Last modified by Xiaoling on 2025/07/10 16:21

From version 79.1
edited by Mengting Qiu
on 2024/05/11 17:49
Change comment: Uploaded new attachment "image-20240511174954-1.png", version {1}
To version 123.2
edited by Xiaoling
on 2025/04/01 16:43
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Xiaoling
Content
... ... @@ -41,7 +41,7 @@
41 41  )))
42 42  
43 43  (((
44 -PS-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + li-on battery **(%%), it is designed for long term use up to 5 years.
44 +PS-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + Li-ion battery **(%%), it is designed for long term use up to 5 years.
45 45  )))
46 46  
47 47  (((
... ... @@ -67,7 +67,7 @@
67 67  * Downlink to change configure
68 68  * Controllable 3.3v,5v and 12v output to power external sensor
69 69  * 8500mAh Li/SOCl2 Battery (PS-LB)
70 -* Solar panel + 3000mAh Li-on battery (PS-LS)
70 +* Solar panel + 3000mAh Li-ion battery (PS-LS)
71 71  
72 72  == 1.3 Specification ==
73 73  
... ... @@ -136,22 +136,34 @@
136 136  === 1.4.2 Immersion Type ===
137 137  
138 138  
139 -[[image:image-20240109160445-5.png||height="284" width="214"]]
139 +[[image:image-20240109160445-5.png||height="221" width="166"]]
140 140  
141 141  * Immersion Type, Probe IP Level: IP68
142 142  * Measuring Range: Measure range can be customized, up to 100m.
143 143  * Accuracy: 0.2% F.S
144 144  * Long-Term Stability: ±0.2% F.S / Year
145 -* Storage temperature: -30~~80
146 -* Operating temperature: 0~~50
145 +* Storage temperature: -30°C~~80°C
146 +* Operating temperature: 0°C~~50°C
147 147  * Material: 316 stainless steels
148 148  
149 +=== 1.4.3 Wireless Differential Air Pressure Sensor ===
150 +
151 +[[image:image-20240511174954-1.png||height="215" width="215"]]
152 +
153 +* Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
154 +* Accuracy: 0.5% F.S, resolution is 0.05%.
155 +* Overload: 300% F.S
156 +* Zero temperature drift: ±0.03%F.S/°C
157 +* Operating temperature: -20°C~~60°C
158 +* Storage temperature:  -20°C~~60°C
159 +* Compensation temperature: 0~~50°C
160 +
149 149  == 1.5 Application and Installation ==
150 150  
151 151  === 1.5.1 Thread Installation Type ===
152 152  
153 153  
154 -(% style="color:blue" %)**Application:**
166 +Application:
155 155  
156 156  * Hydraulic Pressure
157 157  * Petrochemical Industry
... ... @@ -169,7 +169,7 @@
169 169  === 1.5.2 Immersion Type ===
170 170  
171 171  
172 -(% style="color:blue" %)**Application:**
184 +Application:
173 173  
174 174  Liquid & Water Pressure / Level detect.
175 175  
... ... @@ -176,7 +176,7 @@
176 176  [[image:1675071725288-579.png]]
177 177  
178 178  
179 -The Immersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.
191 +Below is the wiring to for connect the probe to the device.
180 180  
181 181  The Immersion Type Sensor has different variant which defined by Ixx. For example, this means two points:
182 182  
... ... @@ -188,32 +188,64 @@
188 188  
189 189  [[image:1675071776102-240.png]]
190 190  
203 +Size of immersion type water depth sensor:
191 191  
205 +[[image:image-20250401102131-1.png||height="268" width="707"]]
206 +
207 +
208 +=== 1.5.3 Wireless Differential Air Pressure Sensor ===
209 +
210 +
211 +Application:
212 +
213 +Indoor Air Control & Filter clogging Detect.
214 +
215 +[[image:image-20240513100129-6.png]]
216 +
217 +[[image:image-20240513100135-7.png]]
218 +
219 +
220 +Below is the wiring to for connect the probe to the device.
221 +
222 +[[image:image-20240513093957-1.png]]
223 +
224 +
225 +Size of wind pressure transmitter:
226 +
227 +[[image:image-20240513094047-2.png]]
228 +
229 +Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.
230 +
231 +
192 192  == 1.6 Sleep mode and working mode ==
193 193  
194 194  
195 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
235 +Deep Sleep Mode: Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
196 196  
197 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
237 +Working Mode: In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
198 198  
199 199  
200 200  == 1.7 Button & LEDs ==
201 201  
202 202  
203 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]](% style="display:none" %)
243 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
204 204  
205 205  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
206 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
246 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action
207 207  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
208 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
248 +
249 +
250 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once.
209 209  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
210 210  )))
211 211  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
212 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
213 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
254 +
255 +
256 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network.
257 +Green led will solidly turn on for 5 seconds after joined in network.
214 214  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
215 215  )))
216 -|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
260 +|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
217 217  
218 218  == 1.8 Pin Mapping ==
219 219  
... ... @@ -238,16 +238,16 @@
238 238  
239 239  == 1.10 Mechanical ==
240 240  
241 -=== 1.10.1 for LB version(% style="display:none" %) (%%) ===
285 +=== 1.10.1 for LB version ===
242 242  
243 243  
244 -[[image:image-20240109160800-6.png]]
288 +[[image:image-20250401163530-1.jpeg]]
245 245  
246 246  
247 247  === 1.10.2 for LS version ===
248 248  
249 249  
250 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/WebHome/image-20231231203439-3.png?width=886&height=385&rev=1.1||alt="image-20231231203439-3.png"]]
294 +[[image:image-20250401163539-2.jpeg]]
251 251  
252 252  
253 253  = 2. Configure PS-LB/LS to connect to LoRaWAN network =
... ... @@ -255,7 +255,7 @@
255 255  == 2.1 How it works ==
256 256  
257 257  
258 -The PS-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
302 +The PS-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
259 259  
260 260  
261 261  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -263,7 +263,6 @@
263 263  
264 264  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
265 265  
266 -
267 267  [[image:1675144005218-297.png]]
268 268  
269 269  
... ... @@ -270,7 +270,7 @@
270 270  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
271 271  
272 272  
273 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB/LS.
316 +Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.
274 274  
275 275  Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
276 276  
... ... @@ -280,32 +280,32 @@
280 280  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
281 281  
282 282  
283 -(% style="color:blue" %)**Register the device**
326 +Register the device
284 284  
285 285  [[image:1675144099263-405.png]]
286 286  
287 287  
288 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
331 +Add APP EUI and DEV EUI
289 289  
290 290  [[image:1675144117571-832.png]]
291 291  
292 292  
293 -(% style="color:blue" %)**Add APP EUI in the application**
336 +Add APP EUI in the application
294 294  
295 295  
296 296  [[image:1675144143021-195.png]]
297 297  
298 298  
299 -(% style="color:blue" %)**Add APP KEY**
342 +Add APP KEY
300 300  
301 301  [[image:1675144157838-392.png]]
302 302  
303 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB/LS
346 +Step 2: Activate on PS-LB/LS
304 304  
305 305  
306 306  Press the button for 5 seconds to activate the PS-LB/LS.
307 307  
308 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
351 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network.
309 309  
310 310  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
311 311  
... ... @@ -319,11 +319,10 @@
319 319  
320 320  Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
321 321  
322 -
323 323  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
324 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
325 -|(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
326 -|(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
366 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)Device Status (FPORT=5)
367 +|(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2
368 +|(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
327 327  
328 328  Example parse in TTNv3
329 329  
... ... @@ -330,11 +330,11 @@
330 330  [[image:1675144504430-490.png]]
331 331  
332 332  
333 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB/LS, this value is 0x16
375 +Sensor Model: For PS-LB/LS, this value is 0x16
334 334  
335 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
377 +Firmware Version: 0x0100, Means: v1.0.0 version
336 336  
337 -(% style="color:#037691" %)**Frequency Band**:
379 +Frequency Band:
338 338  
339 339  *0x01: EU868
340 340  
... ... @@ -365,7 +365,7 @@
365 365  *0x0e: MA869
366 366  
367 367  
368 -(% style="color:#037691" %)**Sub-Band**:
410 +Sub-Band:
369 369  
370 370  AU915 and US915:value 0x00 ~~ 0x08
371 371  
... ... @@ -374,7 +374,7 @@
374 374  Other Bands: Always 0x00
375 375  
376 376  
377 -(% style="color:#037691" %)**Battery Info**:
419 +Battery Info:
378 378  
379 379  Check the battery voltage.
380 380  
... ... @@ -389,10 +389,12 @@
389 389  Uplink payload includes in total 9 bytes.
390 390  
391 391  
392 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
434 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
393 393  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
394 -**Size(bytes)**
395 -)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
436 +
437 +
438 +Size(bytes)
439 +)))|(% style="background-color:#4f81bd; color:white; width:50px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
396 396  |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
397 397  
398 398  [[image:1675144608950-310.png]]
... ... @@ -414,10 +414,10 @@
414 414  PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
415 415  
416 416  
417 -**For example.**
461 +For example.
418 418  
419 419  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
420 -|(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
464 +|(% style="background-color:#4f81bd; color:white" %)Part Number|(% style="background-color:#4f81bd; color:white" %)Probe Used|(% style="background-color:#4f81bd; color:white" %)4~~20mA scale|(% style="background-color:#4f81bd; color:white" %)Example: 12mA meaning
421 421  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
422 422  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
423 423  |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
... ... @@ -428,9 +428,9 @@
428 428  === 2.3.5 0~~20mA value (IDC_IN) ===
429 429  
430 430  
431 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
475 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
432 432  
433 -(% style="color:#037691" %)**Example**:
477 +Example:
434 434  
435 435  27AE(H) = 10158 (D)/1000 = 10.158mA.
436 436  
... ... @@ -440,12 +440,12 @@
440 440  [[image:image-20230225154759-1.png||height="408" width="741"]]
441 441  
442 442  
443 -=== 2.3.6 0~~30V value ( pin VDC_IN) ===
487 +=== 2.3.6 0~~30V value (pin VDC_IN) ===
444 444  
445 445  
446 446  Measure the voltage value. The range is 0 to 30V.
447 447  
448 -(% style="color:#037691" %)**Example**:
492 +Example:
449 449  
450 450  138E(H) = 5006(D)/1000= 5.006V
451 451  
... ... @@ -455,7 +455,7 @@
455 455  
456 456  IN1 and IN2 are used as digital input pins.
457 457  
458 -(% style="color:#037691" %)**Example**:
502 +Example:
459 459  
460 460  09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
461 461  
... ... @@ -462,9 +462,9 @@
462 462  09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
463 463  
464 464  
465 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
509 +This data field shows if this packet is generated by Interrupt Pin or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
466 466  
467 -(% style="color:#037691" %)**Example:**
511 +Example:
468 468  
469 469  09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
470 470  
... ... @@ -478,9 +478,13 @@
478 478  
479 479  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
480 480  |(% style="background-color:#4f81bd; color:white; width:65px" %)(((
481 -**Size(bytes)**
482 -)))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
525 +
526 +
527 +Size(bytes)
528 +)))|(% style="background-color:#4f81bd; color:white; width:35px" %)2|(% style="background-color:#4f81bd; color:white; width:400px" %)n
483 483  |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
530 +
531 +
484 484  Voltage value, each 2 bytes is a set of voltage values.
485 485  )))
486 486  
... ... @@ -496,7 +496,6 @@
496 496  
497 497  While using TTN network, you can add the payload format to decode the payload.
498 498  
499 -
500 500  [[image:1675144839454-913.png]]
501 501  
502 502  
... ... @@ -514,12 +514,10 @@
514 514  
515 515  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
516 516  
564 +Step 1: Be sure that your device is programmed and properly connected to the network at this time.
517 517  
518 -(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
566 +Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
519 519  
520 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
521 -
522 -
523 523  [[image:1675144951092-237.png]]
524 524  
525 525  
... ... @@ -526,9 +526,9 @@
526 526  [[image:1675144960452-126.png]]
527 527  
528 528  
529 -(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
574 +Step 3: Create an account or log in Datacake.
530 530  
531 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB/LS product.
576 +Step 4: Create PS-LB/LS product.
532 532  
533 533  [[image:1675145004465-869.png]]
534 534  
... ... @@ -536,11 +536,10 @@
536 536  [[image:1675145018212-853.png]]
537 537  
538 538  
539 -
540 540  [[image:1675145029119-717.png]]
541 541  
542 542  
543 -(% style="color:blue" %)**Step 5: **(%%)add payload decode
587 +Step 5: add payload decode
544 544  
545 545  [[image:1675145051360-659.png]]
546 546  
... ... @@ -550,23 +550,450 @@
550 550  
551 551  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
552 552  
553 -
554 554  [[image:1675145081239-376.png]]
555 555  
556 556  
557 -== 2.6 Frequency Plans ==
600 +== 2.6 Datalog Feature (Since V1.1) ==
558 558  
559 559  
603 +When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot.
604 +
605 +
606 +=== 2.6.1 Unix TimeStamp ===
607 +
608 +
609 +PS-LB uses Unix TimeStamp format based on
610 +
611 +[[image:image-20250401163826-3.jpeg]]
612 +
613 +Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
614 +
615 +Below is the converter example:
616 +
617 +[[image:image-20250401163906-4.jpeg]]
618 +
619 +
620 +=== 2.6.2 Set Device Time ===
621 +
622 +
623 +There are two ways to set the device's time:
624 +
625 +
626 +~1. Through LoRaWAN MAC Command (Default settings)
627 +
628 +Users need to set SYNCMOD=1 to enable sync time via the MAC command.
629 +
630 +Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
631 +
632 +Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.
633 +
634 +
635 + 2. Manually Set Time
636 +
637 +Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
638 +
639 +
640 +=== 2.6.3 Poll sensor value ===
641 +
642 +Users can poll sensor values based on timestamps. Below is the downlink command.
643 +
644 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
645 +|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31)
646 +|(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte
647 +|(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)(((
648 +
649 +
650 +Timestamp end
651 +)))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval
652 +
653 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
654 +
655 +For example, downlink command[[image:image-20250117104812-1.png]]
656 +
657 +Is to check 2024/12/20 09:34:59 to 2024/12/20 14:34:59's data
658 +
659 +Uplink Internal =5s,means PS-LB will send one packet every 5s. range 5~~255s.
660 +
661 +
662 +=== 2.6.4 Datalog Uplink payload (FPORT~=3) ===
663 +
664 +
665 +The Datalog uplinks will use below payload format.
666 +
667 +Retrieval data payload:
668 +
669 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
670 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
671 +Size(bytes)
672 +)))|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)2|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)4
673 +|(% style="width:103px" %)Value|(% style="width:68px" %)(((
674 +
675 +
676 +Probe_mod
677 +)))|(% style="width:104px" %)(((
678 +
679 +
680 +VDC_intput_V
681 +)))|(% style="width:83px" %)(((
682 +
683 +
684 +IDC_intput_mA
685 +)))|(% style="width:201px" %)(((
686 +
687 +
688 +IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status
689 +)))|(% style="width:86px" %)Unix Time Stamp
690 +
691 +IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:
692 +
693 +[[image:image-20250117104847-4.png]]
694 +
695 +
696 +No ACK Message:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
697 +
698 +Poll Message Flag: 1: This message is a poll message reply.
699 +
700 +* Poll Message Flag is set to 1.
701 +
702 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
703 +
704 +For example, in US915 band, the max payload for different DR is:
705 +
706 +a) DR0: max is 11 bytes so one entry of data
707 +
708 +b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
709 +
710 +c) DR2: total payload includes 11 entries of data
711 +
712 +d) DR3: total payload includes 22 entries of data.
713 +
714 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
715 +
716 +Example:
717 +
718 +If PS-LB-NA has below data inside Flash:
719 +
720 +[[image:image-20250117104837-3.png]]
721 +
722 +
723 +If user sends below downlink command: 316788D9BF6788DB6305
724 +
725 +Where : Start time: 6788D9BF = time 25/1/16 10:04:47
726 +
727 + Stop time: 6788DB63 = time 25/1/16 10:11:47
728 +
729 +
730 +PA-LB-NA will uplink this payload.
731 +
732 +[[image:image-20250117104827-2.png]]
733 +
734 +
735 +00001B620000406788D9BF  00000D130000406788D9FB  00000D120000406788DA37  00000D110000406788DA73  00000D100000406788DAAF  00000D100000406788DAEB  00000D0F0000406788DB27  00000D100000406788DB63
736 +
737 +
738 +Where the first 11 bytes is for the first entry :
739 +
740 +
741 +0000  0D10  0000  40  6788DB63
742 +
743 +
744 +Probe_mod = 0x0000 = 0000
745 +
746 +
747 +VDC_intput_V = 0x0D10/1000=3.344V
748 +
749 +IDC_intput_mA = 0x0000/1000=0mA
750 +
751 +
752 +IN1_pin_level = (0x40& 0x08)? "High":"Low" = 0(Low)
753 +
754 +IN2_pin_level = (0x40& 0x04)? "High":"Low" = 0(Low)
755 +
756 +Exti_pin_level = (0x40& 0x02)? "High":"Low" = 0(Low)
757 +
758 +Exti_status = (0x40& 0x01)? "True":"False" = 0(False)
759 +
760 +
761 +Unix time is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
762 +
763 +Its data format is:
764 +
765 +[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
766 +
767 +Note: water_deep in the data needs to be converted using decoding to get it.
768 +
769 +
770 +=== 2.6.5 Decoder in TTN V3 ===
771 +
772 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
773 +
774 +Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
775 +
776 +
777 +== 2.7 Frequency Plans ==
778 +
779 +
560 560  The PS-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
561 561  
562 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
782 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/a>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
563 563  
564 564  
565 -== 2.7 ​Firmware Change Log ==
785 +== 2.8 Report on Change Feature (Since firmware V1.2) ==
566 566  
787 +=== 2.8.1 Uplink payload(Enable ROC) ===
567 567  
568 -**Firmware download link:**
569 569  
790 +Used to Monitor the IDC and VDC increments, and send ROC uplink when the IDC or VDC changes exceed.
791 +
792 +With ROC enabled, the payload is as follows:
793 +
794 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
795 +|(% style="background-color:#4f81bd; color:white; width:97px" %)(((
796 +
797 +
798 +Size(bytes)
799 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
800 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
801 +
802 +
803 +[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag
804 +)))
805 +
806 +IN1 &IN2 , Interrupt  flag , ROC_flag:
807 +
808 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
809 +|(% style="background-color:#4f81bd; color:white; width:50px" %)Size(bit)|(% style="background-color:#4f81bd; color:white; width:60px" %)bit7|(% style="background-color:#4f81bd; color:white; width:62px" %)bit6|(% style="background-color:#4f81bd; color:white; width:62px" %)bit5|(% style="background-color:#4f81bd; color:white; width:65px" %)bit4|(% style="background-color:#4f81bd; color:white; width:56px" %)bit3|(% style="background-color:#4f81bd; color:white; width:55px" %)bit2|(% style="background-color:#4f81bd; color:white; width:55px" %)bit1|(% style="background-color:#4f81bd; color:white; width:50px" %)bit0
810 +|(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status
811 +
812 +* IDC_Roc_flagL
813 +
814 +80 (H): (0x80&0x80)=80(H)=1000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
815 +
816 +60 (H): (0x60&0x80)=0  bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
817 +
818 +
819 +* IDC_Roc_flagH
820 +
821 +60 (H): (0x60&0x40)=60(H)=01000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
822 +
823 +80 (H): (0x80&0x40)=0  bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
824 +
825 +
826 +* VDC_Roc_flagL
827 +
828 +20 (H): (0x20&0x20)=20(H)=0010 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
829 +
830 +90 (H): (0x90&0x20)=0  bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
831 +
832 +
833 +* VDC_Roc_flagH
834 +
835 +90 (H): (0x90&0x10)=10(H)=0001 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
836 +
837 +20 (H): (0x20&0x10)=0  bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
838 +
839 +
840 +* IN1_pin_level & IN2_pin_level
841 +
842 +IN1 and IN2 are used as digital input pins.
843 +
844 +80 (H): (0x80&0x08)=0  IN1 pin is low level.
845 +
846 +80 (H): (0x09&0x04)=0    IN2 pin is low level.
847 +
848 +
849 +* Exti_pin_level &Exti_status
850 +
851 +This data field shows whether the packet is generated by an interrupt pin.
852 +
853 +Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the GPIO_EXTI pin.
854 +
855 +Exti_pin_level:  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
856 +
857 +Exti_status: 80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
858 +
859 +
860 +=== 2.8.2 Set the Report on Change ===
861 +
862 +
863 +Feature: Get or Set the Report on Change.
864 +
865 +
866 +==== 2.8.2.1 Wave alarm mode ====
867 +
868 +Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed.
869 +
870 +* Change value: The amount by which the next detection value increases/decreases relative to the previous detection value.
871 +* Comparison value: A parameter to compare with the latest ROC test.
872 +
873 +AT Command: AT+ROC
874 +
875 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
876 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
877 +|(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
878 +
879 +
880 +0,0,0,0(default)
881 +OK
882 +)))
883 +|(% colspan="1" rowspan="4" style="width:143px" %)(((
884 +
885 +
886 +
887 +
888 +
889 +AT+ROC=a,b,c,d
890 +)))|(% style="width:154px" %)(((
891 +
892 +
893 +
894 +
895 +
896 +
897 +
898 +a: Enable or disable the ROC
899 +)))|(% style="width:197px" %)(((
900 +
901 +
902 +0: off
903 +1: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
904 +
905 +2: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
906 +)))
907 +|(% style="width:154px" %)b: Set the detection interval|(% style="width:197px" %)(((
908 +
909 +
910 +Range:  0~~65535s
911 +)))
912 +|(% style="width:154px" %)c: Setting the IDC change value|(% style="width:197px" %)Unit: uA
913 +|(% style="width:154px" %)d: Setting the VDC change value|(% style="width:197px" %)Unit: mV
914 +
915 +Example:
916 +
917 +* AT+ROC=0,0,0,0  ~/~/The ROC function is not used.
918 +* AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed.
919 +* AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage.
920 +* AT+ROC=2,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed.
921 +
922 +Downlink Command: 0x09 aa bb cc dd
923 +
924 +Format: Function code (0x09) followed by 4 bytes.
925 +
926 +aa: 1 byte; Set the wave alarm mode.
927 +
928 +bb: 2 bytes; Set the detection interval. (second)
929 +
930 +cc: 2 bytes; Setting the IDC change threshold. (uA)
931 +
932 +dd: 2 bytes; Setting the VDC change threshold. (mV)
933 +
934 +Example:
935 +
936 +* Downlink Payload: 09 01 00 3C 0B B8 01 F4  ~/~/Equal to AT+ROC=1,60,3000, 500
937 +* Downlink Payload: 09 01 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=1,60,3000,0
938 +* Downlink Payload: 09 02 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=2,60,3000,0
939 +
940 +Screenshot of parsing example in TTN:
941 +
942 +* AT+ROC=1,60,3000, 500.
943 +
944 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB-NA--LoRaWAN_Analog_Sensor_User_Manual/WebHome/image-20241019170902-1.png?width=1454&height=450&rev=1.1||alt="image-20241019170902-1.png"]]
945 +
946 +
947 +==== 2.8.2.2 Over-threshold alarm mode ====
948 +
949 +Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded.
950 +
951 +AT Command: AT+ROC=3,a,b,c,d,e
952 +
953 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
954 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
955 +|(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
956 +
957 +
958 +0,0,0,0(default)
959 +OK
960 +)))
961 +|(% colspan="1" rowspan="5" style="width:143px" %)(((
962 +
963 +
964 +
965 +
966 +
967 +AT+ROC=3,a,b,c,d,e
968 +)))|(% style="width:160px" %)(((
969 +
970 +
971 +a: Set the detection interval
972 +)))|(% style="width:185px" %)(((
973 +
974 +
975 +Range:  0~~65535s
976 +)))
977 +|(% style="width:160px" %)b: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
978 +
979 +
980 +0: Less than the set IDC threshold, Alarm
981 +
982 +1: Greater than the set IDC threshold, Alarm
983 +)))
984 +|(% style="width:160px" %)(((
985 +
986 +
987 +c:  IDC alarm threshold
988 +)))|(% style="width:185px" %)(((
989 +
990 +
991 +Unit: uA
992 +)))
993 +|(% style="width:160px" %)d: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
994 +
995 +
996 +0: Less than the set VDC threshold, Alarm
997 +
998 +1: Greater than the set VDC threshold, Alarm
999 +)))
1000 +|(% style="width:160px" %)e: VDC alarm threshold|(% style="width:185px" %)Unit: mV
1001 +
1002 +Example:
1003 +
1004 +* AT+ROC=3,60,0,3000,0,5000  ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
1005 +* AT+ROC=3,180,1,3000,1,5000  ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
1006 +* AT+ROC=3,300,0,3000,1,5000  ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
1007 +
1008 +Downlink Command: 0x09 03 aa bb cc dd ee
1009 +
1010 +Format: Function code (0x09) followed by 03 and the remaining 5 bytes.
1011 +
1012 +aa: 2 bytes; Set the detection interval.(second)
1013 +
1014 +bb: 1 byte; Set the IDC alarm trigger condition.
1015 +
1016 +cc: 2 bytes; IDC alarm threshold.(uA)
1017 +
1018 +
1019 +dd: 1 byte; Set the VDC alarm trigger condition.
1020 +
1021 +ee: 2 bytes; VDC alarm threshold.(mV)
1022 +
1023 +Example:
1024 +
1025 +* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
1026 +* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
1027 +* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
1028 +
1029 +Screenshot of parsing example in TTN:
1030 +
1031 +* AT+ROC=3,60,0,3000,0,5000
1032 +
1033 +[[image:image-20250116180030-2.png]]
1034 +
1035 +
1036 +== 2.9 ​Firmware Change Log ==
1037 +
1038 +
1039 +Firmware download link:
1040 +
570 570  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
571 571  
572 572  
... ... @@ -577,7 +577,7 @@
577 577  
578 578  PS-LB/LS supports below configure method:
579 579  
580 -* AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1051 +* AT Command via Bluetooth Connection (Recommand Way): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
581 581  * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
582 582  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
583 583  
... ... @@ -605,21 +605,25 @@
605 605  
606 606  Feature: Change LoRaWAN End Node Transmit Interval.
607 607  
608 -(% style="color:blue" %)**AT Command: AT+TDC**
1079 +AT Command: AT+TDC
609 609  
610 610  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
611 -|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Response**
1082 +|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response
612 612  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
1084 +
1085 +
613 613  30000
614 614  OK
615 615  the interval is 30000ms = 30s
616 616  )))
617 617  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
1091 +
1092 +
618 618  OK
619 619  Set transmit interval to 60000ms = 60 seconds
620 620  )))
621 621  
622 -(% style="color:blue" %)**Downlink Command: 0x01**
1097 +Downlink Command: 0x01
623 623  
624 624  Format: Command Code (0x01) followed by 3 bytes time value.
625 625  
... ... @@ -633,16 +633,20 @@
633 633  
634 634  Feature, Set Interrupt mode for GPIO_EXIT.
635 635  
636 -(% style="color:blue" %)**AT Command: AT+INTMOD**
1111 +AT Command: AT+INTMOD
637 637  
638 638  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
639 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Response**
1114 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response
640 640  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
1116 +
1117 +
641 641  0
642 642  OK
643 643  the mode is 0 =Disable Interrupt
644 644  )))
645 645  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
1123 +
1124 +
646 646  Set Transmit Interval
647 647  0. (Disable Interrupt),
648 648  ~1. (Trigger by rising and falling edge)
... ... @@ -650,7 +650,7 @@
650 650  3. (Trigger by rising edge)
651 651  )))|(% style="background-color:#f2f2f2; width:157px" %)OK
652 652  
653 -(% style="color:blue" %)**Downlink Command: 0x06**
1132 +Downlink Command: 0x06
654 654  
655 655  Format: Command Code (0x06) followed by 3 bytes.
656 656  
... ... @@ -664,76 +664,106 @@
664 664  
665 665  Feature, Control the output 3V3 , 5V or 12V.
666 666  
667 -(% style="color:blue" %)**AT Command: AT+3V3T**
1146 +AT Command: AT+3V3T
668 668  
669 669  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
670 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 201px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1149 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
671 671  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
1151 +
1152 +
672 672  0
673 673  OK
674 674  )))
675 675  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1157 +
1158 +
676 676  OK
677 677  default setting
678 678  )))
679 679  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
1163 +
1164 +
680 680  OK
681 681  )))
682 682  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1168 +
1169 +
683 683  OK
684 684  )))
685 685  
686 -(% style="color:blue" %)**AT Command: AT+5VT**
1173 +AT Command: AT+5VT
687 687  
688 688  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
689 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1176 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
690 690  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1178 +
1179 +
691 691  0
692 692  OK
693 693  )))
694 694  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1184 +
1185 +
695 695  OK
696 696  default setting
697 697  )))
698 698  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
1190 +
1191 +
699 699  OK
700 700  )))
701 701  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1195 +
1196 +
702 702  OK
703 703  )))
704 704  
705 -(% style="color:blue" %)**AT Command: AT+12VT**
1200 +AT Command: AT+12VT
706 706  
707 707  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
708 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 199px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1203 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response
709 709  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1205 +
1206 +
710 710  0
711 711  OK
712 712  )))
713 713  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
714 714  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
1212 +
1213 +
715 715  OK
716 716  )))
717 717  
718 -(% style="color:blue" %)**Downlink Command: 0x07**
1217 +Downlink Command: 0x07
719 719  
720 720  Format: Command Code (0x07) followed by 3 bytes.
721 721  
722 722  The first byte is which power, the second and third bytes are the time to turn on.
723 723  
724 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
725 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
726 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
727 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
728 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
729 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
1223 +* Example 1: Downlink Payload: 070101F4  ~-~-->  AT+3V3T=500
1224 +* Example 2: Downlink Payload: 0701FFFF   ~-~-->  AT+3V3T=65535
1225 +* Example 3: Downlink Payload: 070203E8  ~-~-->  AT+5VT=1000
1226 +* Example 4: Downlink Payload: 07020000  ~-~-->  AT+5VT=0
1227 +* Example 5: Downlink Payload: 070301F4  ~-~-->  AT+12VT=500
1228 +* Example 6: Downlink Payload: 07030000  ~-~-->  AT+12VT=0
730 730  
1230 +Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.
1231 +
1232 +Therefore, the corresponding downlink command is increased by one byte to five bytes.
1233 +
1234 +Example:
1235 +
1236 +* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 01 01 D4 C0  ~-~-->  AT+3V3T=120000
1237 +* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 02 01 86 A0  ~-~-->  AT+5VT=100000
1238 +* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 03 01 38 80  ~-~-->  AT+12VT=80000
1239 +
731 731  === 3.3.4 Set the Probe Model ===
732 732  
733 733  
734 734  Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
735 735  
736 -(% style="color:blue" %)**AT Command: AT** **+PROBE**
1245 +AT Command: AT +PROBE
737 737  
738 738  AT+PROBE=aabb
739 739  
... ... @@ -745,12 +745,20 @@
745 745  
746 746  (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
747 747  
1257 +When aa=02, it is the Differential Pressure Sensor , which converts the current into a pressure value;
1258 +
1259 +bb represents which type of pressure sensor it is.
1260 +
1261 +(0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C)
1262 +
748 748  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
749 -|(% style="background-color:#4f81bd; color:white; width:154px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:269px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1264 +|(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
750 750  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
751 751  OK
752 752  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
753 753  |(% style="background-color:#f2f2f2; width:154px" %)(((
1269 +
1270 +
754 754  AT+PROBE=000A
755 755  )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
756 756  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
... ... @@ -757,52 +757,59 @@
757 757  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
758 758  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
759 759  
760 -(% style="color:blue" %)**Downlink Command: 0x08**
1277 +Downlink Command: 0x08
761 761  
762 762  Format: Command Code (0x08) followed by 2 bytes.
763 763  
764 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
765 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
1281 +* Example 1: Downlink Payload: 080003  ~-~-->  AT+PROBE=0003
1282 +* Example 2: Downlink Payload: 080101  ~-~-->  AT+PROBE=0101
766 766  
767 767  === 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
768 768  
769 769  
770 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
1287 +Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time.
771 771  
772 -(% style="color:blue" %)**AT Command: AT** **+STDC**
1289 +AT Command: AT +STDC
773 773  
774 774  AT+STDC=aa,bb,bb
775 775  
776 -(% style="color:#037691" %)**aa:**(%%)
777 -**0:** means disable this function and use TDC to send packets.
778 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
779 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
780 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
1293 +aa:
1294 +0: means disable this function and use TDC to send packets.
1295 +1: means that the function is enabled to send packets by collecting VDC data for multiple times.
1296 +2: means that the function is enabled to send packets by collecting IDC data for multiple times.
1297 +bb: Each collection interval (s), the value is 1~~65535
1298 +cc: the number of collection times, the value is 1~~120
781 781  
782 782  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
783 -|(% style="background-color:#4f81bd; color:white; width:160px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:215px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1301 +|(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
784 784  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
785 785  OK
786 786  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1305 +
1306 +
787 787  Attention:Take effect after ATZ
788 788  
789 789  OK
790 790  )))
791 791  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
1312 +
1313 +
792 792  Use the TDC interval to send packets.(default)
793 793  
794 794  
795 795  )))|(% style="background-color:#f2f2f2" %)(((
1318 +
1319 +
796 796  Attention:Take effect after ATZ
797 797  
798 798  OK
799 799  )))
800 800  
801 -(% style="color:blue" %)**Downlink Command: 0xAE**
1325 +Downlink Command: 0xAE
802 802  
803 -Format: Command Code (0x08) followed by 5 bytes.
1327 +Format: Command Code (0xAE) followed by 4 bytes.
804 804  
805 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
1329 +* Example 1: Downlink Payload: AE 01 02 58 12 ~-~-->  AT+STDC=1,600,18
806 806  
807 807  = 4. Battery & Power Consumption =
808 808  
... ... @@ -809,7 +809,7 @@
809 809  
810 810  PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
811 811  
812 -[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1336 +[[Battery Info & Power Consumption Analyze>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
813 813  
814 814  
815 815  = 5. OTA firmware update =
... ... @@ -845,22 +845,22 @@
845 845  Test the current values at the depth of different liquids and convert them to a linear scale.
846 846  Replace its ratio with the ratio of water to current in the decoder.
847 847  
848 -**Example:**
1372 +Example:
849 849  
850 850  Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
851 851  
852 -**Calculate scale factor:**
1376 +Calculate scale factor:
853 853  Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
854 854  
855 -**Calculation formula:**
1379 +Calculation formula:
856 856  
857 857  Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
858 858  
859 -**Actual calculations:**
1383 +Actual calculations:
860 860  
861 861  Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
862 862  
863 -**Error:**
1387 +Error:
864 864  
865 865  0.009810726
866 866  
... ... @@ -884,17 +884,17 @@
884 884  = 8. Order Info =
885 885  
886 886  
887 -[[image:image-20240109172423-7.png]](% style="display:none" %)
888 888  
1412 +[[image:image-20241021093209-1.png]]
889 889  
890 890  = 9. ​Packing Info =
891 891  
892 892  
893 -(% style="color:#037691" %)**Package Includes**:
1417 +Package Includes:
894 894  
895 895  * PS-LB or PS-LS LoRaWAN Pressure Sensor
896 896  
897 -(% style="color:#037691" %)**Dimension and weight**:
1421 +Dimension and weight:
898 898  
899 899  * Device Size: cm
900 900  * Device Weight: g
... ... @@ -907,5 +907,3 @@
907 907  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
908 908  
909 909  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].
910 -
911 -
image-20240513093957-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +320.4 KB
Content
image-20240513094047-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +62.7 KB
Content
image-20240513094054-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +201.1 KB
Content
image-20240513095921-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +130.4 KB
Content
image-20240513095927-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +98.0 KB
Content
image-20240513100129-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +130.4 KB
Content
image-20240513100135-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +98.0 KB
Content
image-20240817150702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +38.4 KB
Content
image-20241021093209-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +52.1 KB
Content
image-20250116175954-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +68.6 KB
Content
image-20250116180030-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +69.2 KB
Content
image-20250117104812-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +1.7 KB
Content
image-20250117104827-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +74.6 KB
Content
image-20250117104837-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +38.7 KB
Content
image-20250117104847-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 KB
Content
image-20250401102131-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +64.7 KB
Content
image-20250401163530-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +44.9 KB
Content
image-20250401163539-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +31.1 KB
Content
image-20250401163826-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +18.9 KB
Content
image-20250401163906-4.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +181.6 KB
Content