Last modified by Xiaoling on 2025/07/10 16:21

From version 98.4
edited by Xiaoling
on 2024/10/21 09:07
Change comment: There is no comment for this version
To version 123.2
edited by Xiaoling
on 2025/04/01 16:43
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -148,7 +148,7 @@
148 148  
149 149  === 1.4.3 Wireless Differential Air Pressure Sensor ===
150 150  
151 -[[image:image-20240511174954-1.png]]
151 +[[image:image-20240511174954-1.png||height="215" width="215"]]
152 152  
153 153  * Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
154 154  * Accuracy: 0.5% F.S, resolution is 0.05%.
... ... @@ -163,7 +163,7 @@
163 163  === 1.5.1 Thread Installation Type ===
164 164  
165 165  
166 -(% style="color:blue" %)**Application:**
166 +Application:
167 167  
168 168  * Hydraulic Pressure
169 169  * Petrochemical Industry
... ... @@ -181,7 +181,7 @@
181 181  === 1.5.2 Immersion Type ===
182 182  
183 183  
184 -(% style="color:blue" %)**Application:**
184 +Application:
185 185  
186 186  Liquid & Water Pressure / Level detect.
187 187  
... ... @@ -200,12 +200,15 @@
200 200  
201 201  [[image:1675071776102-240.png]]
202 202  
203 +Size of immersion type water depth sensor:
203 203  
205 +[[image:image-20250401102131-1.png||height="268" width="707"]]
204 204  
207 +
205 205  === 1.5.3 Wireless Differential Air Pressure Sensor ===
206 206  
207 207  
208 -(% style="color:blue" %)**Application:**
211 +Application:
209 209  
210 210  Indoor Air Control & Filter clogging Detect.
211 211  
... ... @@ -229,28 +229,32 @@
229 229  == 1.6 Sleep mode and working mode ==
230 230  
231 231  
232 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
235 +Deep Sleep Mode: Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
233 233  
234 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
237 +Working Mode: In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
235 235  
236 236  
237 237  == 1.7 Button & LEDs ==
238 238  
239 239  
240 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]](% style="display:none" %)
243 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
241 241  
242 242  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
243 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
246 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action
244 244  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
245 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
248 +
249 +
250 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once.
246 246  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
247 247  )))
248 248  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
249 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
250 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
254 +
255 +
256 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network.
257 +Green led will solidly turn on for 5 seconds after joined in network.
251 251  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
252 252  )))
253 -|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
260 +|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
254 254  
255 255  == 1.8 Pin Mapping ==
256 256  
... ... @@ -278,13 +278,13 @@
278 278  === 1.10.1 for LB version ===
279 279  
280 280  
281 -[[image:image-20240109160800-6.png]]
288 +[[image:image-20250401163530-1.jpeg]]
282 282  
283 283  
284 284  === 1.10.2 for LS version ===
285 285  
286 286  
287 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/WebHome/image-20231231203439-3.png?width=886&height=385&rev=1.1||alt="image-20231231203439-3.png"]]
294 +[[image:image-20250401163539-2.jpeg]]
288 288  
289 289  
290 290  = 2. Configure PS-LB/LS to connect to LoRaWAN network =
... ... @@ -292,7 +292,7 @@
292 292  == 2.1 How it works ==
293 293  
294 294  
295 -The PS-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
302 +The PS-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
296 296  
297 297  
298 298  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -300,7 +300,6 @@
300 300  
301 301  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
302 302  
303 -
304 304  [[image:1675144005218-297.png]]
305 305  
306 306  
... ... @@ -307,7 +307,7 @@
307 307  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
308 308  
309 309  
310 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB/LS.
316 +Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.
311 311  
312 312  Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
313 313  
... ... @@ -317,32 +317,32 @@
317 317  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
318 318  
319 319  
320 -(% style="color:blue" %)**Register the device**
326 +Register the device
321 321  
322 322  [[image:1675144099263-405.png]]
323 323  
324 324  
325 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
331 +Add APP EUI and DEV EUI
326 326  
327 327  [[image:1675144117571-832.png]]
328 328  
329 329  
330 -(% style="color:blue" %)**Add APP EUI in the application**
336 +Add APP EUI in the application
331 331  
332 332  
333 333  [[image:1675144143021-195.png]]
334 334  
335 335  
336 -(% style="color:blue" %)**Add APP KEY**
342 +Add APP KEY
337 337  
338 338  [[image:1675144157838-392.png]]
339 339  
340 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB/LS
346 +Step 2: Activate on PS-LB/LS
341 341  
342 342  
343 343  Press the button for 5 seconds to activate the PS-LB/LS.
344 344  
345 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
351 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network.
346 346  
347 347  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
348 348  
... ... @@ -356,11 +356,10 @@
356 356  
357 357  Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
358 358  
359 -
360 360  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
361 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
362 -|(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
363 -|(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
366 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)Device Status (FPORT=5)
367 +|(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2
368 +|(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
364 364  
365 365  Example parse in TTNv3
366 366  
... ... @@ -367,11 +367,11 @@
367 367  [[image:1675144504430-490.png]]
368 368  
369 369  
370 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB/LS, this value is 0x16
375 +Sensor Model: For PS-LB/LS, this value is 0x16
371 371  
372 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
377 +Firmware Version: 0x0100, Means: v1.0.0 version
373 373  
374 -(% style="color:#037691" %)**Frequency Band**:
379 +Frequency Band:
375 375  
376 376  *0x01: EU868
377 377  
... ... @@ -402,7 +402,7 @@
402 402  *0x0e: MA869
403 403  
404 404  
405 -(% style="color:#037691" %)**Sub-Band**:
410 +Sub-Band:
406 406  
407 407  AU915 and US915:value 0x00 ~~ 0x08
408 408  
... ... @@ -411,7 +411,7 @@
411 411  Other Bands: Always 0x00
412 412  
413 413  
414 -(% style="color:#037691" %)**Battery Info**:
419 +Battery Info:
415 415  
416 416  Check the battery voltage.
417 417  
... ... @@ -426,10 +426,12 @@
426 426  Uplink payload includes in total 9 bytes.
427 427  
428 428  
429 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
434 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
430 430  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
431 -**Size(bytes)**
432 -)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
436 +
437 +
438 +Size(bytes)
439 +)))|(% style="background-color:#4f81bd; color:white; width:50px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
433 433  |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
434 434  
435 435  [[image:1675144608950-310.png]]
... ... @@ -451,10 +451,10 @@
451 451  PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
452 452  
453 453  
454 -**For example.**
461 +For example.
455 455  
456 456  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
457 -|(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
464 +|(% style="background-color:#4f81bd; color:white" %)Part Number|(% style="background-color:#4f81bd; color:white" %)Probe Used|(% style="background-color:#4f81bd; color:white" %)4~~20mA scale|(% style="background-color:#4f81bd; color:white" %)Example: 12mA meaning
458 458  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
459 459  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
460 460  |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
... ... @@ -465,9 +465,9 @@
465 465  === 2.3.5 0~~20mA value (IDC_IN) ===
466 466  
467 467  
468 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
475 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
469 469  
470 -(% style="color:#037691" %)**Example**:
477 +Example:
471 471  
472 472  27AE(H) = 10158 (D)/1000 = 10.158mA.
473 473  
... ... @@ -477,12 +477,12 @@
477 477  [[image:image-20230225154759-1.png||height="408" width="741"]]
478 478  
479 479  
480 -=== 2.3.6 0~~30V value ( pin VDC_IN) ===
487 +=== 2.3.6 0~~30V value (pin VDC_IN) ===
481 481  
482 482  
483 483  Measure the voltage value. The range is 0 to 30V.
484 484  
485 -(% style="color:#037691" %)**Example**:
492 +Example:
486 486  
487 487  138E(H) = 5006(D)/1000= 5.006V
488 488  
... ... @@ -492,7 +492,7 @@
492 492  
493 493  IN1 and IN2 are used as digital input pins.
494 494  
495 -(% style="color:#037691" %)**Example**:
502 +Example:
496 496  
497 497  09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
498 498  
... ... @@ -499,9 +499,9 @@
499 499  09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
500 500  
501 501  
502 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
509 +This data field shows if this packet is generated by Interrupt Pin or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
503 503  
504 -(% style="color:#037691" %)**Example:**
511 +Example:
505 505  
506 506  09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
507 507  
... ... @@ -515,9 +515,13 @@
515 515  
516 516  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
517 517  |(% style="background-color:#4f81bd; color:white; width:65px" %)(((
518 -**Size(bytes)**
519 -)))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
525 +
526 +
527 +Size(bytes)
528 +)))|(% style="background-color:#4f81bd; color:white; width:35px" %)2|(% style="background-color:#4f81bd; color:white; width:400px" %)n
520 520  |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
530 +
531 +
521 521  Voltage value, each 2 bytes is a set of voltage values.
522 522  )))
523 523  
... ... @@ -533,7 +533,6 @@
533 533  
534 534  While using TTN network, you can add the payload format to decode the payload.
535 535  
536 -
537 537  [[image:1675144839454-913.png]]
538 538  
539 539  
... ... @@ -551,12 +551,10 @@
551 551  
552 552  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
553 553  
564 +Step 1: Be sure that your device is programmed and properly connected to the network at this time.
554 554  
555 -(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
566 +Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
556 556  
557 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
558 -
559 -
560 560  [[image:1675144951092-237.png]]
561 561  
562 562  
... ... @@ -563,9 +563,9 @@
563 563  [[image:1675144960452-126.png]]
564 564  
565 565  
566 -(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
574 +Step 3: Create an account or log in Datacake.
567 567  
568 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB/LS product.
576 +Step 4: Create PS-LB/LS product.
569 569  
570 570  [[image:1675145004465-869.png]]
571 571  
... ... @@ -573,11 +573,10 @@
573 573  [[image:1675145018212-853.png]]
574 574  
575 575  
576 -
577 577  [[image:1675145029119-717.png]]
578 578  
579 579  
580 -(% style="color:blue" %)**Step 5: **(%%)add payload decode
587 +Step 5: add payload decode
581 581  
582 582  [[image:1675145051360-659.png]]
583 583  
... ... @@ -587,46 +587,46 @@
587 587  
588 588  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
589 589  
590 -
591 591  [[image:1675145081239-376.png]]
592 592  
593 593  
594 594  == 2.6 Datalog Feature (Since V1.1) ==
595 595  
602 +
596 596  When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot.
597 597  
598 598  
599 -
600 600  === 2.6.1 Unix TimeStamp ===
601 601  
602 -CPL01 uses Unix TimeStamp format based on
603 603  
604 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861618065-927.png?width=705&height=109&rev=1.1||alt="1652861618065-927.png" height="109" width="705"]]
609 +PS-LB uses Unix TimeStamp format based on
605 605  
611 +[[image:image-20250401163826-3.jpeg]]
612 +
606 606  Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
607 607  
608 608  Below is the converter example:
609 609  
610 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861637105-371.png?width=732&height=428&rev=1.1||alt="1652861637105-371.png"]]
617 +[[image:image-20250401163906-4.jpeg]]
611 611  
612 612  
613 613  === 2.6.2 Set Device Time ===
614 614  
622 +
615 615  There are two ways to set the device's time:
616 616  
617 617  
618 -(% style="color:blue" %)**1. Through LoRaWAN MAC Command (Default settings)**
626 +~1. Through LoRaWAN MAC Command (Default settings)
619 619  
620 620  Users need to set SYNCMOD=1 to enable sync time via the MAC command.
621 621  
622 622  Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
623 623  
632 +Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.
624 624  
625 -(% style="color:red" %)**Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.**
626 626  
635 + 2. Manually Set Time
627 627  
628 -(% style="color:blue" %)** 2. Manually Set Time**
629 -
630 630  Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
631 631  
632 632  
... ... @@ -634,34 +634,139 @@
634 634  
635 635  Users can poll sensor values based on timestamps. Below is the downlink command.
636 636  
637 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
638 -|=(% colspan="4" style="width: 154px;background-color:#4F81BD;color:white" %)**Downlink Command to poll Open/Close status (0x31)**
639 -|(% style="background-color:#f2f2f2; width:70px" %)**1byte**|(% style="background-color:#f2f2f2; width:140px" %)**4bytes**|(% style="background-color:#f2f2f2; width:140px" %)(((
640 -(((
641 -**4bytes**
642 -)))
644 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
645 +|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31)
646 +|(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte
647 +|(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)(((
648 +
643 643  
650 +Timestamp end
651 +)))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval
644 644  
645 -)))|(% style="background-color:#f2f2f2; width:150px" %)**1byte**
646 -|(% style="background-color:#f2f2f2; width:70px" %)31|(% style="background-color:#f2f2f2; width:140px" %)Timestamp start|(% style="background-color:#f2f2f2; width:140px" %)Timestamp end|(% style="background-color:#f2f2f2; width:150px" %)Uplink Interval
647 -
648 648  Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
649 649  
650 -For example, downlink command[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
655 +For example, downlink command[[image:image-20250117104812-1.png]]
651 651  
652 -Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
657 +Is to check 2024/12/20 09:34:59 to 2024/12/20 14:34:59's data
653 653  
654 -Uplink Internal =5s,means CPL01 will send one packet every 5s. range 5~~255s.
659 +Uplink Internal =5s,means PS-LB will send one packet every 5s. range 5~~255s.
655 655  
656 656  
657 -=== 2.6.4 Decoder in TTN V3 ===
662 +=== 2.6.4 Datalog Uplink payload (FPORT~=3) ===
658 658  
664 +
665 +The Datalog uplinks will use below payload format.
666 +
667 +Retrieval data payload:
668 +
669 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
670 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
671 +Size(bytes)
672 +)))|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)2|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)4
673 +|(% style="width:103px" %)Value|(% style="width:68px" %)(((
674 +
675 +
676 +Probe_mod
677 +)))|(% style="width:104px" %)(((
678 +
679 +
680 +VDC_intput_V
681 +)))|(% style="width:83px" %)(((
682 +
683 +
684 +IDC_intput_mA
685 +)))|(% style="width:201px" %)(((
686 +
687 +
688 +IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status
689 +)))|(% style="width:86px" %)Unix Time Stamp
690 +
691 +IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:
692 +
693 +[[image:image-20250117104847-4.png]]
694 +
695 +
696 +No ACK Message:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
697 +
698 +Poll Message Flag: 1: This message is a poll message reply.
699 +
700 +* Poll Message Flag is set to 1.
701 +
702 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
703 +
704 +For example, in US915 band, the max payload for different DR is:
705 +
706 +a) DR0: max is 11 bytes so one entry of data
707 +
708 +b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
709 +
710 +c) DR2: total payload includes 11 entries of data
711 +
712 +d) DR3: total payload includes 22 entries of data.
713 +
714 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
715 +
716 +Example:
717 +
718 +If PS-LB-NA has below data inside Flash:
719 +
720 +[[image:image-20250117104837-3.png]]
721 +
722 +
723 +If user sends below downlink command: 316788D9BF6788DB6305
724 +
725 +Where : Start time: 6788D9BF = time 25/1/16 10:04:47
726 +
727 + Stop time: 6788DB63 = time 25/1/16 10:11:47
728 +
729 +
730 +PA-LB-NA will uplink this payload.
731 +
732 +[[image:image-20250117104827-2.png]]
733 +
734 +
735 +00001B620000406788D9BF  00000D130000406788D9FB  00000D120000406788DA37  00000D110000406788DA73  00000D100000406788DAAF  00000D100000406788DAEB  00000D0F0000406788DB27  00000D100000406788DB63
736 +
737 +
738 +Where the first 11 bytes is for the first entry :
739 +
740 +
741 +0000  0D10  0000  40  6788DB63
742 +
743 +
744 +Probe_mod = 0x0000 = 0000
745 +
746 +
747 +VDC_intput_V = 0x0D10/1000=3.344V
748 +
749 +IDC_intput_mA = 0x0000/1000=0mA
750 +
751 +
752 +IN1_pin_level = (0x40& 0x08)? "High":"Low" = 0(Low)
753 +
754 +IN2_pin_level = (0x40& 0x04)? "High":"Low" = 0(Low)
755 +
756 +Exti_pin_level = (0x40& 0x02)? "High":"Low" = 0(Low)
757 +
758 +Exti_status = (0x40& 0x01)? "True":"False" = 0(False)
759 +
760 +
761 +Unix time is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
762 +
763 +Its data format is:
764 +
765 +[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
766 +
767 +Note: water_deep in the data needs to be converted using decoding to get it.
768 +
769 +
770 +=== 2.6.5 Decoder in TTN V3 ===
771 +
659 659  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
660 660  
661 661  Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
662 662  
663 663  
664 -
665 665  == 2.7 Frequency Plans ==
666 666  
667 667  
... ... @@ -670,9 +670,8 @@
670 670  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/a>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
671 671  
672 672  
673 -== 2.8 Report on Change Feature (Since firmware V1.1.2) ==
785 +== 2.8 Report on Change Feature (Since firmware V1.2) ==
674 674  
675 -
676 676  === 2.8.1 Uplink payload(Enable ROC) ===
677 677  
678 678  
... ... @@ -680,51 +680,53 @@
680 680  
681 681  With ROC enabled, the payload is as follows:
682 682  
683 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
794 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
684 684  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
685 -**Size(bytes)**
686 -)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
796 +
797 +
798 +Size(bytes)
799 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
687 687  |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
688 -[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
801 +
689 689  
690 -& **ROC_flag**
803 +[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag
691 691  )))
692 692  
693 -(% style="color:blue" %)**IN1 &IN2 , Interrupt  flag , ROC_flag:**
806 +IN1 &IN2 , Interrupt  flag , ROC_flag:
694 694  
695 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
696 -|(% style="background-color:#4f81bd; color:white; width:55px" %)**Size(bit)**|(% style="background-color:#4f81bd; color:white; width:65px" %)**bit7**|(% style="background-color:#4f81bd; color:white; width:46.5834px" %)**bit6**|(% style="background-color:#4f81bd; color:white; width:1px" %)**bit5**|(% style="background-color:#4f81bd; color:white; width:65px" %)**bit4**|(% style="background-color:#4f81bd; color:white; width:65px" %)**bit3**|(% style="background-color:#4f81bd; color:white; width:105px" %)**bit2**|(% style="background-color:#4f81bd; color:white; width:105px" %)**bit1**|(% style="background-color:#4f81bd; color:white; width:105px" %)**bit0**
808 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
809 +|(% style="background-color:#4f81bd; color:white; width:50px" %)Size(bit)|(% style="background-color:#4f81bd; color:white; width:60px" %)bit7|(% style="background-color:#4f81bd; color:white; width:62px" %)bit6|(% style="background-color:#4f81bd; color:white; width:62px" %)bit5|(% style="background-color:#4f81bd; color:white; width:65px" %)bit4|(% style="background-color:#4f81bd; color:white; width:56px" %)bit3|(% style="background-color:#4f81bd; color:white; width:55px" %)bit2|(% style="background-color:#4f81bd; color:white; width:55px" %)bit1|(% style="background-color:#4f81bd; color:white; width:50px" %)bit0
697 697  |(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status
698 698  
699 -* (% style="color:#037691" %)**IDC_Roc_flagL**
812 +* IDC_Roc_flagL
700 700  
701 -80 (H): (0x80&0x80)=80(H)=**1**000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
814 +80 (H): (0x80&0x80)=80(H)=1000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
702 702  
703 703  60 (H): (0x60&0x80)=0  bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
704 704  
705 705  
706 -* (% style="color:#037691" %)**IDC_Roc_flagH**
819 +* IDC_Roc_flagH
707 707  
708 -60 (H): (0x60&0x40)=60(H)=0**1**000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
821 +60 (H): (0x60&0x40)=60(H)=01000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
709 709  
710 710  80 (H): (0x80&0x40)=0  bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
711 711  
712 712  
713 -* (% style="color:#037691" %)**VDC_Roc_flagL**
826 +* VDC_Roc_flagL
714 714  
715 -20 (H): (0x20&0x20)=20(H)=00**1**0 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
828 +20 (H): (0x20&0x20)=20(H)=0010 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
716 716  
717 717  90 (H): (0x90&0x20)=0  bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
718 718  
719 719  
720 -* (% style="color:#037691" %)**VDC_Roc_flagH**
833 +* VDC_Roc_flagH
721 721  
722 -90 (H): (0x90&0x10)=10(H)=000**1** 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
835 +90 (H): (0x90&0x10)=10(H)=0001 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
723 723  
724 724  20 (H): (0x20&0x10)=0  bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
725 725  
726 726  
727 -* (% style="color:#037691" %)**IN1_pin_level & IN2_pin_level**
840 +* IN1_pin_level & IN2_pin_level
728 728  
729 729  IN1 and IN2 are used as digital input pins.
730 730  
... ... @@ -733,28 +733,38 @@
733 733  80 (H): (0x09&0x04)=0    IN2 pin is low level.
734 734  
735 735  
736 -* (% style="color:#037691" %)**Exti_pin_level &Exti_status**
849 +* Exti_pin_level &Exti_status
737 737  
738 738  This data field shows whether the packet is generated by an interrupt pin.
739 739  
740 -Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the **GPIO_EXTI** pin.
853 +Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the GPIO_EXTI pin.
741 741  
742 -**Exti_pin_level:**  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
855 +Exti_pin_level:  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
743 743  
744 -**Exti_status: **80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
857 +Exti_status: 80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
745 745  
746 746  
747 747  === 2.8.2 Set the Report on Change ===
748 748  
749 749  
750 -Feature: Set the detection interval and threshold to monitor whether the IDC/VDC variable exceeds the threshold. If the threshold is exceeded, an ROC uplink is sent.
751 -(% style="color:blue" %)**AT Command: AT+ROC**
863 +Feature: Get or Set the Report on Change.
752 752  
753 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
754 -|=(% style="width: 143px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)**Parameters**|=(% style="width: 168px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation**
755 -|(% style="width:143px" %)AT+ROC=?|(% style="width:197px" %)Show current ROC setting|(% style="width:168px" %)(((
756 -0,0,0,0(default)
757 757  
866 +==== 2.8.2.1 Wave alarm mode ====
867 +
868 +Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed.
869 +
870 +* Change value: The amount by which the next detection value increases/decreases relative to the previous detection value.
871 +* Comparison value: A parameter to compare with the latest ROC test.
872 +
873 +AT Command: AT+ROC
874 +
875 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
876 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
877 +|(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
878 +
879 +
880 +0,0,0,0(default)
758 758  OK
759 759  )))
760 760  |(% colspan="1" rowspan="4" style="width:143px" %)(((
... ... @@ -762,49 +762,158 @@
762 762  
763 763  
764 764  
888 +
765 765  AT+ROC=a,b,c,d
766 -)))|(% style="width:197px" %)**a**: Enable or disable the ROC|(% style="width:168px" %)(((
890 +)))|(% style="width:154px" %)(((
891 +
892 +
893 +
894 +
895 +
896 +
897 +
898 +a: Enable or disable the ROC
899 +)))|(% style="width:197px" %)(((
900 +
901 +
767 767  0: off
903 +1: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
768 768  
769 -1: on
905 +2: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
770 770  )))
771 -|(% style="width:197px" %)**b**: Set the detection interval|(% style="width:168px" %)Unit: second
772 -|(% style="width:197px" %)**c**: Setting the IDC change threshold|(% style="width:168px" %)Unit: uA
773 -|(% style="width:197px" %)**d**: Setting the VDC change threshold|(% style="width:168px" %)Unit: mV
907 +|(% style="width:154px" %)b: Set the detection interval|(% style="width:197px" %)(((
908 +
774 774  
775 -**Example:**
910 +Range:  0~~65535s
911 +)))
912 +|(% style="width:154px" %)c: Setting the IDC change value|(% style="width:197px" %)Unit: uA
913 +|(% style="width:154px" %)d: Setting the VDC change value|(% style="width:197px" %)Unit: mV
776 776  
777 -* AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink.
778 -* AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink. 0 Means doesn't monitor Voltage.
915 +Example:
779 779  
780 -(% style="color:blue" %)**Downlink Command: 0x09 aa bb cc dd**
917 +* AT+ROC=0,0,0,0  ~/~/The ROC function is not used.
918 +* AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed.
919 +* AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage.
920 +* AT+ROC=2,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed.
781 781  
922 +Downlink Command: 0x09 aa bb cc dd
923 +
782 782  Format: Function code (0x09) followed by 4 bytes.
783 783  
784 -(% style="color:blue" %)**aa: **(%%)Enable/Disable the ROC.
926 +aa: 1 byte; Set the wave alarm mode.
785 785  
786 -(% style="color:blue" %)**bb: **(%%)Set the detection interval. (second)
928 +bb: 2 bytes; Set the detection interval. (second)
787 787  
788 -(% style="color:blue" %)**cc: **(%%)Setting the IDC change threshold. (uA)
930 +cc: 2 bytes; Setting the IDC change threshold. (uA)
789 789  
790 -(% style="color:blue" %)**dd: **(%%)Setting the VDC change threshold. (mV)
932 +dd: 2 bytes; Setting the VDC change threshold. (mV)
791 791  
792 -**Example:**
934 +Example:
793 793  
794 -* Downlink Payload: **09 01 00 3C 0B B8 01 F4 ** ~/~/Equal to AT+ROC=1,60,3000, 500
795 -* Downlink Payload: **09 01 00 3C 0B B8 00 00 ** ~/~/AT+ROC=1,60,3000,0
936 +* Downlink Payload: 09 01 00 3C 0B B8 01 F4  ~/~/Equal to AT+ROC=1,60,3000, 500
937 +* Downlink Payload: 09 01 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=1,60,3000,0
938 +* Downlink Payload: 09 02 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=2,60,3000,0
796 796  
797 -(% style="color:blue" %)**Screenshot of parsing example in TTN:**
940 +Screenshot of parsing example in TTN:
798 798  
799 799  * AT+ROC=1,60,3000, 500.
800 800  
801 -[[image:image-20241019170902-1.png||height="450" width="1454"]]
944 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB-NA--LoRaWAN_Analog_Sensor_User_Manual/WebHome/image-20241019170902-1.png?width=1454&height=450&rev=1.1||alt="image-20241019170902-1.png"]]
802 802  
803 803  
947 +==== 2.8.2.2 Over-threshold alarm mode ====
948 +
949 +Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded.
950 +
951 +AT Command: AT+ROC=3,a,b,c,d,e
952 +
953 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
954 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
955 +|(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
956 +
957 +
958 +0,0,0,0(default)
959 +OK
960 +)))
961 +|(% colspan="1" rowspan="5" style="width:143px" %)(((
962 +
963 +
964 +
965 +
966 +
967 +AT+ROC=3,a,b,c,d,e
968 +)))|(% style="width:160px" %)(((
969 +
970 +
971 +a: Set the detection interval
972 +)))|(% style="width:185px" %)(((
973 +
974 +
975 +Range:  0~~65535s
976 +)))
977 +|(% style="width:160px" %)b: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
978 +
979 +
980 +0: Less than the set IDC threshold, Alarm
981 +
982 +1: Greater than the set IDC threshold, Alarm
983 +)))
984 +|(% style="width:160px" %)(((
985 +
986 +
987 +c:  IDC alarm threshold
988 +)))|(% style="width:185px" %)(((
989 +
990 +
991 +Unit: uA
992 +)))
993 +|(% style="width:160px" %)d: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
994 +
995 +
996 +0: Less than the set VDC threshold, Alarm
997 +
998 +1: Greater than the set VDC threshold, Alarm
999 +)))
1000 +|(% style="width:160px" %)e: VDC alarm threshold|(% style="width:185px" %)Unit: mV
1001 +
1002 +Example:
1003 +
1004 +* AT+ROC=3,60,0,3000,0,5000  ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
1005 +* AT+ROC=3,180,1,3000,1,5000  ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
1006 +* AT+ROC=3,300,0,3000,1,5000  ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
1007 +
1008 +Downlink Command: 0x09 03 aa bb cc dd ee
1009 +
1010 +Format: Function code (0x09) followed by 03 and the remaining 5 bytes.
1011 +
1012 +aa: 2 bytes; Set the detection interval.(second)
1013 +
1014 +bb: 1 byte; Set the IDC alarm trigger condition.
1015 +
1016 +cc: 2 bytes; IDC alarm threshold.(uA)
1017 +
1018 +
1019 +dd: 1 byte; Set the VDC alarm trigger condition.
1020 +
1021 +ee: 2 bytes; VDC alarm threshold.(mV)
1022 +
1023 +Example:
1024 +
1025 +* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
1026 +* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
1027 +* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
1028 +
1029 +Screenshot of parsing example in TTN:
1030 +
1031 +* AT+ROC=3,60,0,3000,0,5000
1032 +
1033 +[[image:image-20250116180030-2.png]]
1034 +
1035 +
804 804  == 2.9 ​Firmware Change Log ==
805 805  
806 806  
807 -**Firmware download link:**
1039 +Firmware download link:
808 808  
809 809  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
810 810  
... ... @@ -816,7 +816,7 @@
816 816  
817 817  PS-LB/LS supports below configure method:
818 818  
819 -* AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1051 +* AT Command via Bluetooth Connection (Recommand Way): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
820 820  * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
821 821  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
822 822  
... ... @@ -844,21 +844,25 @@
844 844  
845 845  Feature: Change LoRaWAN End Node Transmit Interval.
846 846  
847 -(% style="color:blue" %)**AT Command: AT+TDC**
1079 +AT Command: AT+TDC
848 848  
849 849  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
850 -|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Response**
1082 +|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response
851 851  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
1084 +
1085 +
852 852  30000
853 853  OK
854 854  the interval is 30000ms = 30s
855 855  )))
856 856  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
1091 +
1092 +
857 857  OK
858 858  Set transmit interval to 60000ms = 60 seconds
859 859  )))
860 860  
861 -(% style="color:blue" %)**Downlink Command: 0x01**
1097 +Downlink Command: 0x01
862 862  
863 863  Format: Command Code (0x01) followed by 3 bytes time value.
864 864  
... ... @@ -872,16 +872,20 @@
872 872  
873 873  Feature, Set Interrupt mode for GPIO_EXIT.
874 874  
875 -(% style="color:blue" %)**AT Command: AT+INTMOD**
1111 +AT Command: AT+INTMOD
876 876  
877 877  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
878 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Response**
1114 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response
879 879  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
1116 +
1117 +
880 880  0
881 881  OK
882 882  the mode is 0 =Disable Interrupt
883 883  )))
884 884  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
1123 +
1124 +
885 885  Set Transmit Interval
886 886  0. (Disable Interrupt),
887 887  ~1. (Trigger by rising and falling edge)
... ... @@ -889,7 +889,7 @@
889 889  3. (Trigger by rising edge)
890 890  )))|(% style="background-color:#f2f2f2; width:157px" %)OK
891 891  
892 -(% style="color:blue" %)**Downlink Command: 0x06**
1132 +Downlink Command: 0x06
893 893  
894 894  Format: Command Code (0x06) followed by 3 bytes.
895 895  
... ... @@ -903,76 +903,106 @@
903 903  
904 904  Feature, Control the output 3V3 , 5V or 12V.
905 905  
906 -(% style="color:blue" %)**AT Command: AT+3V3T**
1146 +AT Command: AT+3V3T
907 907  
908 908  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
909 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 201px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1149 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
910 910  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
1151 +
1152 +
911 911  0
912 912  OK
913 913  )))
914 914  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1157 +
1158 +
915 915  OK
916 916  default setting
917 917  )))
918 918  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
1163 +
1164 +
919 919  OK
920 920  )))
921 921  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1168 +
1169 +
922 922  OK
923 923  )))
924 924  
925 -(% style="color:blue" %)**AT Command: AT+5VT**
1173 +AT Command: AT+5VT
926 926  
927 927  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
928 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1176 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
929 929  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1178 +
1179 +
930 930  0
931 931  OK
932 932  )))
933 933  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1184 +
1185 +
934 934  OK
935 935  default setting
936 936  )))
937 937  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
1190 +
1191 +
938 938  OK
939 939  )))
940 940  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1195 +
1196 +
941 941  OK
942 942  )))
943 943  
944 -(% style="color:blue" %)**AT Command: AT+12VT**
1200 +AT Command: AT+12VT
945 945  
946 946  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
947 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 199px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1203 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response
948 948  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1205 +
1206 +
949 949  0
950 950  OK
951 951  )))
952 952  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
953 953  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
1212 +
1213 +
954 954  OK
955 955  )))
956 956  
957 -(% style="color:blue" %)**Downlink Command: 0x07**
1217 +Downlink Command: 0x07
958 958  
959 959  Format: Command Code (0x07) followed by 3 bytes.
960 960  
961 961  The first byte is which power, the second and third bytes are the time to turn on.
962 962  
963 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
964 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
965 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
966 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
967 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
968 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
1223 +* Example 1: Downlink Payload: 070101F4  ~-~-->  AT+3V3T=500
1224 +* Example 2: Downlink Payload: 0701FFFF   ~-~-->  AT+3V3T=65535
1225 +* Example 3: Downlink Payload: 070203E8  ~-~-->  AT+5VT=1000
1226 +* Example 4: Downlink Payload: 07020000  ~-~-->  AT+5VT=0
1227 +* Example 5: Downlink Payload: 070301F4  ~-~-->  AT+12VT=500
1228 +* Example 6: Downlink Payload: 07030000  ~-~-->  AT+12VT=0
969 969  
1230 +Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.
1231 +
1232 +Therefore, the corresponding downlink command is increased by one byte to five bytes.
1233 +
1234 +Example:
1235 +
1236 +* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 01 01 D4 C0  ~-~-->  AT+3V3T=120000
1237 +* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 02 01 86 A0  ~-~-->  AT+5VT=100000
1238 +* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 03 01 38 80  ~-~-->  AT+12VT=80000
1239 +
970 970  === 3.3.4 Set the Probe Model ===
971 971  
972 972  
973 973  Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
974 974  
975 -(% style="color:blue" %)**AT Command: AT** **+PROBE**
1245 +AT Command: AT +PROBE
976 976  
977 977  AT+PROBE=aabb
978 978  
... ... @@ -991,11 +991,13 @@
991 991  (0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C)
992 992  
993 993  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
994 -|(% style="background-color:#4f81bd; color:white; width:154px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:269px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1264 +|(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
995 995  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
996 996  OK
997 997  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
998 998  |(% style="background-color:#f2f2f2; width:154px" %)(((
1269 +
1270 +
999 999  AT+PROBE=000A
1000 1000  )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
1001 1001  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
... ... @@ -1002,12 +1002,12 @@
1002 1002  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
1003 1003  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
1004 1004  
1005 -(% style="color:blue" %)**Downlink Command: 0x08**
1277 +Downlink Command: 0x08
1006 1006  
1007 1007  Format: Command Code (0x08) followed by 2 bytes.
1008 1008  
1009 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
1010 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
1281 +* Example 1: Downlink Payload: 080003  ~-~-->  AT+PROBE=0003
1282 +* Example 2: Downlink Payload: 080101  ~-~-->  AT+PROBE=0101
1011 1011  
1012 1012  === 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
1013 1013  
... ... @@ -1014,41 +1014,47 @@
1014 1014  
1015 1015  Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time.
1016 1016  
1017 -(% style="color:blue" %)**AT Command: AT** **+STDC**
1289 +AT Command: AT +STDC
1018 1018  
1019 1019  AT+STDC=aa,bb,bb
1020 1020  
1021 -(% style="color:#037691" %)**aa:**(%%)
1022 -**0:** means disable this function and use TDC to send packets.
1023 -**1:** means that the function is enabled to send packets by collecting VDC data for multiple times.
1024 -**2:** means that the function is enabled to send packets by collecting IDC data for multiple times.
1025 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
1026 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
1293 +aa:
1294 +0: means disable this function and use TDC to send packets.
1295 +1: means that the function is enabled to send packets by collecting VDC data for multiple times.
1296 +2: means that the function is enabled to send packets by collecting IDC data for multiple times.
1297 +bb: Each collection interval (s), the value is 1~~65535
1298 +cc: the number of collection times, the value is 1~~120
1027 1027  
1028 1028  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1029 -|(% style="background-color:#4f81bd; color:white; width:160px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:215px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1301 +|(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1030 1030  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
1031 1031  OK
1032 1032  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1305 +
1306 +
1033 1033  Attention:Take effect after ATZ
1034 1034  
1035 1035  OK
1036 1036  )))
1037 1037  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
1312 +
1313 +
1038 1038  Use the TDC interval to send packets.(default)
1039 1039  
1040 1040  
1041 1041  )))|(% style="background-color:#f2f2f2" %)(((
1318 +
1319 +
1042 1042  Attention:Take effect after ATZ
1043 1043  
1044 1044  OK
1045 1045  )))
1046 1046  
1047 -(% style="color:blue" %)**Downlink Command: 0xAE**
1325 +Downlink Command: 0xAE
1048 1048  
1049 1049  Format: Command Code (0xAE) followed by 4 bytes.
1050 1050  
1051 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
1329 +* Example 1: Downlink Payload: AE 01 02 58 12 ~-~-->  AT+STDC=1,600,18
1052 1052  
1053 1053  = 4. Battery & Power Consumption =
1054 1054  
... ... @@ -1055,7 +1055,7 @@
1055 1055  
1056 1056  PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1057 1057  
1058 -[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1336 +[[Battery Info & Power Consumption Analyze>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1059 1059  
1060 1060  
1061 1061  = 5. OTA firmware update =
... ... @@ -1091,22 +1091,22 @@
1091 1091  Test the current values at the depth of different liquids and convert them to a linear scale.
1092 1092  Replace its ratio with the ratio of water to current in the decoder.
1093 1093  
1094 -**Example:**
1372 +Example:
1095 1095  
1096 1096  Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
1097 1097  
1098 -**Calculate scale factor:**
1376 +Calculate scale factor:
1099 1099  Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
1100 1100  
1101 -**Calculation formula:**
1379 +Calculation formula:
1102 1102  
1103 1103  Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
1104 1104  
1105 -**Actual calculations:**
1383 +Actual calculations:
1106 1106  
1107 1107  Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
1108 1108  
1109 -**Error:**
1387 +Error:
1110 1110  
1111 1111  0.009810726
1112 1112  
... ... @@ -1130,18 +1130,17 @@
1130 1130  = 8. Order Info =
1131 1131  
1132 1132  
1133 -[[image:image-20240109172423-7.png]](% style="display:none" %)
1134 1134  
1135 -[[image:image-20240817150702-1.png]]
1412 +[[image:image-20241021093209-1.png]]
1136 1136  
1137 1137  = 9. ​Packing Info =
1138 1138  
1139 1139  
1140 -(% style="color:#037691" %)**Package Includes**:
1417 +Package Includes:
1141 1141  
1142 1142  * PS-LB or PS-LS LoRaWAN Pressure Sensor
1143 1143  
1144 -(% style="color:#037691" %)**Dimension and weight**:
1421 +Dimension and weight:
1145 1145  
1146 1146  * Device Size: cm
1147 1147  * Device Weight: g
... ... @@ -1154,4 +1154,3 @@
1154 1154  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1155 1155  
1156 1156  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].
1157 -
image-20241021093209-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +52.1 KB
Content
image-20250116175954-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +68.6 KB
Content
image-20250116180030-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +69.2 KB
Content
image-20250117104812-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +1.7 KB
Content
image-20250117104827-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +74.6 KB
Content
image-20250117104837-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +38.7 KB
Content
image-20250117104847-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 KB
Content
image-20250401102131-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +64.7 KB
Content
image-20250401163530-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +44.9 KB
Content
image-20250401163539-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +31.1 KB
Content
image-20250401163826-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +18.9 KB
Content
image-20250401163906-4.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +181.6 KB
Content