Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/07/10 16:21
From version 84.1
edited by Mengting Qiu
on 2024/05/13 09:59
on 2024/05/13 09:59
Change comment:
Uploaded new attachment "image-20240513095921-4.png", version {1}
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 16 added, 0 removed)
- image-20240513095927-5.png
- image-20240513100129-6.png
- image-20240513100135-7.png
- image-20240817150702-1.png
- image-20241021093209-1.png
- image-20250116175954-1.png
- image-20250116180030-2.png
- image-20250117104812-1.png
- image-20250117104827-2.png
- image-20250117104837-3.png
- image-20250117104847-4.png
- image-20250401102131-1.png
- image-20250401163530-1.jpeg
- image-20250401163539-2.jpeg
- image-20250401163826-3.jpeg
- image-20250401163906-4.jpeg
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. ting1 +XWiki.Xiaoling - Content
-
... ... @@ -41,7 +41,7 @@ 41 41 ))) 42 42 43 43 ((( 44 -PS-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + li-on battery **(%%), it is designed for long term use up to 5 years.44 +PS-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + Li-ion battery **(%%), it is designed for long term use up to 5 years. 45 45 ))) 46 46 47 47 ((( ... ... @@ -67,7 +67,7 @@ 67 67 * Downlink to change configure 68 68 * Controllable 3.3v,5v and 12v output to power external sensor 69 69 * 8500mAh Li/SOCl2 Battery (PS-LB) 70 -* Solar panel + 3000mAh Li-on battery (PS-LS) 70 +* Solar panel + 3000mAh Li-ion battery (PS-LS) 71 71 72 72 == 1.3 Specification == 73 73 ... ... @@ -136,36 +136,34 @@ 136 136 === 1.4.2 Immersion Type === 137 137 138 138 139 -[[image:image-20240109160445-5.png||height="2 84" width="214"]]139 +[[image:image-20240109160445-5.png||height="221" width="166"]] 140 140 141 141 * Immersion Type, Probe IP Level: IP68 142 142 * Measuring Range: Measure range can be customized, up to 100m. 143 143 * Accuracy: 0.2% F.S 144 144 * Long-Term Stability: ±0.2% F.S / Year 145 -* Storage temperature: -30 ℃~~80℃146 -* Operating temperature: 0 ℃~~50℃145 +* Storage temperature: -30°C~~80°C 146 +* Operating temperature: 0°C~~50°C 147 147 * Material: 316 stainless steels 148 148 149 - 150 150 === 1.4.3 Wireless Differential Air Pressure Sensor === 151 151 152 -[[image:image-20240511174954-1.png]] 151 +[[image:image-20240511174954-1.png||height="215" width="215"]] 153 153 154 -* Measuring Range: -100KPa~~0~~100KPa ,Intermediate rangeis optional.153 +* Measuring Range: -100KPa~~0~~100KPa(Optional measuring range). 155 155 * Accuracy: 0.5% F.S, resolution is 0.05%. 156 156 * Overload: 300% F.S 157 157 * Zero temperature drift: ±0.03%F.S/°C 158 -* Operating temperature: -40℃~~85℃ 157 +* Operating temperature: -20°C~~60°C 158 +* Storage temperature: -20°C~~60°C 159 159 * Compensation temperature: 0~~50°C 160 160 161 - 162 - 163 163 == 1.5 Application and Installation == 164 164 165 165 === 1.5.1 Thread Installation Type === 166 166 167 167 168 - (% style="color:blue" %)**Application:**166 +Application: 169 169 170 170 * Hydraulic Pressure 171 171 * Petrochemical Industry ... ... @@ -183,7 +183,7 @@ 183 183 === 1.5.2 Immersion Type === 184 184 185 185 186 - (% style="color:blue" %)**Application:**184 +Application: 187 187 188 188 Liquid & Water Pressure / Level detect. 189 189 ... ... @@ -190,7 +190,7 @@ 190 190 [[image:1675071725288-579.png]] 191 191 192 192 193 - TheImmersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.191 +Below is the wiring to for connect the probe to the device. 194 194 195 195 The Immersion Type Sensor has different variant which defined by Ixx. For example, this means two points: 196 196 ... ... @@ -202,32 +202,64 @@ 202 202 203 203 [[image:1675071776102-240.png]] 204 204 203 +Size of immersion type water depth sensor: 205 205 205 +[[image:image-20250401102131-1.png||height="268" width="707"]] 206 + 207 + 208 +=== 1.5.3 Wireless Differential Air Pressure Sensor === 209 + 210 + 211 +Application: 212 + 213 +Indoor Air Control & Filter clogging Detect. 214 + 215 +[[image:image-20240513100129-6.png]] 216 + 217 +[[image:image-20240513100135-7.png]] 218 + 219 + 220 +Below is the wiring to for connect the probe to the device. 221 + 222 +[[image:image-20240513093957-1.png]] 223 + 224 + 225 +Size of wind pressure transmitter: 226 + 227 +[[image:image-20240513094047-2.png]] 228 + 229 +Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm. 230 + 231 + 206 206 == 1.6 Sleep mode and working mode == 207 207 208 208 209 - (% style="color:blue" %)**Deep Sleep Mode:**(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.235 +Deep Sleep Mode: Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 210 210 211 - (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.237 +Working Mode: In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 212 212 213 213 214 214 == 1.7 Button & LEDs == 215 215 216 216 217 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]] (%style="display:none"%)243 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]] 218 218 219 219 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 220 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %) **Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**246 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action 221 221 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)((( 222 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 248 + 249 + 250 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once. 223 223 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 224 224 ))) 225 225 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)((( 226 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 227 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 254 + 255 + 256 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. 257 +Green led will solidly turn on for 5 seconds after joined in network. 228 228 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 229 229 ))) 230 -|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %) (% style="color:red" %)**Red led**(%%)will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.260 +|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 231 231 232 232 == 1.8 Pin Mapping == 233 233 ... ... @@ -252,16 +252,16 @@ 252 252 253 253 == 1.10 Mechanical == 254 254 255 -=== 1.10.1 for LB version (%style="display:none" %) (%%)===285 +=== 1.10.1 for LB version === 256 256 257 257 258 -[[image:image-202401 09160800-6.png]]288 +[[image:image-20250401163530-1.jpeg]] 259 259 260 260 261 261 === 1.10.2 for LS version === 262 262 263 263 264 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/WebHome/image-20231231203439-3.png?width=886&height=385&rev=1.1||alt="image-20231231203439-3.png"]]294 +[[image:image-20250401163539-2.jpeg]] 265 265 266 266 267 267 = 2. Configure PS-LB/LS to connect to LoRaWAN network = ... ... @@ -269,7 +269,7 @@ 269 269 == 2.1 How it works == 270 270 271 271 272 -The PS-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%)mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.302 +The PS-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 273 273 274 274 275 275 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -277,7 +277,6 @@ 277 277 278 278 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 279 279 280 - 281 281 [[image:1675144005218-297.png]] 282 282 283 283 ... ... @@ -284,7 +284,7 @@ 284 284 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 285 285 286 286 287 - (% style="color:blue" %)**Step 1:**(%%)Create a device in TTN with the OTAA keys from PS-LB/LS.316 +Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS. 288 288 289 289 Each PS-LB/LS is shipped with a sticker with the default device EUI as below: 290 290 ... ... @@ -294,32 +294,32 @@ 294 294 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 295 295 296 296 297 - (% style="color:blue" %)**Register the device**326 +Register the device 298 298 299 299 [[image:1675144099263-405.png]] 300 300 301 301 302 - (% style="color:blue" %)**Add APP EUI and DEV EUI**331 +Add APP EUI and DEV EUI 303 303 304 304 [[image:1675144117571-832.png]] 305 305 306 306 307 - (% style="color:blue" %)**Add APP EUI in the application**336 +Add APP EUI in the application 308 308 309 309 310 310 [[image:1675144143021-195.png]] 311 311 312 312 313 - (% style="color:blue" %)**Add APP KEY**342 +Add APP KEY 314 314 315 315 [[image:1675144157838-392.png]] 316 316 317 - (% style="color:blue" %)**Step 2:**(%%)Activate on PS-LB/LS346 +Step 2: Activate on PS-LB/LS 318 318 319 319 320 320 Press the button for 5 seconds to activate the PS-LB/LS. 321 321 322 - (% style="color:green" %)**Green led**(%%)will fast blink 5 times, device will enter(% style="color:blue" %)**OTA mode**(%%)for 3 seconds. And then start to JOIN LoRaWAN network.(% style="color:green" %)**Green led**(%%)will solidly turn on for 5 seconds after joined in network.351 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network. 323 323 324 324 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 325 325 ... ... @@ -333,11 +333,10 @@ 333 333 334 334 Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink. 335 335 336 - 337 337 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 338 -|(% colspan="6" style="background-color:#4f81bd; color:white" %) **Device Status (FPORT=5)**339 -|(% style="background-color:#f2f2f2; width:103px" %) **Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**340 -|(% style="background-color:#f2f2f2; width:103px" %) **Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT366 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)Device Status (FPORT=5) 367 +|(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2 368 +|(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT 341 341 342 342 Example parse in TTNv3 343 343 ... ... @@ -344,11 +344,11 @@ 344 344 [[image:1675144504430-490.png]] 345 345 346 346 347 - (% style="color:#037691" %)**Sensor Model**(%%): For PS-LB/LS, this value is 0x16375 +Sensor Model: For PS-LB/LS, this value is 0x16 348 348 349 - (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version377 +Firmware Version: 0x0100, Means: v1.0.0 version 350 350 351 - (% style="color:#037691" %)**Frequency Band**:379 +Frequency Band: 352 352 353 353 *0x01: EU868 354 354 ... ... @@ -379,7 +379,7 @@ 379 379 *0x0e: MA869 380 380 381 381 382 - (% style="color:#037691" %)**Sub-Band**:410 +Sub-Band: 383 383 384 384 AU915 and US915:value 0x00 ~~ 0x08 385 385 ... ... @@ -388,7 +388,7 @@ 388 388 Other Bands: Always 0x00 389 389 390 390 391 - (% style="color:#037691" %)**Battery Info**:419 +Battery Info: 392 392 393 393 Check the battery voltage. 394 394 ... ... @@ -403,10 +403,12 @@ 403 403 Uplink payload includes in total 9 bytes. 404 404 405 405 406 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:510px" %)434 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 407 407 |(% style="background-color:#4f81bd; color:white; width:97px" %)((( 408 -**Size(bytes)** 409 -)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1** 436 + 437 + 438 +Size(bytes) 439 +)))|(% style="background-color:#4f81bd; color:white; width:50px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1 410 410 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] 411 411 412 412 [[image:1675144608950-310.png]] ... ... @@ -428,10 +428,10 @@ 428 428 PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 429 429 430 430 431 - **For example.**461 +For example. 432 432 433 433 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 434 -|(% style="background-color:#4f81bd; color:white" %) **Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**464 +|(% style="background-color:#4f81bd; color:white" %)Part Number|(% style="background-color:#4f81bd; color:white" %)Probe Used|(% style="background-color:#4f81bd; color:white" %)4~~20mA scale|(% style="background-color:#4f81bd; color:white" %)Example: 12mA meaning 435 435 |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water 436 436 |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water 437 437 |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure ... ... @@ -442,9 +442,9 @@ 442 442 === 2.3.5 0~~20mA value (IDC_IN) === 443 443 444 444 445 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.475 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level. 446 446 447 - (% style="color:#037691" %)**Example**:477 +Example: 448 448 449 449 27AE(H) = 10158 (D)/1000 = 10.158mA. 450 450 ... ... @@ -454,12 +454,12 @@ 454 454 [[image:image-20230225154759-1.png||height="408" width="741"]] 455 455 456 456 457 -=== 2.3.6 0~~30V value ( 487 +=== 2.3.6 0~~30V value (pin VDC_IN) === 458 458 459 459 460 460 Measure the voltage value. The range is 0 to 30V. 461 461 462 - (% style="color:#037691" %)**Example**:492 +Example: 463 463 464 464 138E(H) = 5006(D)/1000= 5.006V 465 465 ... ... @@ -469,7 +469,7 @@ 469 469 470 470 IN1 and IN2 are used as digital input pins. 471 471 472 - (% style="color:#037691" %)**Example**:502 +Example: 473 473 474 474 09 (H): (0x09&0x08)>>3=1 IN1 pin is high level. 475 475 ... ... @@ -476,9 +476,9 @@ 476 476 09 (H): (0x09&0x04)>>2=0 IN2 pin is low level. 477 477 478 478 479 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.509 +This data field shows if this packet is generated by Interrupt Pin or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal. 480 480 481 - (% style="color:#037691" %)**Example:**511 +Example: 482 482 483 483 09 (H): (0x09&0x02)>>1=1 The level of the interrupt pin. 484 484 ... ... @@ -492,9 +492,13 @@ 492 492 493 493 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %) 494 494 |(% style="background-color:#4f81bd; color:white; width:65px" %)((( 495 -**Size(bytes)** 496 -)))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n** 525 + 526 + 527 +Size(bytes) 528 +)))|(% style="background-color:#4f81bd; color:white; width:35px" %)2|(% style="background-color:#4f81bd; color:white; width:400px" %)n 497 497 |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)((( 530 + 531 + 498 498 Voltage value, each 2 bytes is a set of voltage values. 499 499 ))) 500 500 ... ... @@ -510,7 +510,6 @@ 510 510 511 511 While using TTN network, you can add the payload format to decode the payload. 512 512 513 - 514 514 [[image:1675144839454-913.png]] 515 515 516 516 ... ... @@ -528,12 +528,10 @@ 528 528 529 529 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 530 530 564 +Step 1: Be sure that your device is programmed and properly connected to the network at this time. 531 531 532 - (% style="color:blue" %)**Step1:**(%%)Besure that your deviceisprogrammedandproperlyconnected to the networkatthistime.566 +Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 533 533 534 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 535 - 536 - 537 537 [[image:1675144951092-237.png]] 538 538 539 539 ... ... @@ -540,9 +540,9 @@ 540 540 [[image:1675144960452-126.png]] 541 541 542 542 543 - (% style="color:blue" %)**Step 3:**(%%)Create an account or log in Datacake.574 +Step 3: Create an account or log in Datacake. 544 544 545 - (% style="color:blue" %)**Step 4:** (%%)Create PS-LB/LS product.576 +Step 4: Create PS-LB/LS product. 546 546 547 547 [[image:1675145004465-869.png]] 548 548 ... ... @@ -550,11 +550,10 @@ 550 550 [[image:1675145018212-853.png]] 551 551 552 552 553 - 554 554 [[image:1675145029119-717.png]] 555 555 556 556 557 - (% style="color:blue" %)**Step 5:**(%%)add payload decode587 +Step 5: add payload decode 558 558 559 559 [[image:1675145051360-659.png]] 560 560 ... ... @@ -564,23 +564,450 @@ 564 564 565 565 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 566 566 567 - 568 568 [[image:1675145081239-376.png]] 569 569 570 570 571 -== 2.6 F requencyPlans==600 +== 2.6 Datalog Feature (Since V1.1) == 572 572 573 573 603 +When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot. 604 + 605 + 606 +=== 2.6.1 Unix TimeStamp === 607 + 608 + 609 +PS-LB uses Unix TimeStamp format based on 610 + 611 +[[image:image-20250401163826-3.jpeg]] 612 + 613 +Users can get this time from the link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] : 614 + 615 +Below is the converter example: 616 + 617 +[[image:image-20250401163906-4.jpeg]] 618 + 619 + 620 +=== 2.6.2 Set Device Time === 621 + 622 + 623 +There are two ways to set the device's time: 624 + 625 + 626 +~1. Through LoRaWAN MAC Command (Default settings) 627 + 628 +Users need to set SYNCMOD=1 to enable sync time via the MAC command. 629 + 630 +Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]]. 631 + 632 +Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature. 633 + 634 + 635 + 2. Manually Set Time 636 + 637 +Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server. 638 + 639 + 640 +=== 2.6.3 Poll sensor value === 641 + 642 +Users can poll sensor values based on timestamps. Below is the downlink command. 643 + 644 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %) 645 +|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31) 646 +|(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte 647 +|(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)((( 648 + 649 + 650 +Timestamp end 651 +)))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval 652 + 653 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval. 654 + 655 +For example, downlink command[[image:image-20250117104812-1.png]] 656 + 657 +Is to check 2024/12/20 09:34:59 to 2024/12/20 14:34:59's data 658 + 659 +Uplink Internal =5s,means PS-LB will send one packet every 5s. range 5~~255s. 660 + 661 + 662 +=== 2.6.4 Datalog Uplink payload (FPORT~=3) === 663 + 664 + 665 +The Datalog uplinks will use below payload format. 666 + 667 +Retrieval data payload: 668 + 669 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 670 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 671 +Size(bytes) 672 +)))|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)2|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)4 673 +|(% style="width:103px" %)Value|(% style="width:68px" %)((( 674 + 675 + 676 +Probe_mod 677 +)))|(% style="width:104px" %)((( 678 + 679 + 680 +VDC_intput_V 681 +)))|(% style="width:83px" %)((( 682 + 683 + 684 +IDC_intput_mA 685 +)))|(% style="width:201px" %)((( 686 + 687 + 688 +IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status 689 +)))|(% style="width:86px" %)Unix Time Stamp 690 + 691 +IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status: 692 + 693 +[[image:image-20250117104847-4.png]] 694 + 695 + 696 +No ACK Message: 1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature) 697 + 698 +Poll Message Flag: 1: This message is a poll message reply. 699 + 700 +* Poll Message Flag is set to 1. 701 + 702 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands. 703 + 704 +For example, in US915 band, the max payload for different DR is: 705 + 706 +a) DR0: max is 11 bytes so one entry of data 707 + 708 +b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 709 + 710 +c) DR2: total payload includes 11 entries of data 711 + 712 +d) DR3: total payload includes 22 entries of data. 713 + 714 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0 715 + 716 +Example: 717 + 718 +If PS-LB-NA has below data inside Flash: 719 + 720 +[[image:image-20250117104837-3.png]] 721 + 722 + 723 +If user sends below downlink command: 316788D9BF6788DB6305 724 + 725 +Where : Start time: 6788D9BF = time 25/1/16 10:04:47 726 + 727 + Stop time: 6788DB63 = time 25/1/16 10:11:47 728 + 729 + 730 +PA-LB-NA will uplink this payload. 731 + 732 +[[image:image-20250117104827-2.png]] 733 + 734 + 735 +00001B620000406788D9BF 00000D130000406788D9FB 00000D120000406788DA37 00000D110000406788DA73 00000D100000406788DAAF 00000D100000406788DAEB 00000D0F0000406788DB27 00000D100000406788DB63 736 + 737 + 738 +Where the first 11 bytes is for the first entry : 739 + 740 + 741 +0000 0D10 0000 40 6788DB63 742 + 743 + 744 +Probe_mod = 0x0000 = 0000 745 + 746 + 747 +VDC_intput_V = 0x0D10/1000=3.344V 748 + 749 +IDC_intput_mA = 0x0000/1000=0mA 750 + 751 + 752 +IN1_pin_level = (0x40& 0x08)? "High":"Low" = 0(Low) 753 + 754 +IN2_pin_level = (0x40& 0x04)? "High":"Low" = 0(Low) 755 + 756 +Exti_pin_level = (0x40& 0x02)? "High":"Low" = 0(Low) 757 + 758 +Exti_status = (0x40& 0x01)? "True":"False" = 0(False) 759 + 760 + 761 +Unix time is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47 762 + 763 +Its data format is: 764 + 765 +[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],... 766 + 767 +Note: water_deep in the data needs to be converted using decoding to get it. 768 + 769 + 770 +=== 2.6.5 Decoder in TTN V3 === 771 + 772 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]] 773 + 774 +Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 775 + 776 + 777 +== 2.7 Frequency Plans == 778 + 779 + 574 574 The PS-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country. 575 575 576 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 782 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/a>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 577 577 578 578 579 -== 2. 7Firmware ChangeLog==785 +== 2.8 Report on Change Feature (Since firmware V1.2) == 580 580 787 +=== 2.8.1 Uplink payload(Enable ROC) === 581 581 582 -**Firmware download link:** 583 583 790 +Used to Monitor the IDC and VDC increments, and send ROC uplink when the IDC or VDC changes exceed. 791 + 792 +With ROC enabled, the payload is as follows: 793 + 794 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 795 +|(% style="background-color:#4f81bd; color:white; width:97px" %)((( 796 + 797 + 798 +Size(bytes) 799 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1 800 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)((( 801 + 802 + 803 +[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag 804 +))) 805 + 806 +IN1 &IN2 , Interrupt flag , ROC_flag: 807 + 808 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %) 809 +|(% style="background-color:#4f81bd; color:white; width:50px" %)Size(bit)|(% style="background-color:#4f81bd; color:white; width:60px" %)bit7|(% style="background-color:#4f81bd; color:white; width:62px" %)bit6|(% style="background-color:#4f81bd; color:white; width:62px" %)bit5|(% style="background-color:#4f81bd; color:white; width:65px" %)bit4|(% style="background-color:#4f81bd; color:white; width:56px" %)bit3|(% style="background-color:#4f81bd; color:white; width:55px" %)bit2|(% style="background-color:#4f81bd; color:white; width:55px" %)bit1|(% style="background-color:#4f81bd; color:white; width:50px" %)bit0 810 +|(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status 811 + 812 +* IDC_Roc_flagL 813 + 814 +80 (H): (0x80&0x80)=80(H)=1000 0000(B) bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold. 815 + 816 +60 (H): (0x60&0x80)=0 bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold. 817 + 818 + 819 +* IDC_Roc_flagH 820 + 821 +60 (H): (0x60&0x40)=60(H)=01000 0000(B) bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold. 822 + 823 +80 (H): (0x80&0x40)=0 bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold. 824 + 825 + 826 +* VDC_Roc_flagL 827 + 828 +20 (H): (0x20&0x20)=20(H)=0010 0000(B) bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold. 829 + 830 +90 (H): (0x90&0x20)=0 bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold. 831 + 832 + 833 +* VDC_Roc_flagH 834 + 835 +90 (H): (0x90&0x10)=10(H)=0001 0000(B) bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold. 836 + 837 +20 (H): (0x20&0x10)=0 bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold. 838 + 839 + 840 +* IN1_pin_level & IN2_pin_level 841 + 842 +IN1 and IN2 are used as digital input pins. 843 + 844 +80 (H): (0x80&0x08)=0 IN1 pin is low level. 845 + 846 +80 (H): (0x09&0x04)=0 IN2 pin is low level. 847 + 848 + 849 +* Exti_pin_level &Exti_status 850 + 851 +This data field shows whether the packet is generated by an interrupt pin. 852 + 853 +Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the GPIO_EXTI pin. 854 + 855 +Exti_pin_level: 80 (H): (0x80&0x02)=0 "low", The level of the interrupt pin. 856 + 857 +Exti_status: 80 (H): (0x80&0x01)=0 "False", Normal uplink packet. 858 + 859 + 860 +=== 2.8.2 Set the Report on Change === 861 + 862 + 863 +Feature: Get or Set the Report on Change. 864 + 865 + 866 +==== 2.8.2.1 Wave alarm mode ==== 867 + 868 +Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed. 869 + 870 +* Change value: The amount by which the next detection value increases/decreases relative to the previous detection value. 871 +* Comparison value: A parameter to compare with the latest ROC test. 872 + 873 +AT Command: AT+ROC 874 + 875 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 876 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation 877 +|(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)((( 878 + 879 + 880 +0,0,0,0(default) 881 +OK 882 +))) 883 +|(% colspan="1" rowspan="4" style="width:143px" %)((( 884 + 885 + 886 + 887 + 888 + 889 +AT+ROC=a,b,c,d 890 +)))|(% style="width:154px" %)((( 891 + 892 + 893 + 894 + 895 + 896 + 897 + 898 +a: Enable or disable the ROC 899 +)))|(% style="width:197px" %)((( 900 + 901 + 902 +0: off 903 +1: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. 904 + 905 +2: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]). 906 +))) 907 +|(% style="width:154px" %)b: Set the detection interval|(% style="width:197px" %)((( 908 + 909 + 910 +Range: 0~~65535s 911 +))) 912 +|(% style="width:154px" %)c: Setting the IDC change value|(% style="width:197px" %)Unit: uA 913 +|(% style="width:154px" %)d: Setting the VDC change value|(% style="width:197px" %)Unit: mV 914 + 915 +Example: 916 + 917 +* AT+ROC=0,0,0,0 ~/~/The ROC function is not used. 918 +* AT+ROC=1,60,3000, 500 ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed. 919 +* AT+ROC=1,60,3000,0 ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. 920 +* AT+ROC=2,60,3000,0 ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed. 921 + 922 +Downlink Command: 0x09 aa bb cc dd 923 + 924 +Format: Function code (0x09) followed by 4 bytes. 925 + 926 +aa: 1 byte; Set the wave alarm mode. 927 + 928 +bb: 2 bytes; Set the detection interval. (second) 929 + 930 +cc: 2 bytes; Setting the IDC change threshold. (uA) 931 + 932 +dd: 2 bytes; Setting the VDC change threshold. (mV) 933 + 934 +Example: 935 + 936 +* Downlink Payload: 09 01 00 3C 0B B8 01 F4 ~/~/Equal to AT+ROC=1,60,3000, 500 937 +* Downlink Payload: 09 01 00 3C 0B B8 00 00 ~/~/Equal to AT+ROC=1,60,3000,0 938 +* Downlink Payload: 09 02 00 3C 0B B8 00 00 ~/~/Equal to AT+ROC=2,60,3000,0 939 + 940 +Screenshot of parsing example in TTN: 941 + 942 +* AT+ROC=1,60,3000, 500. 943 + 944 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB-NA--LoRaWAN_Analog_Sensor_User_Manual/WebHome/image-20241019170902-1.png?width=1454&height=450&rev=1.1||alt="image-20241019170902-1.png"]] 945 + 946 + 947 +==== 2.8.2.2 Over-threshold alarm mode ==== 948 + 949 +Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded. 950 + 951 +AT Command: AT+ROC=3,a,b,c,d,e 952 + 953 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 954 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation 955 +|(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)((( 956 + 957 + 958 +0,0,0,0(default) 959 +OK 960 +))) 961 +|(% colspan="1" rowspan="5" style="width:143px" %)((( 962 + 963 + 964 + 965 + 966 + 967 +AT+ROC=3,a,b,c,d,e 968 +)))|(% style="width:160px" %)((( 969 + 970 + 971 +a: Set the detection interval 972 +)))|(% style="width:185px" %)((( 973 + 974 + 975 +Range: 0~~65535s 976 +))) 977 +|(% style="width:160px" %)b: Set the IDC alarm trigger condition|(% style="width:185px" %)((( 978 + 979 + 980 +0: Less than the set IDC threshold, Alarm 981 + 982 +1: Greater than the set IDC threshold, Alarm 983 +))) 984 +|(% style="width:160px" %)((( 985 + 986 + 987 +c: IDC alarm threshold 988 +)))|(% style="width:185px" %)((( 989 + 990 + 991 +Unit: uA 992 +))) 993 +|(% style="width:160px" %)d: Set the VDC alarm trigger condition|(% style="width:185px" %)((( 994 + 995 + 996 +0: Less than the set VDC threshold, Alarm 997 + 998 +1: Greater than the set VDC threshold, Alarm 999 +))) 1000 +|(% style="width:160px" %)e: VDC alarm threshold|(% style="width:185px" %)Unit: mV 1001 + 1002 +Example: 1003 + 1004 +* AT+ROC=3,60,0,3000,0,5000 ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated. 1005 +* AT+ROC=3,180,1,3000,1,5000 ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated. 1006 +* AT+ROC=3,300,0,3000,1,5000 ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated. 1007 + 1008 +Downlink Command: 0x09 03 aa bb cc dd ee 1009 + 1010 +Format: Function code (0x09) followed by 03 and the remaining 5 bytes. 1011 + 1012 +aa: 2 bytes; Set the detection interval.(second) 1013 + 1014 +bb: 1 byte; Set the IDC alarm trigger condition. 1015 + 1016 +cc: 2 bytes; IDC alarm threshold.(uA) 1017 + 1018 + 1019 +dd: 1 byte; Set the VDC alarm trigger condition. 1020 + 1021 +ee: 2 bytes; VDC alarm threshold.(mV) 1022 + 1023 +Example: 1024 + 1025 +* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,0,5000 1026 +* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38 ~/~/Equal to AT+ROC=3,60,1,3000,1,5000 1027 +* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,1,5000 1028 + 1029 +Screenshot of parsing example in TTN: 1030 + 1031 +* AT+ROC=3,60,0,3000,0,5000 1032 + 1033 +[[image:image-20250116180030-2.png]] 1034 + 1035 + 1036 +== 2.9 Firmware Change Log == 1037 + 1038 + 1039 +Firmware download link: 1040 + 584 584 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]] 585 585 586 586 ... ... @@ -591,7 +591,7 @@ 591 591 592 592 PS-LB/LS supports below configure method: 593 593 594 -* AT Command via Bluetooth Connection ( **Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].1051 +* AT Command via Bluetooth Connection (Recommand Way): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 595 595 * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]]. 596 596 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 597 597 ... ... @@ -619,21 +619,25 @@ 619 619 620 620 Feature: Change LoRaWAN End Node Transmit Interval. 621 621 622 - (% style="color:blue" %)**AT Command: AT+TDC**1079 +AT Command: AT+TDC 623 623 624 624 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 625 -|=(% style="width: 160px; background-color:#4F81BD;color:white" %) **Command Example**|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Response**1082 +|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response 626 626 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)((( 1084 + 1085 + 627 627 30000 628 628 OK 629 629 the interval is 30000ms = 30s 630 630 ))) 631 631 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)((( 1091 + 1092 + 632 632 OK 633 633 Set transmit interval to 60000ms = 60 seconds 634 634 ))) 635 635 636 - (% style="color:blue" %)**Downlink Command: 0x01**1097 +Downlink Command: 0x01 637 637 638 638 Format: Command Code (0x01) followed by 3 bytes time value. 639 639 ... ... @@ -647,16 +647,20 @@ 647 647 648 648 Feature, Set Interrupt mode for GPIO_EXIT. 649 649 650 - (% style="color:blue" %)**AT Command: AT+INTMOD**1111 +AT Command: AT+INTMOD 651 651 652 652 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 653 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %) **Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Response**1114 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response 654 654 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)((( 1116 + 1117 + 655 655 0 656 656 OK 657 657 the mode is 0 =Disable Interrupt 658 658 ))) 659 659 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)((( 1123 + 1124 + 660 660 Set Transmit Interval 661 661 0. (Disable Interrupt), 662 662 ~1. (Trigger by rising and falling edge) ... ... @@ -664,7 +664,7 @@ 664 664 3. (Trigger by rising edge) 665 665 )))|(% style="background-color:#f2f2f2; width:157px" %)OK 666 666 667 - (% style="color:blue" %)**Downlink Command: 0x06**1132 +Downlink Command: 0x06 668 668 669 669 Format: Command Code (0x06) followed by 3 bytes. 670 670 ... ... @@ -678,76 +678,106 @@ 678 678 679 679 Feature, Control the output 3V3 , 5V or 12V. 680 680 681 - (% style="color:blue" %)**AT Command: AT+3V3T**1146 +AT Command: AT+3V3T 682 682 683 683 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %) 684 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %) **Command Example**|=(% style="width: 201px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**1149 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response 685 685 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)((( 1151 + 1152 + 686 686 0 687 687 OK 688 688 ))) 689 689 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)((( 1157 + 1158 + 690 690 OK 691 691 default setting 692 692 ))) 693 693 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)((( 1163 + 1164 + 694 694 OK 695 695 ))) 696 696 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)((( 1168 + 1169 + 697 697 OK 698 698 ))) 699 699 700 - (% style="color:blue" %)**AT Command: AT+5VT**1173 +AT Command: AT+5VT 701 701 702 702 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %) 703 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %) **Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**1176 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response 704 704 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)((( 1178 + 1179 + 705 705 0 706 706 OK 707 707 ))) 708 708 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)((( 1184 + 1185 + 709 709 OK 710 710 default setting 711 711 ))) 712 712 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)((( 1190 + 1191 + 713 713 OK 714 714 ))) 715 715 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)((( 1195 + 1196 + 716 716 OK 717 717 ))) 718 718 719 - (% style="color:blue" %)**AT Command: AT+12VT**1200 +AT Command: AT+12VT 720 720 721 721 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %) 722 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %) **Command Example**|=(% style="width: 199px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**1203 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response 723 723 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)((( 1205 + 1206 + 724 724 0 725 725 OK 726 726 ))) 727 727 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK 728 728 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)((( 1212 + 1213 + 729 729 OK 730 730 ))) 731 731 732 - (% style="color:blue" %)**Downlink Command: 0x07**1217 +Downlink Command: 0x07 733 733 734 734 Format: Command Code (0x07) followed by 3 bytes. 735 735 736 736 The first byte is which power, the second and third bytes are the time to turn on. 737 737 738 -* Example 1: Downlink Payload: 070101F4 **~-~-->**AT+3V3T=500739 -* Example 2: Downlink Payload: 0701FFFF **~-~-->**AT+3V3T=65535740 -* Example 3: Downlink Payload: 070203E8 **~-~-->**AT+5VT=1000741 -* Example 4: Downlink Payload: 07020000 **~-~-->**AT+5VT=0742 -* Example 5: Downlink Payload: 070301F4 **~-~-->**AT+12VT=500743 -* Example 6: Downlink Payload: 07030000 **~-~-->**AT+12VT=01223 +* Example 1: Downlink Payload: 070101F4 ~-~--> AT+3V3T=500 1224 +* Example 2: Downlink Payload: 0701FFFF ~-~--> AT+3V3T=65535 1225 +* Example 3: Downlink Payload: 070203E8 ~-~--> AT+5VT=1000 1226 +* Example 4: Downlink Payload: 07020000 ~-~--> AT+5VT=0 1227 +* Example 5: Downlink Payload: 070301F4 ~-~--> AT+12VT=500 1228 +* Example 6: Downlink Payload: 07030000 ~-~--> AT+12VT=0 744 744 1230 +Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds. 1231 + 1232 +Therefore, the corresponding downlink command is increased by one byte to five bytes. 1233 + 1234 +Example: 1235 + 1236 +* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 01 01 D4 C0 ~-~--> AT+3V3T=120000 1237 +* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 02 01 86 A0 ~-~--> AT+5VT=100000 1238 +* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 03 01 38 80 ~-~--> AT+12VT=80000 1239 + 745 745 === 3.3.4 Set the Probe Model === 746 746 747 747 748 748 Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value. 749 749 750 - (% style="color:blue" %)**AT Command: AT****+PROBE**1245 +AT Command: AT +PROBE 751 751 752 752 AT+PROBE=aabb 753 753 ... ... @@ -759,12 +759,20 @@ 759 759 760 760 (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C) 761 761 1257 +When aa=02, it is the Differential Pressure Sensor , which converts the current into a pressure value; 1258 + 1259 +bb represents which type of pressure sensor it is. 1260 + 1261 +(0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C) 1262 + 762 762 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 763 -|(% style="background-color:#4f81bd; color:white; width:154px" %) **Command Example**|(% style="background-color:#4f81bd; color:white; width:269px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**1264 +|(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response 764 764 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0 765 765 OK 766 766 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK 767 767 |(% style="background-color:#f2f2f2; width:154px" %)((( 1269 + 1270 + 768 768 AT+PROBE=000A 769 769 )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK 770 770 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK ... ... @@ -771,52 +771,59 @@ 771 771 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK 772 772 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK 773 773 774 - (% style="color:blue" %)**Downlink Command: 0x08**1277 +Downlink Command: 0x08 775 775 776 776 Format: Command Code (0x08) followed by 2 bytes. 777 777 778 -* Example 1: Downlink Payload: 080003 **~-~-->**AT+PROBE=0003779 -* Example 2: Downlink Payload: 080101 **~-~-->**AT+PROBE=01011281 +* Example 1: Downlink Payload: 080003 ~-~--> AT+PROBE=0003 1282 +* Example 2: Downlink Payload: 080101 ~-~--> AT+PROBE=0101 780 780 781 781 === 3.3.5 Multiple collections are one uplink (Since firmware V1.1) === 782 782 783 783 784 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time. 1287 +Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time. 785 785 786 - (% style="color:blue" %)**AT Command: AT****+STDC**1289 +AT Command: AT +STDC 787 787 788 788 AT+STDC=aa,bb,bb 789 789 790 -(% style="color:#037691" %)**aa:**(%%) 791 -**0:** means disable this function and use TDC to send packets. 792 -**1:** means enable this function, use the method of multiple acquisitions to send packets. 793 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535 794 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120 1293 +aa: 1294 +0: means disable this function and use TDC to send packets. 1295 +1: means that the function is enabled to send packets by collecting VDC data for multiple times. 1296 +2: means that the function is enabled to send packets by collecting IDC data for multiple times. 1297 +bb: Each collection interval (s), the value is 1~~65535 1298 +cc: the number of collection times, the value is 1~~120 795 795 796 796 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 797 -|(% style="background-color:#4f81bd; color:white; width:160px" %) **Command Example**|(% style="background-color:#4f81bd; color:white; width:215px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**1301 +|(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response 798 798 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18 799 799 OK 800 800 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)((( 1305 + 1306 + 801 801 Attention:Take effect after ATZ 802 802 803 803 OK 804 804 ))) 805 805 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)((( 1312 + 1313 + 806 806 Use the TDC interval to send packets.(default) 807 807 808 808 809 809 )))|(% style="background-color:#f2f2f2" %)((( 1318 + 1319 + 810 810 Attention:Take effect after ATZ 811 811 812 812 OK 813 813 ))) 814 814 815 - (% style="color:blue" %)**Downlink Command: 0xAE**1325 +Downlink Command: 0xAE 816 816 817 -Format: Command Code (0x 08) followed by5bytes.1327 +Format: Command Code (0xAE) followed by 4 bytes. 818 818 819 -* Example 1: Downlink Payload: AE 01 02 58 12 **~-~-->**AT+STDC=1,600,181329 +* Example 1: Downlink Payload: AE 01 02 58 12 ~-~--> AT+STDC=1,600,18 820 820 821 821 = 4. Battery & Power Consumption = 822 822 ... ... @@ -823,7 +823,7 @@ 823 823 824 824 PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace. 825 825 826 -[[ **Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .1336 +[[Battery Info & Power Consumption Analyze>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 827 827 828 828 829 829 = 5. OTA firmware update = ... ... @@ -859,22 +859,22 @@ 859 859 Test the current values at the depth of different liquids and convert them to a linear scale. 860 860 Replace its ratio with the ratio of water to current in the decoder. 861 861 862 - **Example:**1372 +Example: 863 863 864 864 Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m. 865 865 866 - **Calculate scale factor:**1376 +Calculate scale factor: 867 867 Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294 868 868 869 - **Calculation formula:**1379 +Calculation formula: 870 870 871 871 Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height 872 872 873 - **Actual calculations:**1383 +Actual calculations: 874 874 875 875 Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726 876 876 877 - **Error:**1387 +Error: 878 878 879 879 0.009810726 880 880 ... ... @@ -898,17 +898,17 @@ 898 898 = 8. Order Info = 899 899 900 900 901 -[[image:image-20240109172423-7.png]](% style="display:none" %) 902 902 1412 +[[image:image-20241021093209-1.png]] 903 903 904 904 = 9. Packing Info = 905 905 906 906 907 - (% style="color:#037691" %)**Package Includes**:1417 +Package Includes: 908 908 909 909 * PS-LB or PS-LS LoRaWAN Pressure Sensor 910 910 911 - (% style="color:#037691" %)**Dimension and weight**:1421 +Dimension and weight: 912 912 913 913 * Device Size: cm 914 914 * Device Weight: g ... ... @@ -921,5 +921,3 @@ 921 921 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 922 922 923 923 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]. 924 - 925 -
- image-20240513095927-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.0 KB - Content
- image-20240513100129-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +130.4 KB - Content
- image-20240513100135-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.0 KB - Content
- image-20240817150702-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Bei - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.4 KB - Content
- image-20241021093209-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +52.1 KB - Content
- image-20250116175954-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +68.6 KB - Content
- image-20250116180030-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.2 KB - Content
- image-20250117104812-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.7 KB - Content
- image-20250117104827-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +74.6 KB - Content
- image-20250117104837-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.7 KB - Content
- image-20250117104847-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.2 KB - Content
- image-20250401102131-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +64.7 KB - Content
- image-20250401163530-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +44.9 KB - Content
- image-20250401163539-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +31.1 KB - Content
- image-20250401163826-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +18.9 KB - Content
- image-20250401163906-4.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +181.6 KB - Content