Last modified by Xiaoling on 2025/07/10 16:21

From version 88.1
edited by Mengting Qiu
on 2024/05/13 10:29
Change comment: There is no comment for this version
To version 123.3
edited by Xiaoling
on 2025/04/01 16:46
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Xiaoling
Content
... ... @@ -41,7 +41,7 @@
41 41  )))
42 42  
43 43  (((
44 -PS-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + li-on battery **(%%), it is designed for long term use up to 5 years.
44 +PS-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + Li-ion battery **(%%), it is designed for long term use up to 5 years.
45 45  )))
46 46  
47 47  (((
... ... @@ -67,7 +67,7 @@
67 67  * Downlink to change configure
68 68  * Controllable 3.3v,5v and 12v output to power external sensor
69 69  * 8500mAh Li/SOCl2 Battery (PS-LB)
70 -* Solar panel + 3000mAh Li-on battery (PS-LS)
70 +* Solar panel + 3000mAh Li-ion battery (PS-LS)
71 71  
72 72  == 1.3 Specification ==
73 73  
... ... @@ -136,34 +136,34 @@
136 136  === 1.4.2 Immersion Type ===
137 137  
138 138  
139 -[[image:image-20240109160445-5.png||height="284" width="214"]]
139 +[[image:image-20240109160445-5.png||height="221" width="166"]]
140 140  
141 141  * Immersion Type, Probe IP Level: IP68
142 142  * Measuring Range: Measure range can be customized, up to 100m.
143 143  * Accuracy: 0.2% F.S
144 144  * Long-Term Stability: ±0.2% F.S / Year
145 -* Storage temperature: -30~~80
146 -* Operating temperature: 0~~50
145 +* Storage temperature: -30°C~~80°C
146 +* Operating temperature: 0°C~~50°C
147 147  * Material: 316 stainless steels
148 148  
149 149  === 1.4.3 Wireless Differential Air Pressure Sensor ===
150 150  
151 -[[image:image-20240511174954-1.png]]
151 +[[image:image-20240511174954-1.png||height="215" width="215"]]
152 152  
153 -* Measuring Range: -100KPa~~0~~100KPa,Intermediate range is optional.
153 +* Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
154 154  * Accuracy: 0.5% F.S, resolution is 0.05%.
155 155  * Overload: 300% F.S
156 156  * Zero temperature drift: ±0.03%F.S/°C
157 -* Operating temperature: -40℃~~85℃
157 +* Operating temperature: -20°C~~60°C
158 +* Storage temperature:  -20°C~~60°C
158 158  * Compensation temperature: 0~~50°C
159 159  
160 -
161 161  == 1.5 Application and Installation ==
162 162  
163 163  === 1.5.1 Thread Installation Type ===
164 164  
165 165  
166 -(% style="color:blue" %)**Application:**
166 +Application:
167 167  
168 168  * Hydraulic Pressure
169 169  * Petrochemical Industry
... ... @@ -181,7 +181,7 @@
181 181  === 1.5.2 Immersion Type ===
182 182  
183 183  
184 -(% style="color:blue" %)**Application:**
184 +Application:
185 185  
186 186  Liquid & Water Pressure / Level detect.
187 187  
... ... @@ -188,7 +188,7 @@
188 188  [[image:1675071725288-579.png]]
189 189  
190 190  
191 -The Immersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.
191 +Below is the wiring to for connect the probe to the device.
192 192  
193 193  The Immersion Type Sensor has different variant which defined by Ixx. For example, this means two points:
194 194  
... ... @@ -200,12 +200,15 @@
200 200  
201 201  [[image:1675071776102-240.png]]
202 202  
203 +Size of immersion type water depth sensor:
203 203  
205 +[[image:image-20250401102131-1.png||height="268" width="707"]]
204 204  
207 +
205 205  === 1.5.3 Wireless Differential Air Pressure Sensor ===
206 206  
207 207  
208 -(% style="color:blue" %)**Application:**
211 +Application:
209 209  
210 210  Indoor Air Control & Filter clogging Detect.
211 211  
... ... @@ -214,7 +214,7 @@
214 214  [[image:image-20240513100135-7.png]]
215 215  
216 216  
217 -The Wireless Differential Air Pressure Sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.
220 +Below is the wiring to for connect the probe to the device.
218 218  
219 219  [[image:image-20240513093957-1.png]]
220 220  
... ... @@ -226,34 +226,35 @@
226 226  Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.
227 227  
228 228  
229 -
230 -
231 -
232 232  == 1.6 Sleep mode and working mode ==
233 233  
234 234  
235 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
235 +Deep Sleep Mode: Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
236 236  
237 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
237 +Working Mode: In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
238 238  
239 239  
240 240  == 1.7 Button & LEDs ==
241 241  
242 242  
243 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]](% style="display:none" %)
243 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
244 244  
245 245  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
246 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
246 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action
247 247  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
248 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
248 +
249 +
250 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once.
249 249  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
250 250  )))
251 251  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
252 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
253 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
254 +
255 +
256 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network.
257 +Green led will solidly turn on for 5 seconds after joined in network.
254 254  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
255 255  )))
256 -|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
260 +|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
257 257  
258 258  == 1.8 Pin Mapping ==
259 259  
... ... @@ -278,16 +278,16 @@
278 278  
279 279  == 1.10 Mechanical ==
280 280  
281 -=== 1.10.1 for LB version(% style="display:none" %) (%%) ===
285 +=== 1.10.1 for LB version ===
282 282  
283 283  
284 -[[image:image-20240109160800-6.png]]
288 +[[image:image-20250401163530-1.jpeg]]
285 285  
286 286  
287 287  === 1.10.2 for LS version ===
288 288  
289 289  
290 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/WebHome/image-20231231203439-3.png?width=886&height=385&rev=1.1||alt="image-20231231203439-3.png"]]
294 +[[image:image-20250401163539-2.jpeg]]
291 291  
292 292  
293 293  = 2. Configure PS-LB/LS to connect to LoRaWAN network =
... ... @@ -295,7 +295,7 @@
295 295  == 2.1 How it works ==
296 296  
297 297  
298 -The PS-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
302 +The PS-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
299 299  
300 300  
301 301  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -303,7 +303,6 @@
303 303  
304 304  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
305 305  
306 -
307 307  [[image:1675144005218-297.png]]
308 308  
309 309  
... ... @@ -310,7 +310,7 @@
310 310  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
311 311  
312 312  
313 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB/LS.
316 +Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.
314 314  
315 315  Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
316 316  
... ... @@ -320,32 +320,32 @@
320 320  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
321 321  
322 322  
323 -(% style="color:blue" %)**Register the device**
326 +Register the device
324 324  
325 325  [[image:1675144099263-405.png]]
326 326  
327 327  
328 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
331 +Add APP EUI and DEV EUI
329 329  
330 330  [[image:1675144117571-832.png]]
331 331  
332 332  
333 -(% style="color:blue" %)**Add APP EUI in the application**
336 +Add APP EUI in the application
334 334  
335 335  
336 336  [[image:1675144143021-195.png]]
337 337  
338 338  
339 -(% style="color:blue" %)**Add APP KEY**
342 +Add APP KEY
340 340  
341 341  [[image:1675144157838-392.png]]
342 342  
343 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB/LS
346 +Step 2: Activate on PS-LB/LS
344 344  
345 345  
346 346  Press the button for 5 seconds to activate the PS-LB/LS.
347 347  
348 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
351 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network.
349 349  
350 350  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
351 351  
... ... @@ -359,11 +359,10 @@
359 359  
360 360  Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
361 361  
362 -
363 363  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
364 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
365 -|(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
366 -|(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
366 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)Device Status (FPORT=5)
367 +|(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2
368 +|(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
367 367  
368 368  Example parse in TTNv3
369 369  
... ... @@ -370,11 +370,11 @@
370 370  [[image:1675144504430-490.png]]
371 371  
372 372  
373 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB/LS, this value is 0x16
375 +Sensor Model: For PS-LB/LS, this value is 0x16
374 374  
375 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
377 +Firmware Version: 0x0100, Means: v1.0.0 version
376 376  
377 -(% style="color:#037691" %)**Frequency Band**:
379 +Frequency Band:
378 378  
379 379  *0x01: EU868
380 380  
... ... @@ -405,7 +405,7 @@
405 405  *0x0e: MA869
406 406  
407 407  
408 -(% style="color:#037691" %)**Sub-Band**:
410 +Sub-Band:
409 409  
410 410  AU915 and US915:value 0x00 ~~ 0x08
411 411  
... ... @@ -414,7 +414,7 @@
414 414  Other Bands: Always 0x00
415 415  
416 416  
417 -(% style="color:#037691" %)**Battery Info**:
419 +Battery Info:
418 418  
419 419  Check the battery voltage.
420 420  
... ... @@ -429,10 +429,12 @@
429 429  Uplink payload includes in total 9 bytes.
430 430  
431 431  
432 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
434 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
433 433  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
434 -**Size(bytes)**
435 -)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
436 +
437 +
438 +Size(bytes)
439 +)))|(% style="background-color:#4f81bd; color:white; width:50px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
436 436  |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
437 437  
438 438  [[image:1675144608950-310.png]]
... ... @@ -454,10 +454,10 @@
454 454  PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
455 455  
456 456  
457 -**For example.**
461 +For example.
458 458  
459 459  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
460 -|(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
464 +|(% style="background-color:#4f81bd; color:white" %)Part Number|(% style="background-color:#4f81bd; color:white" %)Probe Used|(% style="background-color:#4f81bd; color:white" %)4~~20mA scale|(% style="background-color:#4f81bd; color:white" %)Example: 12mA meaning
461 461  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
462 462  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
463 463  |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
... ... @@ -468,9 +468,9 @@
468 468  === 2.3.5 0~~20mA value (IDC_IN) ===
469 469  
470 470  
471 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
475 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
472 472  
473 -(% style="color:#037691" %)**Example**:
477 +Example:
474 474  
475 475  27AE(H) = 10158 (D)/1000 = 10.158mA.
476 476  
... ... @@ -480,12 +480,12 @@
480 480  [[image:image-20230225154759-1.png||height="408" width="741"]]
481 481  
482 482  
483 -=== 2.3.6 0~~30V value ( pin VDC_IN) ===
487 +=== 2.3.6 0~~30V value (pin VDC_IN) ===
484 484  
485 485  
486 486  Measure the voltage value. The range is 0 to 30V.
487 487  
488 -(% style="color:#037691" %)**Example**:
492 +Example:
489 489  
490 490  138E(H) = 5006(D)/1000= 5.006V
491 491  
... ... @@ -495,7 +495,7 @@
495 495  
496 496  IN1 and IN2 are used as digital input pins.
497 497  
498 -(% style="color:#037691" %)**Example**:
502 +Example:
499 499  
500 500  09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
501 501  
... ... @@ -502,9 +502,9 @@
502 502  09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
503 503  
504 504  
505 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
509 +This data field shows if this packet is generated by Interrupt Pin or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
506 506  
507 -(% style="color:#037691" %)**Example:**
511 +Example:
508 508  
509 509  09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
510 510  
... ... @@ -518,9 +518,13 @@
518 518  
519 519  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
520 520  |(% style="background-color:#4f81bd; color:white; width:65px" %)(((
521 -**Size(bytes)**
522 -)))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
525 +
526 +
527 +Size(bytes)
528 +)))|(% style="background-color:#4f81bd; color:white; width:35px" %)2|(% style="background-color:#4f81bd; color:white; width:400px" %)n
523 523  |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
530 +
531 +
524 524  Voltage value, each 2 bytes is a set of voltage values.
525 525  )))
526 526  
... ... @@ -536,7 +536,6 @@
536 536  
537 537  While using TTN network, you can add the payload format to decode the payload.
538 538  
539 -
540 540  [[image:1675144839454-913.png]]
541 541  
542 542  
... ... @@ -554,12 +554,10 @@
554 554  
555 555  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
556 556  
564 +Step 1: Be sure that your device is programmed and properly connected to the network at this time.
557 557  
558 -(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
566 +Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
559 559  
560 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
561 -
562 -
563 563  [[image:1675144951092-237.png]]
564 564  
565 565  
... ... @@ -566,9 +566,9 @@
566 566  [[image:1675144960452-126.png]]
567 567  
568 568  
569 -(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
574 +Step 3: Create an account or log in Datacake.
570 570  
571 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB/LS product.
576 +Step 4: Create PS-LB/LS product.
572 572  
573 573  [[image:1675145004465-869.png]]
574 574  
... ... @@ -576,11 +576,10 @@
576 576  [[image:1675145018212-853.png]]
577 577  
578 578  
579 -
580 580  [[image:1675145029119-717.png]]
581 581  
582 582  
583 -(% style="color:blue" %)**Step 5: **(%%)add payload decode
587 +Step 5: add payload decode
584 584  
585 585  [[image:1675145051360-659.png]]
586 586  
... ... @@ -590,23 +590,441 @@
590 590  
591 591  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
592 592  
593 -
594 594  [[image:1675145081239-376.png]]
595 595  
596 596  
597 -== 2.6 Frequency Plans ==
600 +== 2.6 Datalog Feature (Since V1.1) ==
598 598  
599 599  
603 +When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot.
604 +
605 +
606 +=== 2.6.1 Unix TimeStamp ===
607 +
608 +
609 +PS-LB uses Unix TimeStamp format based on
610 +
611 +[[image:image-20250401163826-3.jpeg]]
612 +
613 +Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
614 +
615 +Below is the converter example:
616 +
617 +[[image:image-20250401163906-4.jpeg]]
618 +
619 +
620 +=== 2.6.2 Set Device Time ===
621 +
622 +
623 +There are two ways to set the device's time:
624 +
625 +
626 +~1. Through LoRaWAN MAC Command (Default settings)
627 +
628 +Users need to set SYNCMOD=1 to enable sync time via the MAC command.
629 +
630 +Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
631 +
632 +Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.
633 +
634 +
635 + 2. Manually Set Time
636 +
637 +Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
638 +
639 +
640 +=== 2.6.3 Poll sensor value ===
641 +
642 +Users can poll sensor values based on timestamps. Below is the downlink command.
643 +
644 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
645 +|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31)
646 +|(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte
647 +|(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)(((
648 +
649 +
650 +Timestamp end
651 +)))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval
652 +
653 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
654 +
655 +For example, downlink command[[image:image-20250117104812-1.png]]
656 +
657 +Is to check 2024/12/20 09:34:59 to 2024/12/20 14:34:59's data
658 +
659 +Uplink Internal =5s,means PS-LB will send one packet every 5s. range 5~~255s.
660 +
661 +
662 +=== 2.6.4 Datalog Uplink payload (FPORT~=3) ===
663 +
664 +
665 +The Datalog uplinks will use below payload format.
666 +
667 +Retrieval data payload:
668 +
669 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
670 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
671 +Size(bytes)
672 +)))|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)2|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)4
673 +|(% style="width:103px" %)Value|(% style="width:68px" %)(((
674 +Probe_mod
675 +)))|(% style="width:104px" %)(((
676 +VDC_intput_V
677 +)))|(% style="width:83px" %)(((
678 +IDC_intput_mA
679 +)))|(% style="width:201px" %)(((
680 +IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status
681 +)))|(% style="width:86px" %)Unix Time Stamp
682 +IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:
683 +
684 +[[image:image-20250117104847-4.png]]
685 +
686 +
687 +No ACK Message:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
688 +
689 +Poll Message Flag: 1: This message is a poll message reply.
690 +
691 +* Poll Message Flag is set to 1.
692 +
693 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
694 +
695 +For example, in US915 band, the max payload for different DR is:
696 +
697 +a) DR0: max is 11 bytes so one entry of data
698 +
699 +b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
700 +
701 +c) DR2: total payload includes 11 entries of data
702 +
703 +d) DR3: total payload includes 22 entries of data.
704 +
705 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
706 +
707 +Example:
708 +
709 +If PS-LB-NA has below data inside Flash:
710 +
711 +[[image:image-20250117104837-3.png]]
712 +
713 +
714 +If user sends below downlink command: 316788D9BF6788DB6305
715 +
716 +Where : Start time: 6788D9BF = time 25/1/16 10:04:47
717 +
718 + Stop time: 6788DB63 = time 25/1/16 10:11:47
719 +
720 +
721 +PA-LB-NA will uplink this payload.
722 +
723 +[[image:image-20250117104827-2.png]]
724 +
725 +
726 +00001B620000406788D9BF  00000D130000406788D9FB  00000D120000406788DA37  00000D110000406788DA73  00000D100000406788DAAF  00000D100000406788DAEB  00000D0F0000406788DB27  00000D100000406788DB63
727 +
728 +
729 +Where the first 11 bytes is for the first entry :
730 +
731 +
732 +0000  0D10  0000  40  6788DB63
733 +
734 +
735 +Probe_mod = 0x0000 = 0000
736 +
737 +
738 +VDC_intput_V = 0x0D10/1000=3.344V
739 +
740 +IDC_intput_mA = 0x0000/1000=0mA
741 +
742 +
743 +IN1_pin_level = (0x40& 0x08)? "High":"Low" = 0(Low)
744 +
745 +IN2_pin_level = (0x40& 0x04)? "High":"Low" = 0(Low)
746 +
747 +Exti_pin_level = (0x40& 0x02)? "High":"Low" = 0(Low)
748 +
749 +Exti_status = (0x40& 0x01)? "True":"False" = 0(False)
750 +
751 +
752 +Unix time is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
753 +
754 +Its data format is:
755 +
756 +[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
757 +
758 +Note: water_deep in the data needs to be converted using decoding to get it.
759 +
760 +
761 +=== 2.6.5 Decoder in TTN V3 ===
762 +
763 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
764 +
765 +Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
766 +
767 +
768 +== 2.7 Frequency Plans ==
769 +
770 +
600 600  The PS-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
601 601  
602 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
773 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/a>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
603 603  
604 604  
605 -== 2.7 ​Firmware Change Log ==
776 +== 2.8 Report on Change Feature (Since firmware V1.2) ==
606 606  
778 +=== 2.8.1 Uplink payload(Enable ROC) ===
607 607  
608 -**Firmware download link:**
609 609  
781 +Used to Monitor the IDC and VDC increments, and send ROC uplink when the IDC or VDC changes exceed.
782 +
783 +With ROC enabled, the payload is as follows:
784 +
785 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
786 +|(% style="background-color:#4f81bd; color:white; width:97px" %)(((
787 +
788 +
789 +Size(bytes)
790 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
791 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
792 +
793 +
794 +[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag
795 +)))
796 +
797 +IN1 &IN2 , Interrupt  flag , ROC_flag:
798 +
799 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
800 +|(% style="background-color:#4f81bd; color:white; width:50px" %)Size(bit)|(% style="background-color:#4f81bd; color:white; width:60px" %)bit7|(% style="background-color:#4f81bd; color:white; width:62px" %)bit6|(% style="background-color:#4f81bd; color:white; width:62px" %)bit5|(% style="background-color:#4f81bd; color:white; width:65px" %)bit4|(% style="background-color:#4f81bd; color:white; width:56px" %)bit3|(% style="background-color:#4f81bd; color:white; width:55px" %)bit2|(% style="background-color:#4f81bd; color:white; width:55px" %)bit1|(% style="background-color:#4f81bd; color:white; width:50px" %)bit0
801 +|(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status
802 +
803 +* IDC_Roc_flagL
804 +
805 +80 (H): (0x80&0x80)=80(H)=1000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
806 +
807 +60 (H): (0x60&0x80)=0  bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
808 +
809 +
810 +* IDC_Roc_flagH
811 +
812 +60 (H): (0x60&0x40)=60(H)=01000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
813 +
814 +80 (H): (0x80&0x40)=0  bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
815 +
816 +
817 +* VDC_Roc_flagL
818 +
819 +20 (H): (0x20&0x20)=20(H)=0010 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
820 +
821 +90 (H): (0x90&0x20)=0  bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
822 +
823 +
824 +* VDC_Roc_flagH
825 +
826 +90 (H): (0x90&0x10)=10(H)=0001 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
827 +
828 +20 (H): (0x20&0x10)=0  bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
829 +
830 +
831 +* IN1_pin_level & IN2_pin_level
832 +
833 +IN1 and IN2 are used as digital input pins.
834 +
835 +80 (H): (0x80&0x08)=0  IN1 pin is low level.
836 +
837 +80 (H): (0x09&0x04)=0    IN2 pin is low level.
838 +
839 +
840 +* Exti_pin_level &Exti_status
841 +
842 +This data field shows whether the packet is generated by an interrupt pin.
843 +
844 +Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the GPIO_EXTI pin.
845 +
846 +Exti_pin_level:  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
847 +
848 +Exti_status: 80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
849 +
850 +
851 +=== 2.8.2 Set the Report on Change ===
852 +
853 +
854 +Feature: Get or Set the Report on Change.
855 +
856 +
857 +==== 2.8.2.1 Wave alarm mode ====
858 +
859 +Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed.
860 +
861 +* Change value: The amount by which the next detection value increases/decreases relative to the previous detection value.
862 +* Comparison value: A parameter to compare with the latest ROC test.
863 +
864 +AT Command: AT+ROC
865 +
866 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
867 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
868 +|(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
869 +
870 +
871 +0,0,0,0(default)
872 +OK
873 +)))
874 +|(% colspan="1" rowspan="4" style="width:143px" %)(((
875 +
876 +
877 +
878 +
879 +
880 +AT+ROC=a,b,c,d
881 +)))|(% style="width:154px" %)(((
882 +
883 +
884 +
885 +
886 +
887 +
888 +
889 +a: Enable or disable the ROC
890 +)))|(% style="width:197px" %)(((
891 +
892 +
893 +0: off
894 +1: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
895 +
896 +2: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
897 +)))
898 +|(% style="width:154px" %)b: Set the detection interval|(% style="width:197px" %)(((
899 +
900 +
901 +Range:  0~~65535s
902 +)))
903 +|(% style="width:154px" %)c: Setting the IDC change value|(% style="width:197px" %)Unit: uA
904 +|(% style="width:154px" %)d: Setting the VDC change value|(% style="width:197px" %)Unit: mV
905 +
906 +Example:
907 +
908 +* AT+ROC=0,0,0,0  ~/~/The ROC function is not used.
909 +* AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed.
910 +* AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage.
911 +* AT+ROC=2,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed.
912 +
913 +Downlink Command: 0x09 aa bb cc dd
914 +
915 +Format: Function code (0x09) followed by 4 bytes.
916 +
917 +aa: 1 byte; Set the wave alarm mode.
918 +
919 +bb: 2 bytes; Set the detection interval. (second)
920 +
921 +cc: 2 bytes; Setting the IDC change threshold. (uA)
922 +
923 +dd: 2 bytes; Setting the VDC change threshold. (mV)
924 +
925 +Example:
926 +
927 +* Downlink Payload: 09 01 00 3C 0B B8 01 F4  ~/~/Equal to AT+ROC=1,60,3000, 500
928 +* Downlink Payload: 09 01 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=1,60,3000,0
929 +* Downlink Payload: 09 02 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=2,60,3000,0
930 +
931 +Screenshot of parsing example in TTN:
932 +
933 +* AT+ROC=1,60,3000, 500.
934 +
935 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB-NA--LoRaWAN_Analog_Sensor_User_Manual/WebHome/image-20241019170902-1.png?width=1454&height=450&rev=1.1||alt="image-20241019170902-1.png"]]
936 +
937 +
938 +==== 2.8.2.2 Over-threshold alarm mode ====
939 +
940 +Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded.
941 +
942 +AT Command: AT+ROC=3,a,b,c,d,e
943 +
944 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
945 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
946 +|(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
947 +
948 +
949 +0,0,0,0(default)
950 +OK
951 +)))
952 +|(% colspan="1" rowspan="5" style="width:143px" %)(((
953 +
954 +
955 +
956 +
957 +
958 +AT+ROC=3,a,b,c,d,e
959 +)))|(% style="width:160px" %)(((
960 +
961 +
962 +a: Set the detection interval
963 +)))|(% style="width:185px" %)(((
964 +
965 +
966 +Range:  0~~65535s
967 +)))
968 +|(% style="width:160px" %)b: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
969 +
970 +
971 +0: Less than the set IDC threshold, Alarm
972 +
973 +1: Greater than the set IDC threshold, Alarm
974 +)))
975 +|(% style="width:160px" %)(((
976 +
977 +
978 +c:  IDC alarm threshold
979 +)))|(% style="width:185px" %)(((
980 +
981 +
982 +Unit: uA
983 +)))
984 +|(% style="width:160px" %)d: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
985 +
986 +
987 +0: Less than the set VDC threshold, Alarm
988 +
989 +1: Greater than the set VDC threshold, Alarm
990 +)))
991 +|(% style="width:160px" %)e: VDC alarm threshold|(% style="width:185px" %)Unit: mV
992 +
993 +Example:
994 +
995 +* AT+ROC=3,60,0,3000,0,5000  ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
996 +* AT+ROC=3,180,1,3000,1,5000  ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
997 +* AT+ROC=3,300,0,3000,1,5000  ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
998 +
999 +Downlink Command: 0x09 03 aa bb cc dd ee
1000 +
1001 +Format: Function code (0x09) followed by 03 and the remaining 5 bytes.
1002 +
1003 +aa: 2 bytes; Set the detection interval.(second)
1004 +
1005 +bb: 1 byte; Set the IDC alarm trigger condition.
1006 +
1007 +cc: 2 bytes; IDC alarm threshold.(uA)
1008 +
1009 +
1010 +dd: 1 byte; Set the VDC alarm trigger condition.
1011 +
1012 +ee: 2 bytes; VDC alarm threshold.(mV)
1013 +
1014 +Example:
1015 +
1016 +* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
1017 +* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
1018 +* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
1019 +
1020 +Screenshot of parsing example in TTN:
1021 +
1022 +* AT+ROC=3,60,0,3000,0,5000
1023 +
1024 +[[image:image-20250116180030-2.png]]
1025 +
1026 +
1027 +== 2.9 ​Firmware Change Log ==
1028 +
1029 +
1030 +Firmware download link:
1031 +
610 610  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
611 611  
612 612  
... ... @@ -617,7 +617,7 @@
617 617  
618 618  PS-LB/LS supports below configure method:
619 619  
620 -* AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1042 +* AT Command via Bluetooth Connection (Recommand Way): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
621 621  * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
622 622  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
623 623  
... ... @@ -645,21 +645,25 @@
645 645  
646 646  Feature: Change LoRaWAN End Node Transmit Interval.
647 647  
648 -(% style="color:blue" %)**AT Command: AT+TDC**
1070 +AT Command: AT+TDC
649 649  
650 650  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
651 -|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Response**
1073 +|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response
652 652  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
1075 +
1076 +
653 653  30000
654 654  OK
655 655  the interval is 30000ms = 30s
656 656  )))
657 657  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
1082 +
1083 +
658 658  OK
659 659  Set transmit interval to 60000ms = 60 seconds
660 660  )))
661 661  
662 -(% style="color:blue" %)**Downlink Command: 0x01**
1088 +Downlink Command: 0x01
663 663  
664 664  Format: Command Code (0x01) followed by 3 bytes time value.
665 665  
... ... @@ -673,16 +673,20 @@
673 673  
674 674  Feature, Set Interrupt mode for GPIO_EXIT.
675 675  
676 -(% style="color:blue" %)**AT Command: AT+INTMOD**
1102 +AT Command: AT+INTMOD
677 677  
678 678  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
679 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Response**
1105 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response
680 680  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
1107 +
1108 +
681 681  0
682 682  OK
683 683  the mode is 0 =Disable Interrupt
684 684  )))
685 685  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
1114 +
1115 +
686 686  Set Transmit Interval
687 687  0. (Disable Interrupt),
688 688  ~1. (Trigger by rising and falling edge)
... ... @@ -690,7 +690,7 @@
690 690  3. (Trigger by rising edge)
691 691  )))|(% style="background-color:#f2f2f2; width:157px" %)OK
692 692  
693 -(% style="color:blue" %)**Downlink Command: 0x06**
1123 +Downlink Command: 0x06
694 694  
695 695  Format: Command Code (0x06) followed by 3 bytes.
696 696  
... ... @@ -704,76 +704,106 @@
704 704  
705 705  Feature, Control the output 3V3 , 5V or 12V.
706 706  
707 -(% style="color:blue" %)**AT Command: AT+3V3T**
1137 +AT Command: AT+3V3T
708 708  
709 709  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
710 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 201px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1140 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
711 711  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
1142 +
1143 +
712 712  0
713 713  OK
714 714  )))
715 715  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1148 +
1149 +
716 716  OK
717 717  default setting
718 718  )))
719 719  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
1154 +
1155 +
720 720  OK
721 721  )))
722 722  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1159 +
1160 +
723 723  OK
724 724  )))
725 725  
726 -(% style="color:blue" %)**AT Command: AT+5VT**
1164 +AT Command: AT+5VT
727 727  
728 728  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
729 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1167 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
730 730  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1169 +
1170 +
731 731  0
732 732  OK
733 733  )))
734 734  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1175 +
1176 +
735 735  OK
736 736  default setting
737 737  )))
738 738  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
1181 +
1182 +
739 739  OK
740 740  )))
741 741  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1186 +
1187 +
742 742  OK
743 743  )))
744 744  
745 -(% style="color:blue" %)**AT Command: AT+12VT**
1191 +AT Command: AT+12VT
746 746  
747 747  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
748 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 199px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1194 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response
749 749  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1196 +
1197 +
750 750  0
751 751  OK
752 752  )))
753 753  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
754 754  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
1203 +
1204 +
755 755  OK
756 756  )))
757 757  
758 -(% style="color:blue" %)**Downlink Command: 0x07**
1208 +Downlink Command: 0x07
759 759  
760 760  Format: Command Code (0x07) followed by 3 bytes.
761 761  
762 762  The first byte is which power, the second and third bytes are the time to turn on.
763 763  
764 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
765 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
766 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
767 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
768 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
769 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
1214 +* Example 1: Downlink Payload: 070101F4  ~-~-->  AT+3V3T=500
1215 +* Example 2: Downlink Payload: 0701FFFF   ~-~-->  AT+3V3T=65535
1216 +* Example 3: Downlink Payload: 070203E8  ~-~-->  AT+5VT=1000
1217 +* Example 4: Downlink Payload: 07020000  ~-~-->  AT+5VT=0
1218 +* Example 5: Downlink Payload: 070301F4  ~-~-->  AT+12VT=500
1219 +* Example 6: Downlink Payload: 07030000  ~-~-->  AT+12VT=0
770 770  
1221 +Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.
1222 +
1223 +Therefore, the corresponding downlink command is increased by one byte to five bytes.
1224 +
1225 +Example:
1226 +
1227 +* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 01 01 D4 C0  ~-~-->  AT+3V3T=120000
1228 +* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 02 01 86 A0  ~-~-->  AT+5VT=100000
1229 +* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 03 01 38 80  ~-~-->  AT+12VT=80000
1230 +
771 771  === 3.3.4 Set the Probe Model ===
772 772  
773 773  
774 774  Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
775 775  
776 -(% style="color:blue" %)**AT Command: AT** **+PROBE**
1236 +AT Command: AT +PROBE
777 777  
778 778  AT+PROBE=aabb
779 779  
... ... @@ -785,12 +785,20 @@
785 785  
786 786  (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
787 787  
1248 +When aa=02, it is the Differential Pressure Sensor , which converts the current into a pressure value;
1249 +
1250 +bb represents which type of pressure sensor it is.
1251 +
1252 +(0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C)
1253 +
788 788  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
789 -|(% style="background-color:#4f81bd; color:white; width:154px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:269px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1255 +|(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
790 790  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
791 791  OK
792 792  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
793 793  |(% style="background-color:#f2f2f2; width:154px" %)(((
1260 +
1261 +
794 794  AT+PROBE=000A
795 795  )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
796 796  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
... ... @@ -797,52 +797,59 @@
797 797  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
798 798  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
799 799  
800 -(% style="color:blue" %)**Downlink Command: 0x08**
1268 +Downlink Command: 0x08
801 801  
802 802  Format: Command Code (0x08) followed by 2 bytes.
803 803  
804 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
805 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
1272 +* Example 1: Downlink Payload: 080003  ~-~-->  AT+PROBE=0003
1273 +* Example 2: Downlink Payload: 080101  ~-~-->  AT+PROBE=0101
806 806  
807 807  === 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
808 808  
809 809  
810 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
1278 +Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time.
811 811  
812 -(% style="color:blue" %)**AT Command: AT** **+STDC**
1280 +AT Command: AT +STDC
813 813  
814 814  AT+STDC=aa,bb,bb
815 815  
816 -(% style="color:#037691" %)**aa:**(%%)
817 -**0:** means disable this function and use TDC to send packets.
818 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
819 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
820 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
1284 +aa:
1285 +0: means disable this function and use TDC to send packets.
1286 +1: means that the function is enabled to send packets by collecting VDC data for multiple times.
1287 +2: means that the function is enabled to send packets by collecting IDC data for multiple times.
1288 +bb: Each collection interval (s), the value is 1~~65535
1289 +cc: the number of collection times, the value is 1~~120
821 821  
822 822  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
823 -|(% style="background-color:#4f81bd; color:white; width:160px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:215px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1292 +|(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
824 824  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
825 825  OK
826 826  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1296 +
1297 +
827 827  Attention:Take effect after ATZ
828 828  
829 829  OK
830 830  )))
831 831  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
1303 +
1304 +
832 832  Use the TDC interval to send packets.(default)
833 833  
834 834  
835 835  )))|(% style="background-color:#f2f2f2" %)(((
1309 +
1310 +
836 836  Attention:Take effect after ATZ
837 837  
838 838  OK
839 839  )))
840 840  
841 -(% style="color:blue" %)**Downlink Command: 0xAE**
1316 +Downlink Command: 0xAE
842 842  
843 -Format: Command Code (0x08) followed by 5 bytes.
1318 +Format: Command Code (0xAE) followed by 4 bytes.
844 844  
845 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
1320 +* Example 1: Downlink Payload: AE 01 02 58 12 ~-~-->  AT+STDC=1,600,18
846 846  
847 847  = 4. Battery & Power Consumption =
848 848  
... ... @@ -849,7 +849,7 @@
849 849  
850 850  PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
851 851  
852 -[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1327 +[[Battery Info & Power Consumption Analyze>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
853 853  
854 854  
855 855  = 5. OTA firmware update =
... ... @@ -885,22 +885,22 @@
885 885  Test the current values at the depth of different liquids and convert them to a linear scale.
886 886  Replace its ratio with the ratio of water to current in the decoder.
887 887  
888 -**Example:**
1363 +Example:
889 889  
890 890  Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
891 891  
892 -**Calculate scale factor:**
1367 +Calculate scale factor:
893 893  Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
894 894  
895 -**Calculation formula:**
1370 +Calculation formula:
896 896  
897 897  Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
898 898  
899 -**Actual calculations:**
1374 +Actual calculations:
900 900  
901 901  Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
902 902  
903 -**Error:**
1378 +Error:
904 904  
905 905  0.009810726
906 906  
... ... @@ -924,17 +924,17 @@
924 924  = 8. Order Info =
925 925  
926 926  
927 -[[image:image-20240109172423-7.png]](% style="display:none" %)
928 928  
1403 +[[image:image-20241021093209-1.png]]
929 929  
930 930  = 9. ​Packing Info =
931 931  
932 932  
933 -(% style="color:#037691" %)**Package Includes**:
1408 +Package Includes:
934 934  
935 935  * PS-LB or PS-LS LoRaWAN Pressure Sensor
936 936  
937 -(% style="color:#037691" %)**Dimension and weight**:
1412 +Dimension and weight:
938 938  
939 939  * Device Size: cm
940 940  * Device Weight: g
... ... @@ -947,5 +947,3 @@
947 947  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
948 948  
949 949  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].
950 -
951 -
image-20240817150702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +38.4 KB
Content
image-20241021093209-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +52.1 KB
Content
image-20250116175954-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +68.6 KB
Content
image-20250116180030-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +69.2 KB
Content
image-20250117104812-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +1.7 KB
Content
image-20250117104827-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +74.6 KB
Content
image-20250117104837-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +38.7 KB
Content
image-20250117104847-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 KB
Content
image-20250401102131-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +64.7 KB
Content
image-20250401163530-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +44.9 KB
Content
image-20250401163539-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +31.1 KB
Content
image-20250401163826-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +18.9 KB
Content
image-20250401163906-4.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +181.6 KB
Content