Last modified by Xiaoling on 2025/07/10 16:21

From version 76.3
edited by Xiaoling
on 2024/03/25 16:17
Change comment: There is no comment for this version
To version 42.16
edited by Xiaoling
on 2023/01/31 16:11
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
1 +PS-LB -- LoRaWAN Air Water Pressure Sensor User Manual
Content
... ... @@ -1,17 +1,9 @@
1 -
1 +[[image:image-20230131115217-1.png]]
2 2  
3 3  
4 -(% style="text-align:center" %)
5 -[[image:image-20240109154731-4.png||height="671" width="945"]]
6 6  
5 +**Table of Contents:**
7 7  
8 -
9 -
10 -
11 -
12 -
13 -**Table of Contents :**
14 -
15 15  {{toc/}}
16 16  
17 17  
... ... @@ -24,33 +24,22 @@
24 24  == 1.1 What is LoRaWAN Pressure Sensor ==
25 25  
26 26  
27 -(((
28 -The Dragino PS-LB/LS series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB/LS can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
29 -)))
19 +The Dragino PS-LB series sensors are **(% style="color:blue" %)LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
30 30  
31 -(((
32 -The PS-LB/LS series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
33 -)))
21 +The PS-LB series sensors include **(% style="color:blue" %)Thread Installation Type**(%%) and **(% style="color:blue" %)Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
34 34  
35 -(((
36 -The LoRa wireless technology used in PS-LB/LS allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
37 -)))
23 +The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
38 38  
39 -(((
40 -PS-LB/LS supports BLE configure and wireless OTA update which make user easy to use.
41 -)))
25 +PS-LB supports BLE configure and wireless OTA update which make user easy to use.
42 42  
43 -(((
44 -PS-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + li-on battery **(%%), it is designed for long term use up to 5 years.
45 -)))
27 +PS-LB is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
46 46  
47 -(((
48 -Each PS-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
49 -)))
29 +Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
50 50  
51 51  [[image:1675071321348-194.png]]
52 52  
53 53  
34 +
54 54  == 1.2 ​Features ==
55 55  
56 56  
... ... @@ -65,44 +65,43 @@
65 65  * Support wireless OTA update firmware
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 -* Controllable 3.3v,5v and 12v output to power external sensor
69 -* 8500mAh Li/SOCl2 Battery (PS-LB)
70 -* Solar panel + 3000mAh Li-on battery (PS-LS)
49 +* 8500mAh Battery for long term use
71 71  
51 +
72 72  == 1.3 Specification ==
73 73  
74 74  
75 -(% style="color:#037691" %)**Micro Controller:**
55 +**(% style="color:#037691" %)Micro Controller:**
76 76  
77 77  * MCU: 48Mhz ARM
78 78  * Flash: 256KB
79 79  * RAM: 64KB
80 80  
81 -(% style="color:#037691" %)**Common DC Characteristics:**
61 +**(% style="color:#037691" %)Common DC Characteristics:**
82 82  
83 -* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
63 +* Supply Voltage: 2.5v ~~ 3.6v
84 84  * Operating Temperature: -40 ~~ 85°C
85 85  
86 -(% style="color:#037691" %)**LoRa Spec:**
66 +**(% style="color:#037691" %)LoRa Spec:**
87 87  
88 -* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz,Band 2 (LF): 410 ~~ 528 Mhz
68 +* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
89 89  * Max +22 dBm constant RF output vs.
90 90  * RX sensitivity: down to -139 dBm.
91 91  * Excellent blocking immunity
92 92  
93 -(% style="color:#037691" %)**Current Input Measuring :**
73 +**(% style="color:#037691" %)Current Input Measuring :**
94 94  
95 95  * Range: 0 ~~ 20mA
96 96  * Accuracy: 0.02mA
97 97  * Resolution: 0.001mA
98 98  
99 -(% style="color:#037691" %)**Voltage Input Measuring:**
79 +**(% style="color:#037691" %)Voltage Input Measuring:**
100 100  
101 101  * Range: 0 ~~ 30v
102 102  * Accuracy: 0.02v
103 103  * Resolution: 0.001v
104 104  
105 -(% style="color:#037691" %)**Battery:**
85 +**(% style="color:#037691" %)Battery:**
106 106  
107 107  * Li/SOCI2 un-chargeable battery
108 108  * Capacity: 8500mAh
... ... @@ -110,11 +110,12 @@
110 110  * Max continuously current: 130mA
111 111  * Max boost current: 2A, 1 second
112 112  
113 -(% style="color:#037691" %)**Power Consumption**
93 +**(% style="color:#037691" %)Power Consumption**
114 114  
115 115  * Sleep Mode: 5uA @ 3.3v
116 116  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
117 117  
98 +
118 118  == 1.4 Probe Types ==
119 119  
120 120  === 1.4.1 Thread Installation Type ===
... ... @@ -133,26 +133,36 @@
133 133  * Operating temperature: -20℃~~60℃
134 134  * Connector Type: Various Types, see order info
135 135  
117 +
136 136  === 1.4.2 Immersion Type ===
137 137  
138 138  
139 -[[image:image-20240109160445-5.png||height="284" width="214"]]
121 +[[image:1675071521308-426.png]]
140 140  
141 141  * Immersion Type, Probe IP Level: IP68
142 142  * Measuring Range: Measure range can be customized, up to 100m.
143 143  * Accuracy: 0.2% F.S
144 144  * Long-Term Stability: ±0.2% F.S / Year
127 +* Overload 200% F.S
128 +* Zero Temperature Drift: ±2% F.S)
129 +* FS Temperature Drift: ±2% F.S
145 145  * Storage temperature: -30℃~~80℃
146 -* Operating temperature: 0℃~~50
131 +* Operating temperature: -40℃~~85℃
147 147  * Material: 316 stainless steels
148 148  
149 -== 1.5 Application and Installation ==
150 150  
151 -=== 1.5.1 Thread Installation Type ===
135 +== 1.5 Probe Dimension ==
152 152  
153 153  
154 -(% style="color:blue" %)**Application:**
155 155  
139 +
140 +== 1.6 Application and Installation ==
141 +
142 +=== 1.6.1 Thread Installation Type ===
143 +
144 +
145 +**(% style="color:blue" %)Application:**
146 +
156 156  * Hydraulic Pressure
157 157  * Petrochemical Industry
158 158  * Health and Medical
... ... @@ -166,10 +166,10 @@
166 166  [[image:1675071670469-145.png]]
167 167  
168 168  
169 -=== 1.5.2 Immersion Type ===
160 +=== 1.6.2 Immersion Type ===
170 170  
171 171  
172 -(% style="color:blue" %)**Application:**
163 +**(% style="color:blue" %)Application:**
173 173  
174 174  Liquid & Water Pressure / Level detect.
175 175  
... ... @@ -178,11 +178,7 @@
178 178  
179 179  The Immersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.
180 180  
181 -The Immersion Type Sensor has different variant which defined by Ixx. For example, this means two points:
182 182  
183 -* Cable Length: 10 Meters
184 -* Water Detect Range: 0 ~~ 10 Meters.
185 -
186 186  [[image:1675071736646-450.png]]
187 187  
188 188  
... ... @@ -189,42 +189,48 @@
189 189  [[image:1675071776102-240.png]]
190 190  
191 191  
192 -== 1.6 Sleep mode and working mode ==
179 +== 1.7 Sleep mode and working mode ==
193 193  
194 194  
195 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
182 +**(% style="color:blue" %)Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
196 196  
197 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
184 +**(% style="color:blue" %)Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
198 198  
199 199  
200 -== 1.7 Button & LEDs ==
187 +== 1.8 Button & LEDs ==
201 201  
202 202  
203 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]](% style="display:none" %)
190 +[[image:1675071855856-879.png]]
204 204  
205 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
206 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
207 -|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
208 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
192 +
193 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
194 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action**
195 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
196 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **(% style="color:blue" %)blue led** (%%)will blink once.
197 +
209 209  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
210 210  )))
211 -|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
212 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
213 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
200 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
201 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:#037691" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
202 +
203 +**(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
204 +
214 214  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
215 215  )))
216 -|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
207 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
217 217  
218 -== 1.8 Pin Mapping ==
219 219  
220 220  
211 +== 1.9 Pin Mapping ==
212 +
213 +
221 221  [[image:1675072568006-274.png]]
222 222  
223 223  
224 -== 1.9 BLE connection ==
217 +== 1.10 BLE connection ==
225 225  
226 226  
227 -PS-LB/LS support BLE remote configure.
220 +PS-LB support BLE remote configure.
228 228  
229 229  
230 230  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -236,28 +236,29 @@
236 236  If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
237 237  
238 238  
239 -== 1.10 Mechanical ==
232 +== 1.11 Mechanical ==
240 240  
241 -=== 1.10.1 for LB version(% style="display:none" %) (%%) ===
242 242  
243 243  
244 -[[image:image-20240109160800-6.png]]
245 245  
237 +[[image:1675143884058-338.png]]
246 246  
247 -=== 1.10.2 for LS version ===
248 248  
240 +[[image:1675143899218-599.png]]
249 249  
250 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/WebHome/image-20231231203439-3.png?width=886&height=385&rev=1.1||alt="image-20231231203439-3.png"]]
251 251  
243 +[[image:1675143909447-639.png]]
252 252  
253 -= 2. Configure PS-LB/LS to connect to LoRaWAN network =
254 254  
246 += 2. Configure PS-LB to connect to LoRaWAN network =
247 +
255 255  == 2.1 How it works ==
256 256  
257 257  
258 -The PS-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
251 +The PS-LB is configured as **(% style="color:#037691" %)LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
259 259  
260 260  
254 +
261 261  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
262 262  
263 263  
... ... @@ -270,60 +270,71 @@
270 270  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
271 271  
272 272  
273 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB/LS.
267 +**(% style="color:blue" %)Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
274 274  
275 -Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
269 +Each PS-LB is shipped with a sticker with the default device EUI as below:
276 276  
277 -[[image:image-20230426085320-1.png||height="234" width="504"]]
271 +[[image:image-20230131134744-2.jpeg]]
278 278  
279 279  
274 +
280 280  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
281 281  
282 282  
283 -(% style="color:blue" %)**Register the device**
278 +**(% style="color:blue" %)Register the device**
284 284  
285 285  [[image:1675144099263-405.png]]
286 286  
287 287  
288 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
283 +**(% style="color:blue" %)Add APP EUI and DEV EUI**
289 289  
290 290  [[image:1675144117571-832.png]]
291 291  
292 292  
293 -(% style="color:blue" %)**Add APP EUI in the application**
288 +**(% style="color:blue" %)Add APP EUI in the application**
294 294  
295 295  
296 296  [[image:1675144143021-195.png]]
297 297  
298 298  
299 -(% style="color:blue" %)**Add APP KEY**
294 +**(% style="color:blue" %)Add APP KEY**
300 300  
301 301  [[image:1675144157838-392.png]]
302 302  
303 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB/LS
298 +**(% style="color:blue" %)Step 2:**(%%) Activate on PS-LB
304 304  
305 305  
306 -Press the button for 5 seconds to activate the PS-LB/LS.
301 +Press the button for 5 seconds to activate the PS-LB.
307 307  
308 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
303 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:blue" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. **(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
309 309  
310 310  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
311 311  
312 312  
308 +
313 313  == 2.3 ​Uplink Payload ==
314 314  
311 +
312 +Uplink payloads have two types:
313 +
314 +* Distance Value: Use FPORT=2
315 +* Other control commands: Use other FPORT fields.
316 +
317 +The application server should parse the correct value based on FPORT settings.
318 +
319 +
315 315  === 2.3.1 Device Status, FPORT~=5 ===
316 316  
317 317  
318 -Include device configure status. Once PS-LB/LS Joined the network, it will uplink this message to the server.
323 +Include device configure status. Once PS-LB Joined the network, it will uplink this message to the server.
319 319  
320 -Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
325 +Users can also use the downlink command(0x26 01) to ask PS-LB to resend this uplink.
321 321  
322 322  
323 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
324 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
325 -|(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
326 -|(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
328 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
329 +|(% colspan="6" %)**Device Status (FPORT=5)**
330 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
331 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
327 327  
328 328  Example parse in TTNv3
329 329  
... ... @@ -330,11 +330,11 @@
330 330  [[image:1675144504430-490.png]]
331 331  
332 332  
333 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB/LS, this value is 0x16
338 +**(% style="color:#037691" %)Sensor Model**(%%): For PS-LB, this value is 0x16
334 334  
335 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
340 +**(% style="color:#037691" %)Firmware Version**(%%): 0x0100, Means: v1.0.0 version
336 336  
337 -(% style="color:#037691" %)**Frequency Band**:
342 +**(% style="color:#037691" %)Frequency Band**:
338 338  
339 339  *0x01: EU868
340 340  
... ... @@ -365,7 +365,7 @@
365 365  *0x0e: MA869
366 366  
367 367  
368 -(% style="color:#037691" %)**Sub-Band**:
373 +**(% style="color:#037691" %)Sub-Band**:
369 369  
370 370  AU915 and US915:value 0x00 ~~ 0x08
371 371  
... ... @@ -374,7 +374,7 @@
374 374  Other Bands: Always 0x00
375 375  
376 376  
377 -(% style="color:#037691" %)**Battery Info**:
382 +**(% style="color:#037691" %)Battery Info**:
378 378  
379 379  Check the battery voltage.
380 380  
... ... @@ -389,19 +389,20 @@
389 389  Uplink payload includes in total 9 bytes.
390 390  
391 391  
392 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
393 -|(% style="background-color:#4f81bd; color:white; width:97px" %)(((
397 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
398 +|(% style="width:97px" %)(((
394 394  **Size(bytes)**
395 -)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
396 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
400 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1**
401 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
397 397  
398 398  [[image:1675144608950-310.png]]
399 399  
400 400  
406 +
401 401  === 2.3.3 Battery Info ===
402 402  
403 403  
404 -Check the battery voltage for PS-LB/LS.
410 +Check the battery voltage for PS-LB.
405 405  
406 406  Ex1: 0x0B45 = 2885mV
407 407  
... ... @@ -411,41 +411,35 @@
411 411  === 2.3.4 Probe Model ===
412 412  
413 413  
414 -PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
420 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
415 415  
416 416  
417 -**For example.**
423 +For example.
418 418  
419 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
420 -|(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
421 -|(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
422 -|(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
423 -|(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
425 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
426 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
427 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
428 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
424 424  
425 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
430 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
426 426  
427 427  
428 428  === 2.3.5 0~~20mA value (IDC_IN) ===
429 429  
430 430  
431 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
436 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
432 432  
433 -(% style="color:#037691" %)**Example**:
438 +**(% style="color:#037691" %)Example**:
434 434  
435 435  27AE(H) = 10158 (D)/1000 = 10.158mA.
436 436  
437 437  
438 -Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
439 -
440 -[[image:image-20230225154759-1.png||height="408" width="741"]]
441 -
442 -
443 443  === 2.3.6 0~~30V value ( pin VDC_IN) ===
444 444  
445 445  
446 446  Measure the voltage value. The range is 0 to 30V.
447 447  
448 -(% style="color:#037691" %)**Example**:
448 +**(% style="color:#037691" %)Example**:
449 449  
450 450  138E(H) = 5006(D)/1000= 5.006V
451 451  
... ... @@ -455,45 +455,27 @@
455 455  
456 456  IN1 and IN2 are used as digital input pins.
457 457  
458 -(% style="color:#037691" %)**Example**:
458 +**(% style="color:#037691" %)Example**:
459 459  
460 -09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
460 +09 (H):(0x09&0x08)>>3=1    IN1 pin is high level.
461 461  
462 -09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
462 +09 (H):(0x09&0x04)>>2=0    IN2 pin is low level.
463 463  
464 464  
465 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
465 +This data field shows if this packet is generated by **(% style="color:blue" %)Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
466 466  
467 -(% style="color:#037691" %)**Example:**
467 +**(% style="color:#037691" %)Example:**
468 468  
469 -09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
469 +09 (H):(0x09&0x02)>>1=1    The level of the interrupt pin.
470 470  
471 -09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
471 +09 (H):0x09&0x01=1              0x00: Normal uplink packet.
472 472  
473 473  0x01: Interrupt Uplink Packet.
474 474  
475 475  
476 -=== 2.3.8 Sensor value, FPORT~=7 ===
476 +=== 2.3.8 ​Decode payload in The Things Network ===
477 477  
478 478  
479 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
480 -|(% style="background-color:#4f81bd; color:white; width:65px" %)(((
481 -**Size(bytes)**
482 -)))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
483 -|(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
484 -Voltage value, each 2 bytes is a set of voltage values.
485 -)))
486 -
487 -[[image:image-20230220171300-1.png||height="207" width="863"]]
488 -
489 -Multiple sets of data collected are displayed in this form:
490 -
491 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
492 -
493 -
494 -=== 2.3.9 ​Decode payload in The Things Network ===
495 -
496 -
497 497  While using TTN network, you can add the payload format to decode the payload.
498 498  
499 499  
... ... @@ -500,13 +500,13 @@
500 500  [[image:1675144839454-913.png]]
501 501  
502 502  
503 -PS-LB/LS TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
485 +PS-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
504 504  
505 505  
506 506  == 2.4 Uplink Interval ==
507 507  
508 508  
509 -The PS-LB/LS by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
491 +The PS-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
510 510  
511 511  
512 512  == 2.5 Show Data in DataCake IoT Server ==
... ... @@ -515,9 +515,9 @@
515 515  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
516 516  
517 517  
518 -(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
500 +**(% style="color:blue" %)Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
519 519  
520 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
502 +**(% style="color:blue" %)Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
521 521  
522 522  
523 523  [[image:1675144951092-237.png]]
... ... @@ -526,9 +526,9 @@
526 526  [[image:1675144960452-126.png]]
527 527  
528 528  
529 -(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
511 +**(% style="color:blue" %)Step 3:**(%%) Create an account or log in Datacake.
530 530  
531 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB/LS product.
513 +**(% style="color:#blue" %)Step 4:** (%%)Create PS-LB product.
532 532  
533 533  [[image:1675145004465-869.png]]
534 534  
... ... @@ -537,10 +537,11 @@
537 537  
538 538  
539 539  
522 +
540 540  [[image:1675145029119-717.png]]
541 541  
542 542  
543 -(% style="color:blue" %)**Step 5: **(%%)add payload decode
526 +**(% style="color:blue" %)Step 5: **(%%)add payload decode
544 544  
545 545  [[image:1675145051360-659.png]]
546 546  
... ... @@ -548,6 +548,7 @@
548 548  [[image:1675145060812-420.png]]
549 549  
550 550  
534 +
551 551  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
552 552  
553 553  
... ... @@ -557,7 +557,7 @@
557 557  == 2.6 Frequency Plans ==
558 558  
559 559  
560 -The PS-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
544 +The PS-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
561 561  
562 562  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
563 563  
... ... @@ -570,310 +570,355 @@
570 570  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
571 571  
572 572  
573 -= 3. Configure PS-LB/LS =
574 574  
575 -== 3.1 Configure Methods ==
558 += 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
576 576  
577 577  
578 -PS-LB/LS supports below configure method:
561 +Use can configure PS-LB via AT Command or LoRaWAN Downlink.
579 579  
580 -* AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
581 -* AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
582 -* LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
563 +* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
564 +* LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
583 583  
584 -== 3.2 General Commands ==
585 585  
567 +There are two kinds of commands to configure PS-LB, they are:
586 586  
569 +* **General Commands**.
570 +
587 587  These commands are to configure:
588 588  
589 589  * General system settings like: uplink interval.
590 590  * LoRaWAN protocol & radio related command.
591 591  
592 -They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
576 +They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
593 593  
594 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
578 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
595 595  
596 596  
597 -== 3.3 Commands special design for PS-LB/LS ==
581 +* **Commands special design for PS-LB**
598 598  
583 +These commands only valid for PS-LB, as below:
599 599  
600 -These commands only valid for PS-LB/LS, as below:
601 601  
586 +== 3.1 Set Transmit Interval Time ==
602 602  
603 -=== 3.3.1 Set Transmit Interval Time ===
604 604  
605 -
606 606  Feature: Change LoRaWAN End Node Transmit Interval.
607 607  
608 -(% style="color:blue" %)**AT Command: AT+TDC**
591 +**AT Command: AT+TDC**
609 609  
610 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
611 -|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Response**
612 -|(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
593 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
594 +|**Command Example**|**Function**|**Response**
595 +|AT+TDC=?|Show current transmit Interval|(((
613 613  30000
597 +
614 614  OK
599 +
615 615  the interval is 30000ms = 30s
616 616  )))
617 -|(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
602 +|AT+TDC=60000|Set Transmit Interval|(((
618 618  OK
604 +
619 619  Set transmit interval to 60000ms = 60 seconds
620 620  )))
621 621  
622 -(% style="color:blue" %)**Downlink Command: 0x01**
608 +**Downlink Command: 0x01**
623 623  
624 624  Format: Command Code (0x01) followed by 3 bytes time value.
625 625  
626 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
612 +If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
627 627  
628 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
629 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
614 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
615 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
630 630  
631 -=== 3.3.2 Set Interrupt Mode ===
632 632  
618 +== 3.2 Set Interrupt Mode ==
633 633  
620 +
634 634  Feature, Set Interrupt mode for GPIO_EXIT.
635 635  
636 -(% style="color:blue" %)**AT Command: AT+INTMOD**
623 +**AT Command: AT+INTMOD**
637 637  
638 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
639 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Response**
640 -|(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
625 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
626 +|**Command Example**|**Function**|**Response**
627 +|AT+INTMOD=?|Show current interrupt mode|(((
641 641  0
629 +
642 642  OK
643 -the mode is 0 =Disable Interrupt
631 +
632 +the mode is 0 = No interruption
644 644  )))
645 -|(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
634 +|AT+INTMOD=2|(((
646 646  Set Transmit Interval
647 -0. (Disable Interrupt),
648 -~1. (Trigger by rising and falling edge)
649 -2. (Trigger by falling edge)
650 -3. (Trigger by rising edge)
651 -)))|(% style="background-color:#f2f2f2; width:157px" %)OK
652 652  
653 -(% style="color:blue" %)**Downlink Command: 0x06**
637 +~1. (Disable Interrupt),
654 654  
639 +2. (Trigger by rising and falling edge),
640 +
641 +3. (Trigger by falling edge)
642 +
643 +4. (Trigger by rising edge)
644 +)))|OK
645 +
646 +**Downlink Command: 0x06**
647 +
655 655  Format: Command Code (0x06) followed by 3 bytes.
656 656  
657 657  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
658 658  
659 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
660 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
652 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
653 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
661 661  
662 -=== 3.3.3 Set the output time ===
663 663  
664 664  
657 +== 3.3 Set the output time ==
658 +
659 +
665 665  Feature, Control the output 3V3 , 5V or 12V.
666 666  
667 -(% style="color:blue" %)**AT Command: AT+3V3T**
662 +**AT Command: AT+3V3T**
668 668  
669 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
670 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 201px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
671 -|(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
664 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
665 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**
666 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
672 672  0
668 +
673 673  OK
674 674  )))
675 -|(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
671 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
676 676  OK
673 +
677 677  default setting
678 678  )))
679 -|(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
676 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
680 680  OK
678 +
679 +
681 681  )))
682 -|(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
681 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
683 683  OK
683 +
684 +
684 684  )))
685 685  
686 -(% style="color:blue" %)**AT Command: AT+5VT**
687 687  
688 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
689 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
690 -|(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
688 +**AT Command: AT+5VT**
689 +
690 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
691 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**
692 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
691 691  0
694 +
692 692  OK
693 693  )))
694 -|(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
697 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
695 695  OK
699 +
696 696  default setting
697 697  )))
698 -|(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
702 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
699 699  OK
704 +
705 +
700 700  )))
701 -|(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
707 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
702 702  OK
709 +
710 +
703 703  )))
704 704  
705 -(% style="color:blue" %)**AT Command: AT+12VT**
706 706  
707 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
708 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 199px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
709 -|(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
714 +**AT Command: AT+12VT**
715 +
716 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
717 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response**
718 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
710 710  0
720 +
711 711  OK
712 712  )))
713 -|(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
714 -|(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
723 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
724 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
715 715  OK
726 +
727 +
716 716  )))
717 717  
718 -(% style="color:blue" %)**Downlink Command: 0x07**
719 719  
731 +**Downlink Command: 0x07**
732 +
720 720  Format: Command Code (0x07) followed by 3 bytes.
721 721  
722 722  The first byte is which power, the second and third bytes are the time to turn on.
723 723  
724 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
725 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
726 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
727 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
728 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
729 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
737 +* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
738 +* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
739 +* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
740 +* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
741 +* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
742 +* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
730 730  
731 -=== 3.3.4 Set the Probe Model ===
732 732  
733 733  
734 -Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
746 +== 3.4 Set the Probe Model ==
735 735  
736 -(% style="color:blue" %)**AT Command: AT** **+PROBE**
737 737  
738 -AT+PROBE=aabb
749 +**AT Command: AT** **+PROBE**
739 739  
740 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
751 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
752 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response**
753 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
754 +0
741 741  
742 -When aa=01, it is the pressure mode, which converts the current into a pressure value;
756 +OK
757 +)))
758 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
759 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
760 +OK
743 743  
744 -bb represents which type of pressure sensor it is.
745 -
746 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
747 -
748 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
749 -|(% style="background-color:#4f81bd; color:white; width:154px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:269px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
750 -|(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
762 +
763 +)))
764 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
751 751  OK
752 -|(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
753 -|(% style="background-color:#f2f2f2; width:154px" %)(((
754 -AT+PROBE=000A
755 -)))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
756 -|(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
757 -|(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
758 -|(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
759 759  
760 -(% style="color:blue" %)**Downlink Command: 0x08**
767 +
768 +)))
761 761  
770 +**Downlink Command: 0x08**
771 +
762 762  Format: Command Code (0x08) followed by 2 bytes.
763 763  
764 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
765 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
774 +* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
775 +* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
766 766  
767 -=== 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
768 768  
769 769  
770 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
779 += 4. Battery & how to replace =
771 771  
772 -(% style="color:blue" %)**AT Command: AT** **+STDC**
781 +== 4.1 Battery Type ==
773 773  
774 -AT+STDC=aa,bb,bb
775 775  
776 -(% style="color:#037691" %)**aa:**(%%)
777 -**0:** means disable this function and use TDC to send packets.
778 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
779 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
780 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
784 +PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
781 781  
782 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
783 -|(% style="background-color:#4f81bd; color:white; width:160px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:215px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
784 -|(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
785 -OK
786 -|(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
787 -Attention:Take effect after ATZ
788 788  
789 -OK
790 -)))
791 -|(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
792 -Use the TDC interval to send packets.(default)
787 +The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
793 793  
794 -
795 -)))|(% style="background-color:#f2f2f2" %)(((
796 -Attention:Take effect after ATZ
789 +[[image:1675146710956-626.png]]
797 797  
798 -OK
799 -)))
800 800  
801 -(% style="color:blue" %)**Downlink Command: 0xAE**
792 +Minimum Working Voltage for the PS-LB:
802 802  
803 -Format: Command Code (0x08) followed by 5 bytes.
794 +PS-LB:  2.45v ~~ 3.6v
804 804  
805 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
806 806  
807 -= 4. Battery & Power Consumption =
797 +== 4.2 Replace Battery ==
808 808  
809 809  
810 -PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
800 +Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
811 811  
812 -[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
802 +And make sure the positive and negative pins match.
813 813  
814 814  
815 -= 5. OTA firmware update =
805 +== 4.3 Power Consumption Analyze ==
816 816  
817 817  
818 -Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
808 +Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
819 819  
820 820  
821 -= 6. FAQ =
811 +Instruction to use as below:
822 822  
823 -== 6.1 How to use AT Command via UART to access device? ==
824 824  
814 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
825 825  
826 -See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
816 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
827 827  
828 828  
829 -== 6.2 How to update firmware via UART port? ==
819 +**Step 2:** Open it and choose
830 830  
821 +* Product Model
822 +* Uplink Interval
823 +* Working Mode
831 831  
832 -See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
825 +And the Life expectation in difference case will be shown on the right.
833 833  
827 +[[image:1675146895108-304.png]]
834 834  
835 -== 6.3 How to change the LoRa Frequency Bands/Region? ==
836 836  
830 +The battery related documents as below:
837 837  
838 -You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
839 -When downloading the images, choose the required image file for download. ​
832 +* [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
833 +* [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
834 +* [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
840 840  
836 +[[image:image-20230131145708-3.png]]
841 841  
842 -== 6.4 How to measure the depth of other liquids other than water? ==
843 843  
839 +=== 4.3.1 ​Battery Note ===
844 844  
845 -Test the current values at the depth of different liquids and convert them to a linear scale.
846 -Replace its ratio with the ratio of water to current in the decoder.
847 847  
842 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
848 848  
849 -= 7. Troubleshooting =
850 850  
851 -== 7.1 Water Depth Always shows 0 in payload ==
845 +=== 4.3.2 Replace the battery ===
852 852  
853 853  
854 -If your device's IDC_intput_mA is normal, but your reading always shows 0, please refer to the following points:
848 +You can change the battery in the PS-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
855 855  
856 -~1. Please set it to mod1
850 +The default battery pack of PS-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
857 857  
858 -2. Please set the command [[AT+PROBE>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB%20--%20LoRaWAN%20Pressure%20Sensor/#H3.3.4SettheProbeModel]] according to the model of your sensor
859 859  
860 -3. Check the connection status of the sensor
853 += 5. Remote Configure device =
861 861  
855 +== 5.1 Connect via BLE ==
862 862  
857 +
858 +Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
859 +
860 +
861 +== 5.2 AT Command Set ==
862 +
863 +
864 +
865 += 6. OTA firmware update =
866 +
867 +
868 +Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
869 +
870 +
871 += 7. FAQ =
872 +
873 +== 7.1 How to use AT Command to access device? ==
874 +
875 +
876 +See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
877 +
878 +
879 +== 7.2 How to update firmware via UART port? ==
880 +
881 +
882 +See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
883 +
884 +
885 +== 7.3 How to change the LoRa Frequency Bands/Region? ==
886 +
887 +
888 +You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
889 +When downloading the images, choose the required image file for download. ​
890 +
891 +
863 863  = 8. Order Info =
864 864  
865 865  
866 -[[image:image-20240109172423-7.png]](% style="display:none" %)
895 +[[image:image-20230131153105-4.png]]
867 867  
868 868  
869 869  = 9. ​Packing Info =
870 870  
871 871  
872 -(% style="color:#037691" %)**Package Includes**:
901 +**Package Includes**:
873 873  
874 -* PS-LB or PS-LS LoRaWAN Pressure Sensor
903 +* PS-LB LoRaWAN Pressure Sensor
875 875  
876 -(% style="color:#037691" %)**Dimension and weight**:
905 +**Dimension and weight**:
877 877  
878 878  * Device Size: cm
879 879  * Device Weight: g
... ... @@ -880,11 +880,12 @@
880 880  * Package Size / pcs : cm
881 881  * Weight / pcs : g
882 882  
912 +
913 +
883 883  = 10. Support =
884 884  
885 885  
886 886  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
918 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
887 887  
888 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].
889 -
890 890  
image-20230201090514-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
image-20230222174559-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -19.4 KB
Content
image-20230225154759-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -468.9 KB
Content
image-20230426085320-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -190.0 KB
Content
image-20231120110833-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -255.7 KB
Content
image-20231120110949-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -217.3 KB
Content
image-20231120111036-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -273.4 KB
Content
image-20231120111226-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -340.3 KB
Content
image-20240109154009-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -297.0 KB
Content
image-20240109154121-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -414.4 KB
Content
image-20240109154227-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -342.4 KB
Content
image-20240109154731-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -511.6 KB
Content
image-20240109160445-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.8 KB
Content
image-20240109160800-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -60.1 KB
Content
image-20240109172423-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -62.3 KB
Content