device specifics manually.**
338
339 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
340
341
342 **Add DevEUI and AppKey. Customize a platform ID for the device.**
343
344 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
345
346
347 (% style="color:blue" %)**Step 2: Add decoder.**
348
349 In TTN, user can add a custom payload so it shows friendly reading.
350
351 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
352
353 Below is TTN screen shot:
354
355 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
356
357 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png" height="562" width="1168"]]
358
359
360 (% style="color:blue" %)**Step 3: Activate on PS-LB/LS**
361
362 Press the button for 5 seconds to activate the PS-LB/LS.
363
364 Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network.
365
366 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
367
368
369 == 2.3 ​Uplink Payload ==
370
371 === 2.3.1 Device Status, FPORT~=5 ===
372
373
374 Include device configure status. Once PS-LB/LS Joined the network, it will uplink this message to the server.
375
376 Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
377
378 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
379 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
380 |(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2
381 |(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
382
383 Example parse in TTNv3
384
385 [[image:1675144504430-490.png]]
386
387
388 Sensor Model: For PS-LB/LS, this value is 0x16
389
390 Firmware Version: 0x0100, Means: v1.0.0 version
391
392 Frequency Band:
393
394 *0x01: EU868
395
396 *0x02: US915
397
398 *0x03: IN865
399
400 *0x04: AU915
401
402 *0x05: KZ865
403
404 *0x06: RU864
405
406 *0x07: AS923
407
408 *0x08: AS923-1
409
410 *0x09: AS923-2
411
412 *0x0a: AS923-3
413
414 *0x0b: CN470
415
416 *0x0c: EU433
417
418 *0x0d: KR920
419
420 *0x0e: MA869
421
422
423 Sub-Band:
424
425 AU915 and US915:value 0x00 ~~ 0x08
426
427 CN470: value 0x0B ~~ 0x0C
428
429 Other Bands: Always 0x00
430
431
432 Battery Info:
433
434 Check the battery voltage.
435
436 Ex1: 0x0B45 = 2885mV
437
438 Ex2: 0x0B49 = 2889mV
439
440
441 === 2.3.2 Sensor value, FPORT~=2 ===
442
443
444 Uplink payload includes in total 9 bytes.
445
446
447 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
448 |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
449 **Size(bytes)**
450 )))|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
451 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
452
453 [[image:1675144608950-310.png]]
454
455
456 === 2.3.3 Battery Info ===
457
458
459 Check the battery voltage for PS-LB/LS.
460
461 Ex1: 0x0B45 = 2885mV
462
463 Ex2: 0x0B49 = 2889mV
464
465
466 === 2.3.4 Probe Model ===
467
468
469 PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
470
471
472 For example.
473
474 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
475 |(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
476 |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
477 |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
478 |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
479
480 The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
481
482
483 === 2.3.5 0~~20mA value (IDC_IN) ===
484
485
486 The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
487
488 Example:
489
490 27AE(H) = 10158 (D)/1000 = 10.158mA.
491
492
493 Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
494
495 [[image:image-20230225154759-1.png||height="408" width="741"]]
496
497
498 === 2.3.6 0~~30V value (pin VDC_IN) ===
499
500
501 Measure the voltage value. The range is 0 to 30V.
502
503 Example:
504
505 138E(H) = 5006(D)/1000= 5.006V
506
507
508 === 2.3.7 IN1&IN2&INT pin ===
509
510
511 IN1 and IN2 are used as digital input pins.
512
513 Example:
514
515 09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
516
517 09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
518
519
520 This data field shows if this packet is generated by Interrupt Pin or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
521
522 Example:
523
524 09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
525
526 09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
527
528 0x01: Interrupt Uplink Packet.
529
530
531 === 2.3.8 Sensor value, FPORT~=7 ===
532
533
534 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
535 |(% style="background-color:#4f81bd; color:white; width:65px" %)(((
536 **Size(bytes)**
537 )))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
538 |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
539
540
541 Voltage value, each 2 bytes is a set of voltage values.
542 )))
543
544 [[image:image-20230220171300-1.png||height="207" width="863"]]
545
546 Multiple sets of data collected are displayed in this form:
547
548 [voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
549
550
551 === 2.3.9 ​Decode payload in The Things Network ===
552
553
554 While using TTN network, you can add the payload format to decode the payload.
555
556 [[image:1675144839454-913.png]]
557
558
559 PS-LB/LS TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
560
561
562 == 2.4 Uplink Interval ==
563
564
565 The PS-LB/LS by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
566
567
568 == 2.5 Show Data in DataCake IoT Server ==
569
570
571 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
572
573 Step 1: Be sure that your device is programmed and properly connected to the network at this time.
574
575 Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
576
577 [[image:1675144951092-237.png]]
578
579
580 [[image:1675144960452-126.png]]
581
582
583 Step 3: Create an account or log in Datacake.
584
585 Step 4: Create PS-LB/LS product.
586
587 [[image:1675145004465-869.png]]
588
589
590 [[image:1675145018212-853.png]]
591
592
593 [[image:1675145029119-717.png]]
594
595
596 Step 5: add payload decode
597
598 [[image:1675145051360-659.png]]
599
600
601 [[image:1675145060812-420.png]]
602
603
604 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
605
606 [[image:1675145081239-376.png]]
607
608
609 == 2.6 Datalog Feature (Since V1.1) ==
610
611
612 When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot.
613
614
615 === 2.6.1 Unix TimeStamp ===
616
617
618 PS-LB uses Unix TimeStamp format based on
619
620 [[image:image-20250401163826-3.jpeg]]
621
622 Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
623
624 Below is the converter example:
625
626 [[image:image-20250401163906-4.jpeg]]
627
628
629 === 2.6.2 Set Device Time ===
630
631
632 There are two ways to set the device's time:
633
634
635 ~1. Through LoRaWAN MAC Command (Default settings)
636
637 Users need to set SYNCMOD=1 to enable sync time via the MAC command.
638
639 Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
640
641 Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.
642
643
644 2. Manually Set Time
645
646 Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
647
648
649 === 2.6.3 Poll sensor value ===
650
651 Users can poll sensor values based on timestamps. Below is the downlink command.
652
653 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
654 |=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31)
655 |(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte
656 |(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)(((
657 Timestamp end
658 )))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval
659
660 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
661
662 For example, downlink command[[image:image-20250117104812-1.png]]
663
664 Is to check 2024/12/20 09:34:59 to 2024/12/20 14:34:59's data
665
666 Uplink Internal =5s,means PS-LB will send one packet every 5s. range 5~~255s.
667
668
669 === 2.6.4 Datalog Uplink payload (FPORT~=3) ===
670
671
672 The Datalog uplinks will use below payload format.
673
674 Retrieval data payload:
675
676 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
677 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
678 Size(bytes)
679 )))|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)2|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)4
680 |(% style="width:103px" %)Value|(% style="width:68px" %)(((
681 Probe_mod
682 )))|(% style="width:104px" %)(((
683 VDC_intput_V
684 )))|(% style="width:83px" %)(((
685 IDC_intput_mA
686 )))|(% style="width:201px" %)(((
687 IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status
688 )))|(% style="width:86px" %)Unix Time Stamp
689
690 IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:
691
692 [[image:image-20250117104847-4.png]]
693
694
695 No ACK Message:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
696
697 Poll Message Flag: 1: This message is a poll message reply.
698
699 * Poll Message Flag is set to 1.
700
701 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
702
703 For example, in US915 band, the max payload for different DR is:
704
705 a) DR0: max is 11 bytes so one entry of data
706
707 b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
708
709 c) DR2: total payload includes 11 entries of data
710
711 d) DR3: total payload includes 22 entries of data.
712
713 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
714
715 Example:
716
717 If PS-LB-NA has below data inside Flash:
718
719 [[image:image-20250117104837-3.png]]
720
721
722 If user sends below downlink command: 316788D9BF6788DB6305
723
724 Where : Start time: 6788D9BF = time 25/1/16 10:04:47
725
726 Stop time: 6788DB63 = time 25/1/16 10:11:47
727
728
729 PA-LB-NA will uplink this payload.
730
731 [[image:image-20250117104827-2.png]]
732
733
734 00001B620000406788D9BF  00000D130000406788D9FB  00000D120000406788DA37  00000D110000406788DA73  00000D100000406788DAAF  00000D100000406788DAEB  00000D0F0000406788DB27  00000D100000406788DB63
735
736
737 Where the first 11 bytes is for the first entry :
738
739
740 0000  0D10  0000  40  6788DB63
741
742
743 Probe_mod = 0x0000 = 0000
744
745
746 VDC_intput_V = 0x0D10/1000=3.344V
747
748 IDC_intput_mA = 0x0000/1000=0mA
749
750
751 IN1_pin_level = (0x40& 0x08)? "High":"Low" = 0(Low)
752
753 IN2_pin_level = (0x40& 0x04)? "High":"Low" = 0(Low)
754
755 Exti_pin_level = (0x40& 0x02)? "High":"Low" = 0(Low)
756
757 Exti_status = (0x40& 0x01)? "True":"False" = 0(False)
758
759
760 Unix time is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
761
762 Its data format is:
763
764 [Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
765
766 Note: water_deep in the data needs to be converted using decoding to get it.
767
768
769 === 2.6.5 Decoder in TTN V3 ===
770
771 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
772
773 Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
774
775
776 == 2.7 Frequency Plans ==
777
778
779 The PS-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
780
781 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/a>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
782
783
784 == 2.8 Report on Change Feature (Since firmware V1.2) ==
785
786 === 2.8.1 Uplink payload(Enable ROC) ===
787
788
789 Used to Monitor the IDC and VDC increments, and send ROC uplink when the IDC or VDC changes exceed.
790
791 With ROC enabled, the payload is as follows:
792
793 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
794 |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
795 Size(bytes)
796 )))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
797 |(% style="width:98px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
798 [[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag
799 )))
800
801 IN1 &IN2 , Interrupt  flag , ROC_flag:
802
803 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
804 |(% style="background-color:#4f81bd; color:white; width:50px" %)Size(bit)|(% style="background-color:#4f81bd; color:white; width:60px" %)bit7|(% style="background-color:#4f81bd; color:white; width:62px" %)bit6|(% style="background-color:#4f81bd; color:white; width:62px" %)bit5|(% style="background-color:#4f81bd; color:white; width:65px" %)bit4|(% style="background-color:#4f81bd; color:white; width:56px" %)bit3|(% style="background-color:#4f81bd; color:white; width:55px" %)bit2|(% style="background-color:#4f81bd; color:white; width:55px" %)bit1|(% style="background-color:#4f81bd; color:white; width:50px" %)bit0
805 |(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status
806
807 * IDC_Roc_flagL
808
809 80 (H): (0x80&0x80)=80(H)=1000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
810
811 60 (H): (0x60&0x80)=0  bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
812
813
814 * IDC_Roc_flagH
815
816 60 (H): (0x60&0x40)=60(H)=01000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
817
818 80 (H): (0x80&0x40)=0  bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
819
820
821 * VDC_Roc_flagL
822
823 20 (H): (0x20&0x20)=20(H)=0010 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
824
825 90 (H): (0x90&0x20)=0  bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
826
827
828 * VDC_Roc_flagH
829
830 90 (H): (0x90&0x10)=10(H)=0001 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
831
832 20 (H): (0x20&0x10)=0  bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
833
834
835 * IN1_pin_level & IN2_pin_level
836
837 IN1 and IN2 are used as digital input pins.
838
839 80 (H): (0x80&0x08)=0  IN1 pin is low level.
840
841 80 (H): (0x09&0x04)=0    IN2 pin is low level.
842
843
844 * Exti_pin_level &Exti_status
845
846 This data field shows whether the packet is generated by an interrupt pin.
847
848 Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the GPIO_EXTI pin.
849
850 Exti_pin_level:  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
851
852 Exti_status: 80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
853
854
855 === 2.8.2 Set the Report on Change ===
856
857
858 Feature: Get or Set the Report on Change.
859
860
861 ==== 2.8.2.1 Wave alarm mode ====
862
863
864 Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed.
865
866 * Change value: The amount by which the next detection value increases/decreases relative to the previous detection value.
867 * Comparison value: A parameter to compare with the latest ROC test.
868
869 AT Command: AT+ROC
870
871 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
872 |=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 193px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
873 |(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
874 0,0,0,0(default)
875 OK
876 )))
877 |(% colspan="1" rowspan="4" style="width:143px" %)(((
878 AT+ROC=a,b,c,d
879 )))|(% style="width:154px" %)(((
880 **a:** Enable or disable the ROC
881 )))|(% style="width:197px" %)(((
882 **0:** off
883 **1:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
884 **2:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
885 )))
886 |(% style="width:154px" %)**b:** Set the detection interval|(% style="width:197px" %)(((
887 Range:  0~~65535s
888 )))
889 |(% style="width:154px" %)**c:** Setting the IDC change value|(% style="width:197px" %)Unit: uA
890 |(% style="width:154px" %)**d:** Setting the VDC change value|(% style="width:197px" %)Unit: mV
891
892 Example:
893
894 * AT+ROC=0,0,0,0  ~/~/ The ROC function is not used.
895 * AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed.
896 * AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage.
897 * AT+ROC=2,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed.
898
899 Downlink Command: 0x09 aa bb cc dd
900
901 Format: Function code (0x09) followed by 4 bytes.
902
903 aa: 1 byte; Set the wave alarm mode.
904
905 bb: 2 bytes; Set the detection interval. (second)
906
907 cc: 2 bytes; Setting the IDC change threshold. (uA)
908
909 dd: 2 bytes; Setting the VDC change threshold. (mV)
910
911 Example:
912
913 * Downlink Payload: 09 01 00 3C 0B B8 01 F4  ~/~/ Equal to AT+ROC=1,60,3000, 500
914 * Downlink Payload: 09 01 00 3C 0B B8 00 00  ~/~/ Equal to AT+ROC=1,60,3000,0
915 * Downlink Payload: 09 02 00 3C 0B B8 00 00  ~/~/ Equal to AT+ROC=2,60,3000,0
916
917 Screenshot of parsing example in TTN:
918
919 * AT+ROC=1,60,3000, 500.
920
921 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB-NA--LoRaWAN_Analog_Sensor_User_Manual/WebHome/image-20241019170902-1.png?width=1454&height=450&rev=1.1||alt="image-20241019170902-1.png"]]
922
923
924 ==== 2.8.2.2 Over-threshold alarm mode ====
925
926
927 Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded.
928
929 AT Command: AT+ROC=3,a,b,c,d,e
930
931 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
932 |=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 187px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
933 |(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
934 0,0,0,0(default)
935 OK
936 )))
937 |(% colspan="1" rowspan="5" style="width:143px" %)(((
938 AT+ROC=3,a,b,c,d,e
939 )))|(% style="width:160px" %)(((
940 **a:** Set the detection interval
941 )))|(% style="width:185px" %)(((
942 Range:  0~~65535s
943 )))
944 |(% style="width:160px" %)**b:** Set the IDC alarm trigger condition|(% style="width:185px" %)(((
945 **0:** Less than the set IDC threshold, Alarm
946 **1:** Greater than the set IDC threshold, Alarm
947 )))
948 |(% style="width:160px" %)(((
949 **c: ** IDC alarm threshold
950 )))|(% style="width:185px" %)(((
951 Unit: uA
952 )))
953 |(% style="width:160px" %)**d:** Set the VDC alarm trigger condition|(% style="width:185px" %)(((
954 **0:** Less than the set VDC threshold, Alarm
955 **1:** Greater than the set VDC threshold, Alarm
956 )))
957 |(% style="width:160px" %)**e:** VDC alarm threshold|(% style="width:185px" %)Unit: mV
958
959 Example:
960
961 * AT+ROC=3,60,0,3000,0,5000  ~/~/ The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
962 * AT+ROC=3,180,1,3000,1,5000  ~/~/ The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
963 * AT+ROC=3,300,0,3000,1,5000  ~/~/ The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
964
965 Downlink Command: 0x09 03 aa bb cc dd ee
966
967 Format: Function code (0x09) followed by 03 and the remaining 5 bytes.
968
969 aa: 2 bytes; Set the detection interval.(second)
970
971 bb: 1 byte; Set the IDC alarm trigger condition.
972
973 cc: 2 bytes; IDC alarm threshold.(uA)
974
975
976 dd: 1 byte; Set the VDC alarm trigger condition.
977
978 ee: 2 bytes; VDC alarm threshold.(mV)
979
980 Example:
981
982 * Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/ Equal to AT+ROC=3,60,0,3000,0,5000
983 * Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38  ~/~/ Equal to AT+ROC=3,60,1,3000,1,5000
984 * Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38  ~/~/ Equal to AT+ROC=3,60,0,3000,1,5000
985
986 Screenshot of parsing example in TTN:
987
988 * AT+ROC=3,60,0,3000,0,5000
989
990 [[image:image-20250116180030-2.png]]
991
992
993 == 2.9 ​Firmware Change Log ==
994
995
996 Firmware download link:
997
998 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
999
1000
1001 = 3. Configure PS-LB/LS =
1002
1003 == 3.1 Configure Methods ==
1004
1005
1006 PS-LB/LS supports below configure method:
1007
1008 * AT Command via Bluetooth Connection (Recommand Way): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1009 * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
1010 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
1011
1012 == 3.2 General Commands ==
1013
1014
1015 These commands are to configure:
1016
1017 * General system settings like: uplink interval.
1018 * LoRaWAN protocol & radio related command.
1019
1020 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
1021
1022 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1023
1024
1025 == 3.3 Commands special design for PS-LB/LS ==
1026
1027
1028 These commands only valid for PS-LB/LS, as below:
1029
1030
1031 === 3.3.1 Set Transmit Interval Time ===
1032
1033
1034 Feature: Change LoRaWAN End Node Transmit Interval.
1035
1036 AT Command: AT+TDC
1037
1038 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1039 |=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response
1040 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
1041 30000
1042 OK
1043 the interval is 30000ms = 30s
1044 )))
1045 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
1046 OK
1047 Set transmit interval to 60000ms = 60 seconds
1048 )))
1049
1050 Downlink Command: 0x01
1051
1052 Format: Command Code (0x01) followed by 3 bytes time value.
1053
1054 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1055
1056 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1057 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1058
1059 === 3.3.2 Set Interrupt Mode ===
1060
1061
1062 Feature, Set Interrupt mode for GPIO_EXIT.
1063
1064 AT Command: AT+INTMOD
1065
1066 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1067 |=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response
1068 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
1069 0
1070 OK
1071 the mode is 0 =Disable Interrupt
1072 )))
1073 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
1074 Set Transmit Interval
1075 0. (Disable Interrupt),
1076 ~1. (Trigger by rising and falling edge)
1077 2. (Trigger by falling edge)
1078 3. (Trigger by rising edge)
1079 )))|(% style="background-color:#f2f2f2; width:157px" %)OK
1080
1081 Downlink Command: 0x06
1082
1083 Format: Command Code (0x06) followed by 3 bytes.
1084
1085 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1086
1087 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
1088 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1089
1090 === 3.3.3 Set the output time ===
1091
1092
1093 Feature, Control the output 3V3 , 5V or 12V.
1094
1095 AT Command: AT+3V3T
1096
1097 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:474px" %)
1098 |=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1099 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
1100 0
1101 OK
1102 )))
1103 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1104 OK
1105 default setting
1106 )))
1107 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
1108 OK
1109 )))
1110 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1111 OK
1112 )))
1113
1114 AT Command: AT+5VT
1115
1116 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
1117 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1118 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1119 0
1120 OK
1121 )))
1122 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1123 OK
1124 default setting
1125 )))
1126 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
1127 OK
1128 )))
1129 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1130 OK
1131 )))
1132
1133 AT Command: AT+12VT
1134
1135 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:443px" %)
1136 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response
1137 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1138 0
1139 OK
1140 )))
1141 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
1142 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
1143 OK
1144 )))
1145
1146 Downlink Command: 0x07
1147
1148 Format: Command Code (0x07) followed by 3 bytes.
1149
1150 The first byte is which power, the second and third bytes are the time to turn on.
1151
1152 * Example 1: Downlink Payload: 070101F4  ~-~-->  AT+3V3T=500
1153 * Example 2: Downlink Payload: 0701FFFF   ~-~-->  AT+3V3T=65535
1154 * Example 3: Downlink Payload: 070203E8  ~-~-->  AT+5VT=1000
1155 * Example 4: Downlink Payload: 07020000  ~-~-->  AT+5VT=0
1156 * Example 5: Downlink Payload: 070301F4  ~-~-->  AT+12VT=500
1157 * Example 6: Downlink Payload: 07030000  ~-~-->  AT+12VT=0
1158
1159 Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.
1160
1161 Therefore, the corresponding downlink command is increased by one byte to five bytes.
1162
1163 Example:
1164
1165 * 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 01 01 D4 C0  ~-~-->  AT+3V3T=120000
1166 * 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 02 01 86 A0  ~-~-->  AT+5VT=100000
1167 * 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 03 01 38 80  ~-~-->  AT+12VT=80000
1168
1169 === 3.3.4 Set the Probe Model ===
1170
1171
1172 Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
1173
1174 AT Command: AT +PROBE
1175
1176 AT+PROBE=aabb
1177
1178 When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
1179
1180 When aa=01, it is the pressure mode, which converts the current into a pressure value;
1181
1182 bb represents which type of pressure sensor it is.
1183
1184 (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
1185
1186 When aa=02, it is the Differential Pressure Sensor , which converts the current into a pressure value;
1187
1188 bb represents which type of pressure sensor it is.
1189
1190 (0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C)
1191
1192 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1193 |(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1194 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
1195 OK
1196 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
1197 |(% style="background-color:#f2f2f2; width:154px" %)(((
1198 AT+PROBE=000A
1199 )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
1200 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
1201 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
1202 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
1203
1204 Downlink Command: 0x08
1205
1206 Format: Command Code (0x08) followed by 2 bytes.
1207
1208 * Example 1: Downlink Payload: 080003  ~-~-->  AT+PROBE=0003
1209 * Example 2: Downlink Payload: 080101  ~-~-->  AT+PROBE=0101
1210
1211 === 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
1212
1213
1214 Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time.
1215
1216 AT Command: AT +STDC
1217
1218 AT+STDC=aa,bb,bb
1219
1220 aa:
1221 0: means disable this function and use TDC to send packets.
1222 1: means that the function is enabled to send packets by collecting VDC data for multiple times.
1223 2: means that the function is enabled to send packets by collecting IDC data for multiple times.
1224 bb: Each collection interval (s), the value is 1~~65535
1225 cc: the number of collection times, the value is 1~~120
1226
1227 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1228 |(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1229 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
1230 OK
1231 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1232 Attention:Take effect after ATZ
1233 OK
1234 )))
1235 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
1236
1237
1238 Use the TDC interval to send packets.(default)
1239
1240
1241 )))|(% style="background-color:#f2f2f2" %)(((
1242 Attention:Take effect after ATZ
1243 OK
1244 )))
1245
1246 Downlink Command: 0xAE
1247
1248 Format: Command Code (0xAE) followed by 4 bytes.
1249
1250 * Example 1: Downlink Payload: AE 01 02 58 12 ~-~-->  AT+STDC=1,600,18
1251
1252 = 4. Battery & Power Consumption =
1253
1254
1255 PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1256
1257 [[Battery Info & Power Consumption Analyze>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1258
1259
1260 = 5. OTA firmware update =
1261
1262
1263 Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1264
1265
1266 = 6. FAQ =
1267
1268 == 6.1 How to use AT Command via UART to access device? ==
1269
1270
1271 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1272
1273
1274 == 6.2 How to update firmware via UART port? ==
1275
1276
1277 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1278
1279
1280 == 6.3 How to change the LoRa Frequency Bands/Region? ==
1281
1282
1283 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
1284 When downloading the images, choose the required image file for download. ​
1285
1286
1287 == 6.4 How to measure the depth of other liquids other than water? ==
1288
1289
1290 Test the current values at the depth of different liquids and convert them to a linear scale.
1291 Replace its ratio with the ratio of water to current in the decoder.
1292
1293 Example:
1294
1295 Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
1296
1297 Calculate scale factor:
1298 Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
1299
1300 Calculation formula:
1301
1302 Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
1303
1304 Actual calculations:
1305
1306 Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
1307
1308 Error:
1309
1310 0.009810726
1311
1312
1313 [[image:image-20240329175044-1.png]]
1314
1315
1316 = 7. Troubleshooting =
1317
1318 == 7.1 Water Depth Always shows 0 in payload ==
1319
1320
1321 If your device's IDC_intput_mA is normal, but your reading always shows 0, please refer to the following points:
1322
1323 ~1. Please set it to mod1
1324
1325 2. Please set the command [[AT+PROBE>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB%20--%20LoRaWAN%20Pressure%20Sensor/#H3.3.4SettheProbeModel]] according to the model of your sensor
1326
1327 3. Check the connection status of the sensor
1328
1329
1330 = 8. Order Info =
1331
1332 == 8.1 Thread Installation Type & Immersion Type Pressure Sensor ==
1333
1334
1335 Part Number: (% style="color:blue" %)**PS-NB/NS-Txx-YY  or  PS-NB/NS-Ixx-YY**
1336
1337 (% style="color:blue" %)**XX:**(%%)** Pressure Range and Thread Type **
1338
1339 (% style="color:blue" %)**YY:**(%%)** The default frequency band**
1340
1341 * YY: Frequency Bands, options: EU433,CN470,EU868,IN865,KR920,AS923,AU915,US915
1342
1343 [[image:image-20241021093209-1.png]]
1344
1345
1346 == 8.2 Wireless Differential Air Pressure Sensor ==
1347
1348
1349 Part Number: (% style="color:blue" %)**PS-LB-Dxx-YY  or  PS-LS-Dxx-YY **
1350
1351 (% style="color:blue" %)**XX:**(%%)** Differential Pressure Range**
1352
1353 (% style="color:blue" %)**YY:**(%%)** The default frequency band**
1354
1355 * YY: Frequency Bands, options: EU433,CN470,EU868,IN865,KR920,AS923,AU915,US915
1356
1357 [[image:image-20250401174215-1.png||height="486" width="656"]]
1358
1359
1360 = 9. ​Packing Info =
1361
1362
1363 Package Includes:
1364
1365 * PS-LB/LS-Txx/Ixx, PS-LB/LS-Dxx   LoRaWAN Pressure Sensor
1366
1367 Dimension and weight:
1368
1369 * Device Size: cm
1370 * Device Weight: g
1371 * Package Size / pcs : cm
1372 * Weight / pcs : g
1373
1374 = 10. Support =
1375
1376
1377 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1378
1379 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0