Show last authors
1
2
3
4 (% style="text-align:center" %)
5 [[image:image-20240109154731-4.png||height="671" width="945"]]
6
7
8
9
10
11
12
13 **Table of Contents :**
14
15 {{toc/}}
16
17
18
19
20
21
22 = 1. Introduction =
23
24 == 1.1 What is LoRaWAN Pressure Sensor ==
25
26
27 (((
28 The Dragino PS-LB/LS series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB/LS can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
29 )))
30
31 (((
32 The PS-LB/LS series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
33 )))
34
35 (((
36 The LoRa wireless technology used in PS-LB/LS allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
37 )))
38
39 (((
40 PS-LB/LS supports BLE configure and wireless OTA update which make user easy to use.
41 )))
42
43 (((
44 PS-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + Li-ion battery **(%%), it is designed for long term use up to 5 years.
45 )))
46
47 (((
48 Each PS-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
49 )))
50
51 [[image:1675071321348-194.png]]
52
53
54 == 1.2 ​Features ==
55
56
57 * LoRaWAN 1.0.3 Class A
58 * Ultra-low power consumption
59 * Measure air / gas or water pressure
60 * Different pressure range available
61 * Thread Installation Type or Immersion Type
62 * Monitor Battery Level
63 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
64 * Support Bluetooth v5.1 and LoRaWAN remote configure
65 * Support wireless OTA update firmware
66 * Uplink on periodically
67 * Downlink to change configure
68 * Controllable 3.3v,5v and 12v output to power external sensor
69 * 8500mAh Li/SOCl2 Battery (PS-LB)
70 * Solar panel + 3000mAh Li-ion battery (PS-LS)
71
72 == 1.3 Specification ==
73
74
75 (% style="color:#037691" %)**Micro Controller:**
76
77 * MCU: 48Mhz ARM
78 * Flash: 256KB
79 * RAM: 64KB
80
81 (% style="color:#037691" %)**Common DC Characteristics:**
82
83 * Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
84 * Operating Temperature: -40 ~~ 85°C
85
86 (% style="color:#037691" %)**LoRa Spec:**
87
88 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz,Band 2 (LF): 410 ~~ 528 Mhz
89 * Max +22 dBm constant RF output vs.
90 * RX sensitivity: down to -139 dBm.
91 * Excellent blocking immunity
92
93 (% style="color:#037691" %)**Current Input Measuring :**
94
95 * Range: 0 ~~ 20mA
96 * Accuracy: 0.02mA
97 * Resolution: 0.001mA
98
99 (% style="color:#037691" %)**Voltage Input Measuring:**
100
101 * Range: 0 ~~ 30v
102 * Accuracy: 0.02v
103 * Resolution: 0.001v
104
105 (% style="color:#037691" %)**Battery:**
106
107 * Li/SOCI2 un-chargeable battery
108 * Capacity: 8500mAh
109 * Self-Discharge: <1% / Year @ 25°C
110 * Max continuously current: 130mA
111 * Max boost current: 2A, 1 second
112
113 (% style="color:#037691" %)**Power Consumption**
114
115 * Sleep Mode: 5uA @ 3.3v
116 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
117
118 == 1.4 Probe Types ==
119
120 === 1.4.1 Thread Installation Type ===
121
122
123 [[image:1675071448299-229.png]]
124
125 * Hersman Pressure Transmitter
126 * Measuring Range: -0.1 ~~ 0 ~~ 60MPa, see order info.
127 * Accuracy: 0.2% F.S
128 * Long-Term Stability: 0.2% F.S ±0.05%
129 * Overload 200% F.S
130 * Zero Temperature Drift: 0.03% FS/℃(≤100Kpa), 0.02%FS/℃(>100Kpa)
131 * FS Temperature Drift: 0.003% FS/℃(≤100Kpa), 0.002%FS/℃(>100Kpa)
132 * Storage temperature: -30℃~~80℃
133 * Operating temperature: -20℃~~60℃
134 * Connector Type: Various Types, see order info
135
136 === 1.4.2 Immersion Type ===
137
138
139 [[image:image-20240109160445-5.png||height="221" width="166"]]
140
141 * Immersion Type, Probe IP Level: IP68
142 * Measuring Range: Measure range can be customized, up to 100m.
143 * Accuracy: 0.2% F.S
144 * Long-Term Stability: ±0.2% F.S / Year
145 * Storage temperature: -30°C~~80°C
146 * Operating temperature: 0°C~~50°C
147 * Material: 316 stainless steels
148
149 === 1.4.3 Wireless Differential Air Pressure Sensor ===
150
151 [[image:image-20240511174954-1.png]]
152
153 * Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
154 * Accuracy: 0.5% F.S, resolution is 0.05%.
155 * Overload: 300% F.S
156 * Zero temperature drift: ±0.03%F.S/°C
157 * Operating temperature: -20°C~~60°C
158 * Storage temperature:  -20°C~~60°C
159 * Compensation temperature: 0~~50°C
160
161 == 1.5 Application and Installation ==
162
163 === 1.5.1 Thread Installation Type ===
164
165
166 (% style="color:blue" %)**Application:**
167
168 * Hydraulic Pressure
169 * Petrochemical Industry
170 * Health and Medical
171 * Food & Beverage Processing
172 * Auto-controlling house
173 * Constant Pressure Water Supply
174 * Liquid Pressure measuring
175
176 Order the suitable thread size and install to measure the air / liquid pressure
177
178 [[image:1675071670469-145.png]]
179
180
181 === 1.5.2 Immersion Type ===
182
183
184 (% style="color:blue" %)**Application:**
185
186 Liquid & Water Pressure / Level detect.
187
188 [[image:1675071725288-579.png]]
189
190
191 Below is the wiring to for connect the probe to the device.
192
193 The Immersion Type Sensor has different variant which defined by Ixx. For example, this means two points:
194
195 * Cable Length: 10 Meters
196 * Water Detect Range: 0 ~~ 10 Meters.
197
198 [[image:1675071736646-450.png]]
199
200
201 [[image:1675071776102-240.png]]
202
203
204
205 === 1.5.3 Wireless Differential Air Pressure Sensor ===
206
207
208 (% style="color:blue" %)**Application:**
209
210 Indoor Air Control & Filter clogging Detect.
211
212 [[image:image-20240513100129-6.png]]
213
214 [[image:image-20240513100135-7.png]]
215
216
217 Below is the wiring to for connect the probe to the device.
218
219 [[image:image-20240513093957-1.png]]
220
221
222 Size of wind pressure transmitter:
223
224 [[image:image-20240513094047-2.png]]
225
226 Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.
227
228
229 == 1.6 Sleep mode and working mode ==
230
231
232 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
233
234 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
235
236
237 == 1.7 Button & LEDs ==
238
239
240 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]](% style="display:none" %)
241
242 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
243 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
244 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
245 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
246 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
247 )))
248 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
249 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
250 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
251 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
252 )))
253 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
254
255 == 1.8 Pin Mapping ==
256
257
258 [[image:1675072568006-274.png]]
259
260
261 == 1.9 BLE connection ==
262
263
264 PS-LB/LS support BLE remote configure.
265
266
267 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
268
269 * Press button to send an uplink
270 * Press button to active device.
271 * Device Power on or reset.
272
273 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
274
275
276 == 1.10 Mechanical ==
277
278 === 1.10.1 for LB version ===
279
280
281 [[image:image-20240109160800-6.png]]
282
283
284 === 1.10.2 for LS version ===
285
286
287 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/WebHome/image-20231231203439-3.png?width=886&height=385&rev=1.1||alt="image-20231231203439-3.png"]]
288
289
290 = 2. Configure PS-LB/LS to connect to LoRaWAN network =
291
292 == 2.1 How it works ==
293
294
295 The PS-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
296
297
298 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
299
300
301 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
302
303 [[image:1675144005218-297.png]]
304
305
306 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
307
308
309 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB/LS.
310
311 Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
312
313 [[image:image-20230426085320-1.png||height="234" width="504"]]
314
315
316 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
317
318
319 (% style="color:blue" %)**Register the device**
320
321 [[image:1675144099263-405.png]]
322
323
324 (% style="color:blue" %)**Add APP EUI and DEV EUI**
325
326 [[image:1675144117571-832.png]]
327
328
329 (% style="color:blue" %)**Add APP EUI in the application**
330
331
332 [[image:1675144143021-195.png]]
333
334
335 (% style="color:blue" %)**Add APP KEY**
336
337 [[image:1675144157838-392.png]]
338
339 (% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB/LS
340
341
342 Press the button for 5 seconds to activate the PS-LB/LS.
343
344 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
345
346 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
347
348
349 == 2.3 ​Uplink Payload ==
350
351 === 2.3.1 Device Status, FPORT~=5 ===
352
353
354 Include device configure status. Once PS-LB/LS Joined the network, it will uplink this message to the server.
355
356 Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
357
358 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
359 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
360 |(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
361 |(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
362
363 Example parse in TTNv3
364
365 [[image:1675144504430-490.png]]
366
367
368 (% style="color:#037691" %)**Sensor Model**(%%): For PS-LB/LS, this value is 0x16
369
370 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
371
372 (% style="color:#037691" %)**Frequency Band**:
373
374 *0x01: EU868
375
376 *0x02: US915
377
378 *0x03: IN865
379
380 *0x04: AU915
381
382 *0x05: KZ865
383
384 *0x06: RU864
385
386 *0x07: AS923
387
388 *0x08: AS923-1
389
390 *0x09: AS923-2
391
392 *0x0a: AS923-3
393
394 *0x0b: CN470
395
396 *0x0c: EU433
397
398 *0x0d: KR920
399
400 *0x0e: MA869
401
402
403 (% style="color:#037691" %)**Sub-Band**:
404
405 AU915 and US915:value 0x00 ~~ 0x08
406
407 CN470: value 0x0B ~~ 0x0C
408
409 Other Bands: Always 0x00
410
411
412 (% style="color:#037691" %)**Battery Info**:
413
414 Check the battery voltage.
415
416 Ex1: 0x0B45 = 2885mV
417
418 Ex2: 0x0B49 = 2889mV
419
420
421 === 2.3.2 Sensor value, FPORT~=2 ===
422
423
424 Uplink payload includes in total 9 bytes.
425
426
427 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
428 |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
429 **Size(bytes)**
430 )))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
431 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
432
433 [[image:1675144608950-310.png]]
434
435
436 === 2.3.3 Battery Info ===
437
438
439 Check the battery voltage for PS-LB/LS.
440
441 Ex1: 0x0B45 = 2885mV
442
443 Ex2: 0x0B49 = 2889mV
444
445
446 === 2.3.4 Probe Model ===
447
448
449 PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
450
451
452 **For example.**
453
454 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
455 |(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
456 |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
457 |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
458 |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
459
460 The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
461
462
463 === 2.3.5 0~~20mA value (IDC_IN) ===
464
465
466 The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
467
468 (% style="color:#037691" %)**Example**:
469
470 27AE(H) = 10158 (D)/1000 = 10.158mA.
471
472
473 Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
474
475 [[image:image-20230225154759-1.png||height="408" width="741"]]
476
477
478 === 2.3.6 0~~30V value (pin VDC_IN) ===
479
480
481 Measure the voltage value. The range is 0 to 30V.
482
483 (% style="color:#037691" %)**Example**:
484
485 138E(H) = 5006(D)/1000= 5.006V
486
487
488 === 2.3.7 IN1&IN2&INT pin ===
489
490
491 IN1 and IN2 are used as digital input pins.
492
493 (% style="color:#037691" %)**Example**:
494
495 09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
496
497 09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
498
499
500 This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
501
502 (% style="color:#037691" %)**Example:**
503
504 09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
505
506 09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
507
508 0x01: Interrupt Uplink Packet.
509
510
511 === 2.3.8 Sensor value, FPORT~=7 ===
512
513
514 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
515 |(% style="background-color:#4f81bd; color:white; width:65px" %)(((
516 **Size(bytes)**
517 )))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
518 |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
519 Voltage value, each 2 bytes is a set of voltage values.
520 )))
521
522 [[image:image-20230220171300-1.png||height="207" width="863"]]
523
524 Multiple sets of data collected are displayed in this form:
525
526 [voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
527
528
529 === 2.3.9 ​Decode payload in The Things Network ===
530
531
532 While using TTN network, you can add the payload format to decode the payload.
533
534 [[image:1675144839454-913.png]]
535
536
537 PS-LB/LS TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
538
539
540 == 2.4 Uplink Interval ==
541
542
543 The PS-LB/LS by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
544
545
546 == 2.5 Show Data in DataCake IoT Server ==
547
548
549 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
550
551 (% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
552
553 (% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
554
555 [[image:1675144951092-237.png]]
556
557
558 [[image:1675144960452-126.png]]
559
560
561 (% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
562
563 (% style="color:blue" %)**Step 4:** (%%)Create PS-LB/LS product.
564
565 [[image:1675145004465-869.png]]
566
567
568 [[image:1675145018212-853.png]]
569
570
571 [[image:1675145029119-717.png]]
572
573
574 (% style="color:blue" %)**Step 5: **(%%)add payload decode
575
576 [[image:1675145051360-659.png]]
577
578
579 [[image:1675145060812-420.png]]
580
581
582 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
583
584 [[image:1675145081239-376.png]]
585
586
587 == 2.6 Datalog Feature (Since V1.1) ==
588
589
590 When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot.
591
592
593 === 2.6.1 Unix TimeStamp ===
594
595
596 PS-LB uses Unix TimeStamp format based on
597
598 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861618065-927.png?width=705&height=109&rev=1.1||alt="1652861618065-927.png" height="109" width="705"]]
599
600 Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
601
602 Below is the converter example:
603
604 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861637105-371.png?width=732&height=428&rev=1.1||alt="1652861637105-371.png"]]
605
606
607 === 2.6.2 Set Device Time ===
608
609
610 There are two ways to set the device's time:
611
612
613 (% style="color:blue" %)**1. Through LoRaWAN MAC Command (Default settings)**
614
615 Users need to set SYNCMOD=1 to enable sync time via the MAC command.
616
617 Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
618
619 (% style="color:red" %)**Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.**
620
621
622 (% style="color:blue" %)** 2. Manually Set Time**
623
624 Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
625
626
627 === 2.6.3 Poll sensor value ===
628
629
630 Users can poll sensor values based on timestamps. Below is the downlink command.
631
632 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
633 |=(% colspan="4" style="width: 154px;background-color:#4F81BD;color:white" %)**Downlink Command to poll Open/Close status (0x31)**
634 |(% style="background-color:#f2f2f2; width:70px" %)**1byte**|(% style="background-color:#f2f2f2; width:140px" %)**4bytes**|(% style="background-color:#f2f2f2; width:140px" %)(((
635 (((
636 **4bytes**
637 )))
638
639
640
641 )))|(% style="background-color:#f2f2f2; width:150px" %)**1byte**
642 |(% style="background-color:#f2f2f2; width:70px" %)31|(% style="background-color:#f2f2f2; width:140px" %)Timestamp start|(% style="background-color:#f2f2f2; width:140px" %)Timestamp end|(% style="background-color:#f2f2f2; width:150px" %)Uplink Interval
643
644 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
645
646 For example, downlink command[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
647
648 Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
649
650 Uplink Internal =5s,means PS-LB will send one packet every 5s. range 5~~255s.
651
652
653 === 2.6.4 Decoder in TTN V3 ===
654
655 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
656
657 Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
658
659
660 == 2.7 Frequency Plans ==
661
662
663 The PS-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
664
665 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/a>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
666
667
668 == 2.8 Report on Change Feature (Since firmware V1.2) ==
669
670 === 2.8.1 Uplink payload(Enable ROC) ===
671
672
673 Used to Monitor the IDC and VDC increments, and send ROC uplink when the IDC or VDC changes exceed.
674
675 With ROC enabled, the payload is as follows:
676
677 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
678 |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
679 **Size(bytes)**
680 )))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
681 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
682 [[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag
683 )))
684
685 (% style="color:blue" %)**IN1 &IN2 , Interrupt  flag , ROC_flag:**
686
687 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
688 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bit)**|(% style="background-color:#4f81bd; color:white; width:60px" %)**bit7**|(% style="background-color:#4f81bd; color:white; width:62px" %)**bit6**|(% style="background-color:#4f81bd; color:white; width:62px" %)**bit5**|(% style="background-color:#4f81bd; color:white; width:65px" %)**bit4**|(% style="background-color:#4f81bd; color:white; width:56px" %)**bit3**|(% style="background-color:#4f81bd; color:white; width:55px" %)**bit2**|(% style="background-color:#4f81bd; color:white; width:55px" %)**bit1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**bit0**
689 |(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status
690
691 * (% style="color:#037691" %)**IDC_Roc_flagL**
692
693 80 (H): (0x80&0x80)=80(H)=**1**000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
694
695 60 (H): (0x60&0x80)=0  bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
696
697
698 * (% style="color:#037691" %)**IDC_Roc_flagH**
699
700 60 (H): (0x60&0x40)=60(H)=0**1**000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
701
702 80 (H): (0x80&0x40)=0  bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
703
704
705 * (% style="color:#037691" %)**VDC_Roc_flagL**
706
707 20 (H): (0x20&0x20)=20(H)=00**1**0 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
708
709 90 (H): (0x90&0x20)=0  bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
710
711
712 * (% style="color:#037691" %)**VDC_Roc_flagH**
713
714 90 (H): (0x90&0x10)=10(H)=000**1** 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
715
716 20 (H): (0x20&0x10)=0  bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
717
718
719 * (% style="color:#037691" %)**IN1_pin_level & IN2_pin_level**
720
721 IN1 and IN2 are used as digital input pins.
722
723 80 (H): (0x80&0x08)=0  IN1 pin is low level.
724
725 80 (H): (0x09&0x04)=0    IN2 pin is low level.
726
727
728 * (% style="color:#037691" %)**Exti_pin_level &Exti_status**
729
730 This data field shows whether the packet is generated by an interrupt pin.
731
732 Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the **GPIO_EXTI** pin.
733
734 **Exti_pin_level:**  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
735
736 **Exti_status: **80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
737
738
739 === 2.8.2 Set the Report on Change ===
740
741
742 Feature: Get or Set the Report on Change.
743
744
745 ==== 2.8.2.1 Wave alarm mode ====
746
747 Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed.
748
749 * (% style="color:#037691" %)**Change value: **(%%)The amount by which the next detection value increases/decreases relative to the previous detection value.
750 * (% style="color:#037691" %)**Comparison value:**(%%) A parameter to compare with the latest ROC test.
751
752 (% style="color:blue" %)**AT Command: AT+ROC**
753
754 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
755 |=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)**Parameters**|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation**
756 |(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
757 0,0,0,0(default)
758 OK
759 )))
760 |(% colspan="1" rowspan="4" style="width:143px" %)(((
761
762
763
764
765 AT+ROC=a,b,c,d
766 )))|(% style="width:154px" %)(((
767
768
769
770
771
772
773 **a**: Enable or disable the ROC
774 )))|(% style="width:197px" %)(((
775 **0:** off
776 **1:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
777
778 **2: **Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
779 )))
780 |(% style="width:154px" %)**b**: Set the detection interval|(% style="width:197px" %)(((
781 Range:  0~~65535s
782 )))
783 |(% style="width:154px" %)**c**: Setting the IDC change value|(% style="width:197px" %)Unit: uA
784 |(% style="width:154px" %)**d**: Setting the VDC change value|(% style="width:197px" %)Unit: mV
785
786 **Example:**
787
788 * AT+ROC=0,0,0,0  ~/~/The ROC function is not used.
789 * AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed.
790 * AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage.
791 * AT+ROC=2,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed.
792
793 (% style="color:blue" %)**Downlink Command: 0x09 aa bb cc dd**
794
795 Format: Function code (0x09) followed by 4 bytes.
796
797 (% style="color:blue" %)**aa: **(% style="color:#037691" %)**1 byte;**(%%) Set the wave alarm mode.
798
799 (% style="color:blue" %)**bb: **(% style="color:#037691" %)**2 bytes;**(%%) Set the detection interval. (second)
800
801 (% style="color:blue" %)**cc: **(% style="color:#037691" %)**2 bytes;**(%%) Setting the IDC change threshold. (uA)
802
803 (% style="color:blue" %)**dd: **(% style="color:#037691" %)**2 bytes;**(%%) Setting the VDC change threshold. (mV)
804
805 **Example:**
806
807 * Downlink Payload: **09 01 00 3C 0B B8 01 F4 ** ~/~/Equal to AT+ROC=1,60,3000, 500
808 * Downlink Payload: **09 01 00 3C 0B B8 00 00 ** ~/~/Equal to AT+ROC=1,60,3000,0
809 * Downlink Payload: **09 02 00 3C 0B B8 00 00 ** ~/~/Equal to AT+ROC=2,60,3000,0
810
811 (% style="color:blue" %)**Screenshot of parsing example in TTN:**
812
813 * AT+ROC=1,60,3000, 500.
814
815 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB-NA--LoRaWAN_Analog_Sensor_User_Manual/WebHome/image-20241019170902-1.png?width=1454&height=450&rev=1.1||alt="image-20241019170902-1.png"]]
816
817
818 ==== 2.8.2.2 Over-threshold alarm mode ====
819
820 Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded.
821
822 (% style="color:blue" %)**AT Command: AT+ROC=3,a,b,c,d,e**
823
824 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
825 |=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)**Parameters**|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation**
826 |(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
827 0,0,0,0(default)
828 OK
829 )))
830 |(% colspan="1" rowspan="5" style="width:143px" %)(((
831
832
833
834
835 AT+ROC=(% style="color:blue" %)**3**(%%),a,b,c,d,e
836 )))|(% style="width:160px" %)(((
837 **a: **Set the detection interval
838 )))|(% style="width:185px" %)(((
839 Range:  0~~65535s
840 )))
841 |(% style="width:160px" %)**b**: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
842 **0:** Less than the set IDC threshold, Alarm
843
844 **1:** Greater than the set IDC threshold, Alarm
845 )))
846 |(% style="width:160px" %)(((
847 **c**:  IDC alarm threshold
848 )))|(% style="width:185px" %)(((
849 Unit: uA
850 )))
851 |(% style="width:160px" %)**d**: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
852 **0:** Less than the set VDC threshold, Alarm
853
854 **1:** Greater than the set VDC threshold, Alarm
855 )))
856 |(% style="width:160px" %)**e:** VDC alarm threshold|(% style="width:185px" %)Unit: mV
857
858 **Example:**
859
860 * AT+ROC=3,60,0,3000,0,5000  ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
861 * AT+ROC=3,180,1,3000,1,5000  ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
862 * AT+ROC=3,300,0,3000,1,5000  ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
863
864 (% style="color:blue" %)**Downlink Command: 0x09 03 aa bb cc dd ee**
865
866 Format: Function code (0x09) followed by 03 and the remaining 5 bytes.
867
868 (% style="color:blue" %)**aa: **(% style="color:#037691" %)**2 bytes;**(%%) Set the detection interval.(second)
869
870 (% style="color:blue" %)**bb: **(% style="color:#037691" %)**1 byte; **(%%)Set the IDC alarm trigger condition.
871
872 (% style="color:blue" %)**cc: **(% style="color:#037691" %)**2 bytes;**(%%) IDC alarm threshold.(uA)
873
874
875 (% style="color:blue" %)**dd: **(% style="color:#037691" %)**1 byte;**(%%) Set the VDC alarm trigger condition.
876
877 (% style="color:blue" %)**ee: **(% style="color:#037691" %)**2 bytes; **(%%)VDC alarm threshold.(mV)
878
879 **Example:**
880
881 * Downlink Payload: **09 03 00 3C 00 0B B8 00 13 38** ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
882 * Downlink Payload: **09 03 00 b4 01 0B B8 01 13 38**  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
883 * Downlink Payload: **09 03 01 2C 00 0B B8 01 13 38**  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
884
885 (% style="color:blue" %)**Screenshot of parsing example in TTN:**
886
887 * AT+ROC=3,60,0,3000,0,5000
888
889 [[image:image-20250116180030-2.png]]
890
891
892 == 2.9 ​Firmware Change Log ==
893
894
895 **Firmware download link:**
896
897 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
898
899
900 = 3. Configure PS-LB/LS =
901
902 == 3.1 Configure Methods ==
903
904
905 PS-LB/LS supports below configure method:
906
907 * AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
908 * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
909 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
910
911 == 3.2 General Commands ==
912
913
914 These commands are to configure:
915
916 * General system settings like: uplink interval.
917 * LoRaWAN protocol & radio related command.
918
919 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
920
921 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
922
923
924 == 3.3 Commands special design for PS-LB/LS ==
925
926
927 These commands only valid for PS-LB/LS, as below:
928
929
930 === 3.3.1 Set Transmit Interval Time ===
931
932
933 Feature: Change LoRaWAN End Node Transmit Interval.
934
935 (% style="color:blue" %)**AT Command: AT+TDC**
936
937 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
938 |=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Response**
939 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
940 30000
941 OK
942 the interval is 30000ms = 30s
943 )))
944 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
945 OK
946 Set transmit interval to 60000ms = 60 seconds
947 )))
948
949 (% style="color:blue" %)**Downlink Command: 0x01**
950
951 Format: Command Code (0x01) followed by 3 bytes time value.
952
953 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
954
955 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
956 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
957
958 === 3.3.2 Set Interrupt Mode ===
959
960
961 Feature, Set Interrupt mode for GPIO_EXIT.
962
963 (% style="color:blue" %)**AT Command: AT+INTMOD**
964
965 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
966 |=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Response**
967 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
968 0
969 OK
970 the mode is 0 =Disable Interrupt
971 )))
972 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
973 Set Transmit Interval
974 0. (Disable Interrupt),
975 ~1. (Trigger by rising and falling edge)
976 2. (Trigger by falling edge)
977 3. (Trigger by rising edge)
978 )))|(% style="background-color:#f2f2f2; width:157px" %)OK
979
980 (% style="color:blue" %)**Downlink Command: 0x06**
981
982 Format: Command Code (0x06) followed by 3 bytes.
983
984 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
985
986 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
987 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
988
989 === 3.3.3 Set the output time ===
990
991
992 Feature, Control the output 3V3 , 5V or 12V.
993
994 (% style="color:blue" %)**AT Command: AT+3V3T**
995
996 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
997 |=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 201px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
998 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
999 0
1000 OK
1001 )))
1002 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1003 OK
1004 default setting
1005 )))
1006 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
1007 OK
1008 )))
1009 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1010 OK
1011 )))
1012
1013 (% style="color:blue" %)**AT Command: AT+5VT**
1014
1015 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
1016 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1017 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1018 0
1019 OK
1020 )))
1021 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1022 OK
1023 default setting
1024 )))
1025 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
1026 OK
1027 )))
1028 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1029 OK
1030 )))
1031
1032 (% style="color:blue" %)**AT Command: AT+12VT**
1033
1034 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
1035 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 199px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1036 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1037 0
1038 OK
1039 )))
1040 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
1041 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
1042 OK
1043 )))
1044
1045 (% style="color:blue" %)**Downlink Command: 0x07**
1046
1047 Format: Command Code (0x07) followed by 3 bytes.
1048
1049 The first byte is which power, the second and third bytes are the time to turn on.
1050
1051 * Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
1052 * Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
1053 * Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
1054 * Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
1055 * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
1056 * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
1057
1058 (% style="color:red" %)**Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.**
1059
1060 (% style="color:red" %)**Therefore, the corresponding downlink command is increased by one byte to five bytes.**
1061
1062 **Example: **
1063
1064 * 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 **01** 01 D4 C0  **~-~-->**  AT+3V3T=120000
1065 * 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 **02** 01 86 A0  **~-~-->**  AT+5VT=100000
1066 * 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 **03** 01 38 80  **~-~-->**  AT+12VT=80000
1067
1068 === 3.3.4 Set the Probe Model ===
1069
1070
1071 Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
1072
1073 (% style="color:blue" %)**AT Command: AT** **+PROBE**
1074
1075 AT+PROBE=aabb
1076
1077 When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
1078
1079 When aa=01, it is the pressure mode, which converts the current into a pressure value;
1080
1081 bb represents which type of pressure sensor it is.
1082
1083 (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
1084
1085 When aa=02, it is the Differential Pressure Sensor , which converts the current into a pressure value;
1086
1087 bb represents which type of pressure sensor it is.
1088
1089 (0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C)
1090
1091 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1092 |(% style="background-color:#4f81bd; color:white; width:154px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:269px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1093 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
1094 OK
1095 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
1096 |(% style="background-color:#f2f2f2; width:154px" %)(((
1097 AT+PROBE=000A
1098 )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
1099 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
1100 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
1101 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
1102
1103 (% style="color:blue" %)**Downlink Command: 0x08**
1104
1105 Format: Command Code (0x08) followed by 2 bytes.
1106
1107 * Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
1108 * Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
1109
1110 === 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
1111
1112
1113 Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time.
1114
1115 (% style="color:blue" %)**AT Command: AT** **+STDC**
1116
1117 AT+STDC=aa,bb,bb
1118
1119 (% style="color:#037691" %)**aa:**(%%)
1120 **0:** means disable this function and use TDC to send packets.
1121 **1:** means that the function is enabled to send packets by collecting VDC data for multiple times.
1122 **2:** means that the function is enabled to send packets by collecting IDC data for multiple times.
1123 (% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
1124 (% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
1125
1126 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1127 |(% style="background-color:#4f81bd; color:white; width:160px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:215px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1128 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
1129 OK
1130 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1131 Attention:Take effect after ATZ
1132
1133 OK
1134 )))
1135 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
1136 Use the TDC interval to send packets.(default)
1137
1138
1139 )))|(% style="background-color:#f2f2f2" %)(((
1140 Attention:Take effect after ATZ
1141
1142 OK
1143 )))
1144
1145 (% style="color:blue" %)**Downlink Command: 0xAE**
1146
1147 Format: Command Code (0xAE) followed by 4 bytes.
1148
1149 * Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
1150
1151 = 4. Battery & Power Consumption =
1152
1153
1154 PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1155
1156 [[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1157
1158
1159 = 5. OTA firmware update =
1160
1161
1162 Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1163
1164
1165 = 6. FAQ =
1166
1167 == 6.1 How to use AT Command via UART to access device? ==
1168
1169
1170 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1171
1172
1173 == 6.2 How to update firmware via UART port? ==
1174
1175
1176 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1177
1178
1179 == 6.3 How to change the LoRa Frequency Bands/Region? ==
1180
1181
1182 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
1183 When downloading the images, choose the required image file for download. ​
1184
1185
1186 == 6.4 How to measure the depth of other liquids other than water? ==
1187
1188
1189 Test the current values at the depth of different liquids and convert them to a linear scale.
1190 Replace its ratio with the ratio of water to current in the decoder.
1191
1192 **Example:**
1193
1194 Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
1195
1196 **Calculate scale factor:**
1197 Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
1198
1199 **Calculation formula:**
1200
1201 Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
1202
1203 **Actual calculations:**
1204
1205 Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
1206
1207 **Error:**
1208
1209 0.009810726
1210
1211
1212 [[image:image-20240329175044-1.png]]
1213
1214 = 7. Troubleshooting =
1215
1216 == 7.1 Water Depth Always shows 0 in payload ==
1217
1218
1219 If your device's IDC_intput_mA is normal, but your reading always shows 0, please refer to the following points:
1220
1221 ~1. Please set it to mod1
1222
1223 2. Please set the command [[AT+PROBE>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB%20--%20LoRaWAN%20Pressure%20Sensor/#H3.3.4SettheProbeModel]] according to the model of your sensor
1224
1225 3. Check the connection status of the sensor
1226
1227
1228 = 8. Order Info =
1229
1230
1231 (% style="display:none" %)
1232
1233 [[image:image-20241021093209-1.png]]
1234
1235 = 9. ​Packing Info =
1236
1237
1238 (% style="color:#037691" %)**Package Includes**:
1239
1240 * PS-LB or PS-LS LoRaWAN Pressure Sensor
1241
1242 (% style="color:#037691" %)**Dimension and weight**:
1243
1244 * Device Size: cm
1245 * Device Weight: g
1246 * Package Size / pcs : cm
1247 * Weight / pcs : g
1248
1249 = 10. Support =
1250
1251
1252 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1253
1254 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0