Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/07/10 16:21
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 12 added, 0 removed)
- image-20241021093209-1.png
- image-20250116175954-1.png
- image-20250116180030-2.png
- image-20250117104812-1.png
- image-20250117104827-2.png
- image-20250117104837-3.png
- image-20250117104847-4.png
- image-20250401102131-1.png
- image-20250401163530-1.jpeg
- image-20250401163539-2.jpeg
- image-20250401163826-3.jpeg
- image-20250401163906-4.jpeg
Details
- Page properties
-
- Content
-
... ... @@ -136,26 +136,26 @@ 136 136 === 1.4.2 Immersion Type === 137 137 138 138 139 -[[image:image-20240109160445-5.png||height="2 84" width="214"]]139 +[[image:image-20240109160445-5.png||height="221" width="166"]] 140 140 141 141 * Immersion Type, Probe IP Level: IP68 142 142 * Measuring Range: Measure range can be customized, up to 100m. 143 143 * Accuracy: 0.2% F.S 144 144 * Long-Term Stability: ±0.2% F.S / Year 145 -* Storage temperature: -30 ℃~~80℃146 -* Operating temperature: 0 ℃~~50℃145 +* Storage temperature: -30°C~~80°C 146 +* Operating temperature: 0°C~~50°C 147 147 * Material: 316 stainless steels 148 148 149 149 === 1.4.3 Wireless Differential Air Pressure Sensor === 150 150 151 -[[image:image-20240511174954-1.png]] 151 +[[image:image-20240511174954-1.png||height="215" width="215"]] 152 152 153 153 * Measuring Range: -100KPa~~0~~100KPa(Optional measuring range). 154 154 * Accuracy: 0.5% F.S, resolution is 0.05%. 155 155 * Overload: 300% F.S 156 156 * Zero temperature drift: ±0.03%F.S/°C 157 -* Operating temperature: -20 ℃~~60℃158 -* Storage temperature: -20 ℃~~60℃157 +* Operating temperature: -20°C~~60°C 158 +* Storage temperature: -20°C~~60°C 159 159 * Compensation temperature: 0~~50°C 160 160 161 161 == 1.5 Application and Installation == ... ... @@ -163,7 +163,7 @@ 163 163 === 1.5.1 Thread Installation Type === 164 164 165 165 166 - (% style="color:blue" %)**Application:**166 +Application: 167 167 168 168 * Hydraulic Pressure 169 169 * Petrochemical Industry ... ... @@ -181,7 +181,7 @@ 181 181 === 1.5.2 Immersion Type === 182 182 183 183 184 - (% style="color:blue" %)**Application:**184 +Application: 185 185 186 186 Liquid & Water Pressure / Level detect. 187 187 ... ... @@ -200,12 +200,15 @@ 200 200 201 201 [[image:1675071776102-240.png]] 202 202 203 +Size of immersion type water depth sensor: 203 203 205 +[[image:image-20250401102131-1.png||height="268" width="707"]] 204 204 207 + 205 205 === 1.5.3 Wireless Differential Air Pressure Sensor === 206 206 207 207 208 - (% style="color:blue" %)**Application:**211 +Application: 209 209 210 210 Indoor Air Control & Filter clogging Detect. 211 211 ... ... @@ -229,28 +229,32 @@ 229 229 == 1.6 Sleep mode and working mode == 230 230 231 231 232 - (% style="color:blue" %)**Deep Sleep Mode:**(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.235 +Deep Sleep Mode: Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 233 233 234 - (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.237 +Working Mode: In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 235 235 236 236 237 237 == 1.7 Button & LEDs == 238 238 239 239 240 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]] (%style="display:none"%)243 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]] 241 241 242 242 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 243 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %) **Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**246 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action 244 244 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)((( 245 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 248 + 249 + 250 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once. 246 246 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 247 247 ))) 248 248 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)((( 249 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 250 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 254 + 255 + 256 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. 257 +Green led will solidly turn on for 5 seconds after joined in network. 251 251 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 252 252 ))) 253 -|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %) (% style="color:red" %)**Red led**(%%)will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.260 +|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 254 254 255 255 == 1.8 Pin Mapping == 256 256 ... ... @@ -275,16 +275,16 @@ 275 275 276 276 == 1.10 Mechanical == 277 277 278 -=== 1.10.1 for LB version (%style="display:none" %) (%%)===285 +=== 1.10.1 for LB version === 279 279 280 280 281 -[[image:image-202401 09160800-6.png]]288 +[[image:image-20250401163530-1.jpeg]] 282 282 283 283 284 284 === 1.10.2 for LS version === 285 285 286 286 287 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/WebHome/image-20231231203439-3.png?width=886&height=385&rev=1.1||alt="image-20231231203439-3.png"]]294 +[[image:image-20250401163539-2.jpeg]] 288 288 289 289 290 290 = 2. Configure PS-LB/LS to connect to LoRaWAN network = ... ... @@ -292,7 +292,7 @@ 292 292 == 2.1 How it works == 293 293 294 294 295 -The PS-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%)mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.302 +The PS-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 296 296 297 297 298 298 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -300,7 +300,6 @@ 300 300 301 301 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 302 302 303 - 304 304 [[image:1675144005218-297.png]] 305 305 306 306 ... ... @@ -307,7 +307,7 @@ 307 307 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 308 308 309 309 310 - (% style="color:blue" %)**Step 1:**(%%)Create a device in TTN with the OTAA keys from PS-LB/LS.316 +Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS. 311 311 312 312 Each PS-LB/LS is shipped with a sticker with the default device EUI as below: 313 313 ... ... @@ -317,32 +317,32 @@ 317 317 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 318 318 319 319 320 - (% style="color:blue" %)**Register the device**326 +Register the device 321 321 322 322 [[image:1675144099263-405.png]] 323 323 324 324 325 - (% style="color:blue" %)**Add APP EUI and DEV EUI**331 +Add APP EUI and DEV EUI 326 326 327 327 [[image:1675144117571-832.png]] 328 328 329 329 330 - (% style="color:blue" %)**Add APP EUI in the application**336 +Add APP EUI in the application 331 331 332 332 333 333 [[image:1675144143021-195.png]] 334 334 335 335 336 - (% style="color:blue" %)**Add APP KEY**342 +Add APP KEY 337 337 338 338 [[image:1675144157838-392.png]] 339 339 340 - (% style="color:blue" %)**Step 2:**(%%)Activate on PS-LB/LS346 +Step 2: Activate on PS-LB/LS 341 341 342 342 343 343 Press the button for 5 seconds to activate the PS-LB/LS. 344 344 345 - (% style="color:green" %)**Green led**(%%)will fast blink 5 times, device will enter(% style="color:blue" %)**OTA mode**(%%)for 3 seconds. And then start to JOIN LoRaWAN network.(% style="color:green" %)**Green led**(%%)will solidly turn on for 5 seconds after joined in network.351 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network. 346 346 347 347 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 348 348 ... ... @@ -356,11 +356,10 @@ 356 356 357 357 Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink. 358 358 359 - 360 360 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 361 -|(% colspan="6" style="background-color:#4f81bd; color:white" %) **Device Status (FPORT=5)**362 -|(% style="background-color:#f2f2f2; width:103px" %) **Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**363 -|(% style="background-color:#f2f2f2; width:103px" %) **Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT366 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)Device Status (FPORT=5) 367 +|(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2 368 +|(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT 364 364 365 365 Example parse in TTNv3 366 366 ... ... @@ -367,11 +367,11 @@ 367 367 [[image:1675144504430-490.png]] 368 368 369 369 370 - (% style="color:#037691" %)**Sensor Model**(%%): For PS-LB/LS, this value is 0x16375 +Sensor Model: For PS-LB/LS, this value is 0x16 371 371 372 - (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version377 +Firmware Version: 0x0100, Means: v1.0.0 version 373 373 374 - (% style="color:#037691" %)**Frequency Band**:379 +Frequency Band: 375 375 376 376 *0x01: EU868 377 377 ... ... @@ -402,7 +402,7 @@ 402 402 *0x0e: MA869 403 403 404 404 405 - (% style="color:#037691" %)**Sub-Band**:410 +Sub-Band: 406 406 407 407 AU915 and US915:value 0x00 ~~ 0x08 408 408 ... ... @@ -411,7 +411,7 @@ 411 411 Other Bands: Always 0x00 412 412 413 413 414 - (% style="color:#037691" %)**Battery Info**:419 +Battery Info: 415 415 416 416 Check the battery voltage. 417 417 ... ... @@ -426,10 +426,12 @@ 426 426 Uplink payload includes in total 9 bytes. 427 427 428 428 429 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:510px" %)434 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 430 430 |(% style="background-color:#4f81bd; color:white; width:97px" %)((( 431 -**Size(bytes)** 432 -)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1** 436 + 437 + 438 +Size(bytes) 439 +)))|(% style="background-color:#4f81bd; color:white; width:50px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1 433 433 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] 434 434 435 435 [[image:1675144608950-310.png]] ... ... @@ -451,10 +451,10 @@ 451 451 PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 452 452 453 453 454 - **For example.**461 +For example. 455 455 456 456 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 457 -|(% style="background-color:#4f81bd; color:white" %) **Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**464 +|(% style="background-color:#4f81bd; color:white" %)Part Number|(% style="background-color:#4f81bd; color:white" %)Probe Used|(% style="background-color:#4f81bd; color:white" %)4~~20mA scale|(% style="background-color:#4f81bd; color:white" %)Example: 12mA meaning 458 458 |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water 459 459 |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water 460 460 |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure ... ... @@ -465,9 +465,9 @@ 465 465 === 2.3.5 0~~20mA value (IDC_IN) === 466 466 467 467 468 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.475 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level. 469 469 470 - (% style="color:#037691" %)**Example**:477 +Example: 471 471 472 472 27AE(H) = 10158 (D)/1000 = 10.158mA. 473 473 ... ... @@ -477,12 +477,12 @@ 477 477 [[image:image-20230225154759-1.png||height="408" width="741"]] 478 478 479 479 480 -=== 2.3.6 0~~30V value ( 487 +=== 2.3.6 0~~30V value (pin VDC_IN) === 481 481 482 482 483 483 Measure the voltage value. The range is 0 to 30V. 484 484 485 - (% style="color:#037691" %)**Example**:492 +Example: 486 486 487 487 138E(H) = 5006(D)/1000= 5.006V 488 488 ... ... @@ -492,7 +492,7 @@ 492 492 493 493 IN1 and IN2 are used as digital input pins. 494 494 495 - (% style="color:#037691" %)**Example**:502 +Example: 496 496 497 497 09 (H): (0x09&0x08)>>3=1 IN1 pin is high level. 498 498 ... ... @@ -499,9 +499,9 @@ 499 499 09 (H): (0x09&0x04)>>2=0 IN2 pin is low level. 500 500 501 501 502 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.509 +This data field shows if this packet is generated by Interrupt Pin or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal. 503 503 504 - (% style="color:#037691" %)**Example:**511 +Example: 505 505 506 506 09 (H): (0x09&0x02)>>1=1 The level of the interrupt pin. 507 507 ... ... @@ -515,9 +515,13 @@ 515 515 516 516 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %) 517 517 |(% style="background-color:#4f81bd; color:white; width:65px" %)((( 518 -**Size(bytes)** 519 -)))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n** 525 + 526 + 527 +Size(bytes) 528 +)))|(% style="background-color:#4f81bd; color:white; width:35px" %)2|(% style="background-color:#4f81bd; color:white; width:400px" %)n 520 520 |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)((( 530 + 531 + 521 521 Voltage value, each 2 bytes is a set of voltage values. 522 522 ))) 523 523 ... ... @@ -533,7 +533,6 @@ 533 533 534 534 While using TTN network, you can add the payload format to decode the payload. 535 535 536 - 537 537 [[image:1675144839454-913.png]] 538 538 539 539 ... ... @@ -551,12 +551,10 @@ 551 551 552 552 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 553 553 564 +Step 1: Be sure that your device is programmed and properly connected to the network at this time. 554 554 555 - (% style="color:blue" %)**Step1:**(%%)Besure that your deviceisprogrammedandproperlyconnected to the networkatthistime.566 +Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 556 556 557 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 558 - 559 - 560 560 [[image:1675144951092-237.png]] 561 561 562 562 ... ... @@ -563,9 +563,9 @@ 563 563 [[image:1675144960452-126.png]] 564 564 565 565 566 - (% style="color:blue" %)**Step 3:**(%%)Create an account or log in Datacake.574 +Step 3: Create an account or log in Datacake. 567 567 568 - (% style="color:blue" %)**Step 4:** (%%)Create PS-LB/LS product.576 +Step 4: Create PS-LB/LS product. 569 569 570 570 [[image:1675145004465-869.png]] 571 571 ... ... @@ -573,11 +573,10 @@ 573 573 [[image:1675145018212-853.png]] 574 574 575 575 576 - 577 577 [[image:1675145029119-717.png]] 578 578 579 579 580 - (% style="color:blue" %)**Step 5:**(%%)add payload decode587 +Step 5: add payload decode 581 581 582 582 [[image:1675145051360-659.png]] 583 583 ... ... @@ -587,46 +587,46 @@ 587 587 588 588 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 589 589 590 - 591 591 [[image:1675145081239-376.png]] 592 592 593 593 594 594 == 2.6 Datalog Feature (Since V1.1) == 595 595 602 + 596 596 When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot. 597 597 598 598 599 - 600 600 === 2.6.1 Unix TimeStamp === 601 601 602 -CPL01 uses Unix TimeStamp format based on 603 603 604 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861618065-927.png?width=705&height=109&rev=1.1||alt="1652861618065-927.png"height="109"width="705"]]609 +PS-LB uses Unix TimeStamp format based on 605 605 611 +[[image:image-20250401163826-3.jpeg]] 612 + 606 606 Users can get this time from the link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] : 607 607 608 608 Below is the converter example: 609 609 610 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861637105-371.png?width=732&height=428&rev=1.1||alt="1652861637105-371.png"]]617 +[[image:image-20250401163906-4.jpeg]] 611 611 612 612 613 613 === 2.6.2 Set Device Time === 614 614 622 + 615 615 There are two ways to set the device's time: 616 616 617 617 618 - (% style="color:blue" %)**1. Through LoRaWAN MAC Command (Default settings)**626 +~1. Through LoRaWAN MAC Command (Default settings) 619 619 620 620 Users need to set SYNCMOD=1 to enable sync time via the MAC command. 621 621 622 622 Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]]. 623 623 632 +Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature. 624 624 625 -(% style="color:red" %)**Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.** 626 626 635 + 2. Manually Set Time 627 627 628 -(% style="color:blue" %)** 2. Manually Set Time** 629 - 630 630 Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server. 631 631 632 632 ... ... @@ -634,49 +634,403 @@ 634 634 635 635 Users can poll sensor values based on timestamps. Below is the downlink command. 636 636 637 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %) 638 -|=(% colspan="4" style="width: 154px;background-color:#4F81BD;color:white" %)**Downlink Command to poll Open/Close status (0x31)** 639 -|(% style="background-color:#f2f2f2; width:70px" %)**1byte**|(% style="background-color:#f2f2f2; width:140px" %)**4bytes**|(% style="background-color:#f2f2f2; width:140px" %)((( 640 -((( 641 -**4bytes** 642 -))) 643 - 644 -((( 644 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %) 645 +|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31) 646 +|(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte 647 +|(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)((( 645 645 646 -))) 647 -)))|(% style="background-color:#f2f2f2; width:150px" %)**1byte** 648 -|(% style="background-color:#f2f2f2; width:70px" %)31|(% style="background-color:#f2f2f2; width:140px" %)Timestamp start|(% style="background-color:#f2f2f2; width:140px" %)Timestamp end|(% style="background-color:#f2f2f2; width:150px" %)Uplink Interval 649 649 650 +Timestamp end 651 +)))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval 652 + 650 650 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval. 651 651 652 -For example, downlink command[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]655 +For example, downlink command[[image:image-20250117104812-1.png]] 653 653 654 -Is to check 202 1/11/1212:00:00to 2021/11/12 15:00:00's data657 +Is to check 2024/12/20 09:34:59 to 2024/12/20 14:34:59's data 655 655 656 -Uplink Internal =5s,means CPL01will send one packet every 5s. range 5~~255s.659 +Uplink Internal =5s,means PS-LB will send one packet every 5s. range 5~~255s. 657 657 658 658 659 -=== 2.6.4 D ecoderinTTNV3 ===662 +=== 2.6.4 Datalog Uplink payload (FPORT~=3) === 660 660 664 + 665 +The Datalog uplinks will use below payload format. 666 + 667 +Retrieval data payload: 668 + 669 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 670 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 671 +Size(bytes) 672 +)))|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)2|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)4 673 +|(% style="width:103px" %)Value|(% style="width:68px" %)((( 674 + 675 + 676 +Probe_mod 677 +)))|(% style="width:104px" %)((( 678 + 679 + 680 +VDC_intput_V 681 +)))|(% style="width:83px" %)((( 682 + 683 + 684 +IDC_intput_mA 685 +)))|(% style="width:201px" %)((( 686 + 687 + 688 +IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status 689 +)))|(% style="width:86px" %)Unix Time Stamp 690 + 691 +IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status: 692 + 693 +[[image:image-20250117104847-4.png]] 694 + 695 + 696 +No ACK Message: 1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature) 697 + 698 +Poll Message Flag: 1: This message is a poll message reply. 699 + 700 +* Poll Message Flag is set to 1. 701 + 702 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands. 703 + 704 +For example, in US915 band, the max payload for different DR is: 705 + 706 +a) DR0: max is 11 bytes so one entry of data 707 + 708 +b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 709 + 710 +c) DR2: total payload includes 11 entries of data 711 + 712 +d) DR3: total payload includes 22 entries of data. 713 + 714 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0 715 + 716 +Example: 717 + 718 +If PS-LB-NA has below data inside Flash: 719 + 720 +[[image:image-20250117104837-3.png]] 721 + 722 + 723 +If user sends below downlink command: 316788D9BF6788DB6305 724 + 725 +Where : Start time: 6788D9BF = time 25/1/16 10:04:47 726 + 727 + Stop time: 6788DB63 = time 25/1/16 10:11:47 728 + 729 + 730 +PA-LB-NA will uplink this payload. 731 + 732 +[[image:image-20250117104827-2.png]] 733 + 734 + 735 +00001B620000406788D9BF 00000D130000406788D9FB 00000D120000406788DA37 00000D110000406788DA73 00000D100000406788DAAF 00000D100000406788DAEB 00000D0F0000406788DB27 00000D100000406788DB63 736 + 737 + 738 +Where the first 11 bytes is for the first entry : 739 + 740 + 741 +0000 0D10 0000 40 6788DB63 742 + 743 + 744 +Probe_mod = 0x0000 = 0000 745 + 746 + 747 +VDC_intput_V = 0x0D10/1000=3.344V 748 + 749 +IDC_intput_mA = 0x0000/1000=0mA 750 + 751 + 752 +IN1_pin_level = (0x40& 0x08)? "High":"Low" = 0(Low) 753 + 754 +IN2_pin_level = (0x40& 0x04)? "High":"Low" = 0(Low) 755 + 756 +Exti_pin_level = (0x40& 0x02)? "High":"Low" = 0(Low) 757 + 758 +Exti_status = (0x40& 0x01)? "True":"False" = 0(False) 759 + 760 + 761 +Unix time is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47 762 + 763 +Its data format is: 764 + 765 +[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],... 766 + 767 +Note: water_deep in the data needs to be converted using decoding to get it. 768 + 769 + 770 +=== 2.6.5 Decoder in TTN V3 === 771 + 661 661 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]] 662 662 663 663 Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 664 664 665 665 666 - 667 667 == 2.7 Frequency Plans == 668 668 669 669 670 670 The PS-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country. 671 671 672 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 782 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/a>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 673 673 674 674 675 -== 2.8 Firmware ChangeLog==785 +== 2.8 Report on Change Feature (Since firmware V1.2) == 676 676 787 +=== 2.8.1 Uplink payload(Enable ROC) === 677 677 678 -**Firmware download link:** 679 679 790 +Used to Monitor the IDC and VDC increments, and send ROC uplink when the IDC or VDC changes exceed. 791 + 792 +With ROC enabled, the payload is as follows: 793 + 794 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 795 +|(% style="background-color:#4f81bd; color:white; width:97px" %)((( 796 + 797 + 798 +Size(bytes) 799 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1 800 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)((( 801 + 802 + 803 +[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag 804 +))) 805 + 806 +IN1 &IN2 , Interrupt flag , ROC_flag: 807 + 808 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %) 809 +|(% style="background-color:#4f81bd; color:white; width:50px" %)Size(bit)|(% style="background-color:#4f81bd; color:white; width:60px" %)bit7|(% style="background-color:#4f81bd; color:white; width:62px" %)bit6|(% style="background-color:#4f81bd; color:white; width:62px" %)bit5|(% style="background-color:#4f81bd; color:white; width:65px" %)bit4|(% style="background-color:#4f81bd; color:white; width:56px" %)bit3|(% style="background-color:#4f81bd; color:white; width:55px" %)bit2|(% style="background-color:#4f81bd; color:white; width:55px" %)bit1|(% style="background-color:#4f81bd; color:white; width:50px" %)bit0 810 +|(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status 811 + 812 +* IDC_Roc_flagL 813 + 814 +80 (H): (0x80&0x80)=80(H)=1000 0000(B) bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold. 815 + 816 +60 (H): (0x60&0x80)=0 bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold. 817 + 818 + 819 +* IDC_Roc_flagH 820 + 821 +60 (H): (0x60&0x40)=60(H)=01000 0000(B) bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold. 822 + 823 +80 (H): (0x80&0x40)=0 bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold. 824 + 825 + 826 +* VDC_Roc_flagL 827 + 828 +20 (H): (0x20&0x20)=20(H)=0010 0000(B) bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold. 829 + 830 +90 (H): (0x90&0x20)=0 bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold. 831 + 832 + 833 +* VDC_Roc_flagH 834 + 835 +90 (H): (0x90&0x10)=10(H)=0001 0000(B) bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold. 836 + 837 +20 (H): (0x20&0x10)=0 bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold. 838 + 839 + 840 +* IN1_pin_level & IN2_pin_level 841 + 842 +IN1 and IN2 are used as digital input pins. 843 + 844 +80 (H): (0x80&0x08)=0 IN1 pin is low level. 845 + 846 +80 (H): (0x09&0x04)=0 IN2 pin is low level. 847 + 848 + 849 +* Exti_pin_level &Exti_status 850 + 851 +This data field shows whether the packet is generated by an interrupt pin. 852 + 853 +Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the GPIO_EXTI pin. 854 + 855 +Exti_pin_level: 80 (H): (0x80&0x02)=0 "low", The level of the interrupt pin. 856 + 857 +Exti_status: 80 (H): (0x80&0x01)=0 "False", Normal uplink packet. 858 + 859 + 860 +=== 2.8.2 Set the Report on Change === 861 + 862 + 863 +Feature: Get or Set the Report on Change. 864 + 865 + 866 +==== 2.8.2.1 Wave alarm mode ==== 867 + 868 +Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed. 869 + 870 +* Change value: The amount by which the next detection value increases/decreases relative to the previous detection value. 871 +* Comparison value: A parameter to compare with the latest ROC test. 872 + 873 +AT Command: AT+ROC 874 + 875 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 876 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation 877 +|(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)((( 878 + 879 + 880 +0,0,0,0(default) 881 +OK 882 +))) 883 +|(% colspan="1" rowspan="4" style="width:143px" %)((( 884 + 885 + 886 + 887 + 888 + 889 +AT+ROC=a,b,c,d 890 +)))|(% style="width:154px" %)((( 891 + 892 + 893 + 894 + 895 + 896 + 897 + 898 +a: Enable or disable the ROC 899 +)))|(% style="width:197px" %)((( 900 + 901 + 902 +0: off 903 +1: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. 904 + 905 +2: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]). 906 +))) 907 +|(% style="width:154px" %)b: Set the detection interval|(% style="width:197px" %)((( 908 + 909 + 910 +Range: 0~~65535s 911 +))) 912 +|(% style="width:154px" %)c: Setting the IDC change value|(% style="width:197px" %)Unit: uA 913 +|(% style="width:154px" %)d: Setting the VDC change value|(% style="width:197px" %)Unit: mV 914 + 915 +Example: 916 + 917 +* AT+ROC=0,0,0,0 ~/~/The ROC function is not used. 918 +* AT+ROC=1,60,3000, 500 ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed. 919 +* AT+ROC=1,60,3000,0 ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. 920 +* AT+ROC=2,60,3000,0 ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed. 921 + 922 +Downlink Command: 0x09 aa bb cc dd 923 + 924 +Format: Function code (0x09) followed by 4 bytes. 925 + 926 +aa: 1 byte; Set the wave alarm mode. 927 + 928 +bb: 2 bytes; Set the detection interval. (second) 929 + 930 +cc: 2 bytes; Setting the IDC change threshold. (uA) 931 + 932 +dd: 2 bytes; Setting the VDC change threshold. (mV) 933 + 934 +Example: 935 + 936 +* Downlink Payload: 09 01 00 3C 0B B8 01 F4 ~/~/Equal to AT+ROC=1,60,3000, 500 937 +* Downlink Payload: 09 01 00 3C 0B B8 00 00 ~/~/Equal to AT+ROC=1,60,3000,0 938 +* Downlink Payload: 09 02 00 3C 0B B8 00 00 ~/~/Equal to AT+ROC=2,60,3000,0 939 + 940 +Screenshot of parsing example in TTN: 941 + 942 +* AT+ROC=1,60,3000, 500. 943 + 944 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB-NA--LoRaWAN_Analog_Sensor_User_Manual/WebHome/image-20241019170902-1.png?width=1454&height=450&rev=1.1||alt="image-20241019170902-1.png"]] 945 + 946 + 947 +==== 2.8.2.2 Over-threshold alarm mode ==== 948 + 949 +Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded. 950 + 951 +AT Command: AT+ROC=3,a,b,c,d,e 952 + 953 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 954 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation 955 +|(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)((( 956 + 957 + 958 +0,0,0,0(default) 959 +OK 960 +))) 961 +|(% colspan="1" rowspan="5" style="width:143px" %)((( 962 + 963 + 964 + 965 + 966 + 967 +AT+ROC=3,a,b,c,d,e 968 +)))|(% style="width:160px" %)((( 969 + 970 + 971 +a: Set the detection interval 972 +)))|(% style="width:185px" %)((( 973 + 974 + 975 +Range: 0~~65535s 976 +))) 977 +|(% style="width:160px" %)b: Set the IDC alarm trigger condition|(% style="width:185px" %)((( 978 + 979 + 980 +0: Less than the set IDC threshold, Alarm 981 + 982 +1: Greater than the set IDC threshold, Alarm 983 +))) 984 +|(% style="width:160px" %)((( 985 + 986 + 987 +c: IDC alarm threshold 988 +)))|(% style="width:185px" %)((( 989 + 990 + 991 +Unit: uA 992 +))) 993 +|(% style="width:160px" %)d: Set the VDC alarm trigger condition|(% style="width:185px" %)((( 994 + 995 + 996 +0: Less than the set VDC threshold, Alarm 997 + 998 +1: Greater than the set VDC threshold, Alarm 999 +))) 1000 +|(% style="width:160px" %)e: VDC alarm threshold|(% style="width:185px" %)Unit: mV 1001 + 1002 +Example: 1003 + 1004 +* AT+ROC=3,60,0,3000,0,5000 ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated. 1005 +* AT+ROC=3,180,1,3000,1,5000 ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated. 1006 +* AT+ROC=3,300,0,3000,1,5000 ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated. 1007 + 1008 +Downlink Command: 0x09 03 aa bb cc dd ee 1009 + 1010 +Format: Function code (0x09) followed by 03 and the remaining 5 bytes. 1011 + 1012 +aa: 2 bytes; Set the detection interval.(second) 1013 + 1014 +bb: 1 byte; Set the IDC alarm trigger condition. 1015 + 1016 +cc: 2 bytes; IDC alarm threshold.(uA) 1017 + 1018 + 1019 +dd: 1 byte; Set the VDC alarm trigger condition. 1020 + 1021 +ee: 2 bytes; VDC alarm threshold.(mV) 1022 + 1023 +Example: 1024 + 1025 +* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,0,5000 1026 +* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38 ~/~/Equal to AT+ROC=3,60,1,3000,1,5000 1027 +* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,1,5000 1028 + 1029 +Screenshot of parsing example in TTN: 1030 + 1031 +* AT+ROC=3,60,0,3000,0,5000 1032 + 1033 +[[image:image-20250116180030-2.png]] 1034 + 1035 + 1036 +== 2.9 Firmware Change Log == 1037 + 1038 + 1039 +Firmware download link: 1040 + 680 680 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]] 681 681 682 682 ... ... @@ -687,7 +687,7 @@ 687 687 688 688 PS-LB/LS supports below configure method: 689 689 690 -* AT Command via Bluetooth Connection ( **Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].1051 +* AT Command via Bluetooth Connection (Recommand Way): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 691 691 * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]]. 692 692 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 693 693 ... ... @@ -715,21 +715,25 @@ 715 715 716 716 Feature: Change LoRaWAN End Node Transmit Interval. 717 717 718 - (% style="color:blue" %)**AT Command: AT+TDC**1079 +AT Command: AT+TDC 719 719 720 720 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 721 -|=(% style="width: 160px; background-color:#4F81BD;color:white" %) **Command Example**|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Response**1082 +|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response 722 722 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)((( 1084 + 1085 + 723 723 30000 724 724 OK 725 725 the interval is 30000ms = 30s 726 726 ))) 727 727 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)((( 1091 + 1092 + 728 728 OK 729 729 Set transmit interval to 60000ms = 60 seconds 730 730 ))) 731 731 732 - (% style="color:blue" %)**Downlink Command: 0x01**1097 +Downlink Command: 0x01 733 733 734 734 Format: Command Code (0x01) followed by 3 bytes time value. 735 735 ... ... @@ -743,16 +743,20 @@ 743 743 744 744 Feature, Set Interrupt mode for GPIO_EXIT. 745 745 746 - (% style="color:blue" %)**AT Command: AT+INTMOD**1111 +AT Command: AT+INTMOD 747 747 748 748 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 749 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %) **Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Response**1114 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response 750 750 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)((( 1116 + 1117 + 751 751 0 752 752 OK 753 753 the mode is 0 =Disable Interrupt 754 754 ))) 755 755 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)((( 1123 + 1124 + 756 756 Set Transmit Interval 757 757 0. (Disable Interrupt), 758 758 ~1. (Trigger by rising and falling edge) ... ... @@ -760,7 +760,7 @@ 760 760 3. (Trigger by rising edge) 761 761 )))|(% style="background-color:#f2f2f2; width:157px" %)OK 762 762 763 - (% style="color:blue" %)**Downlink Command: 0x06**1132 +Downlink Command: 0x06 764 764 765 765 Format: Command Code (0x06) followed by 3 bytes. 766 766 ... ... @@ -774,76 +774,106 @@ 774 774 775 775 Feature, Control the output 3V3 , 5V or 12V. 776 776 777 - (% style="color:blue" %)**AT Command: AT+3V3T**1146 +AT Command: AT+3V3T 778 778 779 779 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %) 780 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %) **Command Example**|=(% style="width: 201px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**1149 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response 781 781 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)((( 1151 + 1152 + 782 782 0 783 783 OK 784 784 ))) 785 785 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)((( 1157 + 1158 + 786 786 OK 787 787 default setting 788 788 ))) 789 789 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)((( 1163 + 1164 + 790 790 OK 791 791 ))) 792 792 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)((( 1168 + 1169 + 793 793 OK 794 794 ))) 795 795 796 - (% style="color:blue" %)**AT Command: AT+5VT**1173 +AT Command: AT+5VT 797 797 798 798 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %) 799 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %) **Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**1176 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response 800 800 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)((( 1178 + 1179 + 801 801 0 802 802 OK 803 803 ))) 804 804 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)((( 1184 + 1185 + 805 805 OK 806 806 default setting 807 807 ))) 808 808 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)((( 1190 + 1191 + 809 809 OK 810 810 ))) 811 811 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)((( 1195 + 1196 + 812 812 OK 813 813 ))) 814 814 815 - (% style="color:blue" %)**AT Command: AT+12VT**1200 +AT Command: AT+12VT 816 816 817 817 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %) 818 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %) **Command Example**|=(% style="width: 199px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**1203 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response 819 819 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)((( 1205 + 1206 + 820 820 0 821 821 OK 822 822 ))) 823 823 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK 824 824 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)((( 1212 + 1213 + 825 825 OK 826 826 ))) 827 827 828 - (% style="color:blue" %)**Downlink Command: 0x07**1217 +Downlink Command: 0x07 829 829 830 830 Format: Command Code (0x07) followed by 3 bytes. 831 831 832 832 The first byte is which power, the second and third bytes are the time to turn on. 833 833 834 -* Example 1: Downlink Payload: 070101F4 **~-~-->**AT+3V3T=500835 -* Example 2: Downlink Payload: 0701FFFF **~-~-->**AT+3V3T=65535836 -* Example 3: Downlink Payload: 070203E8 **~-~-->**AT+5VT=1000837 -* Example 4: Downlink Payload: 07020000 **~-~-->**AT+5VT=0838 -* Example 5: Downlink Payload: 070301F4 **~-~-->**AT+12VT=500839 -* Example 6: Downlink Payload: 07030000 **~-~-->**AT+12VT=01223 +* Example 1: Downlink Payload: 070101F4 ~-~--> AT+3V3T=500 1224 +* Example 2: Downlink Payload: 0701FFFF ~-~--> AT+3V3T=65535 1225 +* Example 3: Downlink Payload: 070203E8 ~-~--> AT+5VT=1000 1226 +* Example 4: Downlink Payload: 07020000 ~-~--> AT+5VT=0 1227 +* Example 5: Downlink Payload: 070301F4 ~-~--> AT+12VT=500 1228 +* Example 6: Downlink Payload: 07030000 ~-~--> AT+12VT=0 840 840 1230 +Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds. 1231 + 1232 +Therefore, the corresponding downlink command is increased by one byte to five bytes. 1233 + 1234 +Example: 1235 + 1236 +* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 01 01 D4 C0 ~-~--> AT+3V3T=120000 1237 +* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 02 01 86 A0 ~-~--> AT+5VT=100000 1238 +* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 03 01 38 80 ~-~--> AT+12VT=80000 1239 + 841 841 === 3.3.4 Set the Probe Model === 842 842 843 843 844 844 Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value. 845 845 846 - (% style="color:blue" %)**AT Command: AT****+PROBE**1245 +AT Command: AT +PROBE 847 847 848 848 AT+PROBE=aabb 849 849 ... ... @@ -862,11 +862,13 @@ 862 862 (0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C) 863 863 864 864 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 865 -|(% style="background-color:#4f81bd; color:white; width:154px" %) **Command Example**|(% style="background-color:#4f81bd; color:white; width:269px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**1264 +|(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response 866 866 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0 867 867 OK 868 868 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK 869 869 |(% style="background-color:#f2f2f2; width:154px" %)((( 1269 + 1270 + 870 870 AT+PROBE=000A 871 871 )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK 872 872 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK ... ... @@ -873,12 +873,12 @@ 873 873 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK 874 874 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK 875 875 876 - (% style="color:blue" %)**Downlink Command: 0x08**1277 +Downlink Command: 0x08 877 877 878 878 Format: Command Code (0x08) followed by 2 bytes. 879 879 880 -* Example 1: Downlink Payload: 080003 **~-~-->**AT+PROBE=0003881 -* Example 2: Downlink Payload: 080101 **~-~-->**AT+PROBE=01011281 +* Example 1: Downlink Payload: 080003 ~-~--> AT+PROBE=0003 1282 +* Example 2: Downlink Payload: 080101 ~-~--> AT+PROBE=0101 882 882 883 883 === 3.3.5 Multiple collections are one uplink (Since firmware V1.1) === 884 884 ... ... @@ -885,41 +885,47 @@ 885 885 886 886 Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time. 887 887 888 - (% style="color:blue" %)**AT Command: AT****+STDC**1289 +AT Command: AT +STDC 889 889 890 890 AT+STDC=aa,bb,bb 891 891 892 - (% style="color:#037691" %)**aa:**(%%)893 - **0:**means disable this function and use TDC to send packets.894 - **1:**means that the function is enabled to send packets by collecting VDC data for multiple times.895 - **2:**means that the function is enabled to send packets by collecting IDC data for multiple times.896 - (% style="color:#037691" %)**bb:**(%%)Each collection interval (s), the value is 1~~65535897 - (% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~1201293 +aa: 1294 +0: means disable this function and use TDC to send packets. 1295 +1: means that the function is enabled to send packets by collecting VDC data for multiple times. 1296 +2: means that the function is enabled to send packets by collecting IDC data for multiple times. 1297 +bb: Each collection interval (s), the value is 1~~65535 1298 +cc: the number of collection times, the value is 1~~120 898 898 899 899 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 900 -|(% style="background-color:#4f81bd; color:white; width:160px" %) **Command Example**|(% style="background-color:#4f81bd; color:white; width:215px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**1301 +|(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response 901 901 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18 902 902 OK 903 903 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)((( 1305 + 1306 + 904 904 Attention:Take effect after ATZ 905 905 906 906 OK 907 907 ))) 908 908 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)((( 1312 + 1313 + 909 909 Use the TDC interval to send packets.(default) 910 910 911 911 912 912 )))|(% style="background-color:#f2f2f2" %)((( 1318 + 1319 + 913 913 Attention:Take effect after ATZ 914 914 915 915 OK 916 916 ))) 917 917 918 - (% style="color:blue" %)**Downlink Command: 0xAE**1325 +Downlink Command: 0xAE 919 919 920 920 Format: Command Code (0xAE) followed by 4 bytes. 921 921 922 -* Example 1: Downlink Payload: AE 01 02 58 12 **~-~-->**AT+STDC=1,600,181329 +* Example 1: Downlink Payload: AE 01 02 58 12 ~-~--> AT+STDC=1,600,18 923 923 924 924 = 4. Battery & Power Consumption = 925 925 ... ... @@ -926,7 +926,7 @@ 926 926 927 927 PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace. 928 928 929 -[[ **Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .1336 +[[Battery Info & Power Consumption Analyze>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 930 930 931 931 932 932 = 5. OTA firmware update = ... ... @@ -962,22 +962,22 @@ 962 962 Test the current values at the depth of different liquids and convert them to a linear scale. 963 963 Replace its ratio with the ratio of water to current in the decoder. 964 964 965 - **Example:**1372 +Example: 966 966 967 967 Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m. 968 968 969 - **Calculate scale factor:**1376 +Calculate scale factor: 970 970 Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294 971 971 972 - **Calculation formula:**1379 +Calculation formula: 973 973 974 974 Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height 975 975 976 - **Actual calculations:**1383 +Actual calculations: 977 977 978 978 Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726 979 979 980 - **Error:**1387 +Error: 981 981 982 982 0.009810726 983 983 ... ... @@ -1001,18 +1001,17 @@ 1001 1001 = 8. Order Info = 1002 1002 1003 1003 1004 -[[image:image-20240109172423-7.png]](% style="display:none" %) 1005 1005 1006 -[[image:image-20240 817150702-1.png]]1412 +[[image:image-20241021093209-1.png]] 1007 1007 1008 1008 = 9. Packing Info = 1009 1009 1010 1010 1011 - (% style="color:#037691" %)**Package Includes**:1417 +Package Includes: 1012 1012 1013 1013 * PS-LB or PS-LS LoRaWAN Pressure Sensor 1014 1014 1015 - (% style="color:#037691" %)**Dimension and weight**:1421 +Dimension and weight: 1016 1016 1017 1017 * Device Size: cm 1018 1018 * Device Weight: g ... ... @@ -1025,5 +1025,3 @@ 1025 1025 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1026 1026 1027 1027 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]. 1028 - 1029 -
- image-20241021093209-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +52.1 KB - Content
- image-20250116175954-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +68.6 KB - Content
- image-20250116180030-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.2 KB - Content
- image-20250117104812-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.7 KB - Content
- image-20250117104827-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +74.6 KB - Content
- image-20250117104837-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.7 KB - Content
- image-20250117104847-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.2 KB - Content
- image-20250401102131-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +64.7 KB - Content
- image-20250401163530-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +44.9 KB - Content
- image-20250401163539-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +31.1 KB - Content
- image-20250401163826-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +18.9 KB - Content
- image-20250401163906-4.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +181.6 KB - Content