Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/07/10 16:21
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 24 added, 0 removed)
- image-20240109160800-6.png
- image-20240109172423-7.png
- image-20240329175044-1.png
- image-20240511174954-1.png
- image-20240513093957-1.png
- image-20240513094047-2.png
- image-20240513094054-3.png
- image-20240513095921-4.png
- image-20240513095927-5.png
- image-20240513100129-6.png
- image-20240513100135-7.png
- image-20240817150702-1.png
- image-20241021093209-1.png
- image-20250116175954-1.png
- image-20250116180030-2.png
- image-20250117104812-1.png
- image-20250117104827-2.png
- image-20250117104837-3.png
- image-20250117104847-4.png
- image-20250401102131-1.png
- image-20250401163530-1.jpeg
- image-20250401163539-2.jpeg
- image-20250401163826-3.jpeg
- image-20250401163906-4.jpeg
Details
- Page properties
-
- Content
-
... ... @@ -25,27 +25,27 @@ 25 25 26 26 27 27 ((( 28 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 28 +The Dragino PS-LB/LS series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB/LS can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 29 29 ))) 30 30 31 31 ((( 32 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 32 +The PS-LB/LS series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 33 33 ))) 34 34 35 35 ((( 36 -The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 36 +The LoRa wireless technology used in PS-LB/LS allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 37 37 ))) 38 38 39 39 ((( 40 -PS-LB supports BLE configure and wireless OTA update which make user easy to use. 40 +PS-LB/LS supports BLE configure and wireless OTA update which make user easy to use. 41 41 ))) 42 42 43 43 ((( 44 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 44 +PS-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + Li-ion battery **(%%), it is designed for long term use up to 5 years. 45 45 ))) 46 46 47 47 ((( 48 -Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 48 +Each PS-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 49 49 ))) 50 50 51 51 [[image:1675071321348-194.png]] ... ... @@ -67,7 +67,7 @@ 67 67 * Downlink to change configure 68 68 * Controllable 3.3v,5v and 12v output to power external sensor 69 69 * 8500mAh Li/SOCl2 Battery (PS-LB) 70 -* Solar panel + 3000mAh Li-on battery (PS-LS) 70 +* Solar panel + 3000mAh Li-ion battery (PS-LS) 71 71 72 72 == 1.3 Specification == 73 73 ... ... @@ -80,7 +80,7 @@ 80 80 81 81 (% style="color:#037691" %)**Common DC Characteristics:** 82 82 83 -* Supply Voltage: 2.5v ~~ 3.6v 83 +* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v 84 84 * Operating Temperature: -40 ~~ 85°C 85 85 86 86 (% style="color:#037691" %)**LoRa Spec:** ... ... @@ -136,26 +136,34 @@ 136 136 === 1.4.2 Immersion Type === 137 137 138 138 139 -[[image:image-20240109160445-5.png||height="2 84" width="214"]]139 +[[image:image-20240109160445-5.png||height="221" width="166"]] 140 140 141 141 * Immersion Type, Probe IP Level: IP68 142 142 * Measuring Range: Measure range can be customized, up to 100m. 143 143 * Accuracy: 0.2% F.S 144 144 * Long-Term Stability: ±0.2% F.S / Year 145 -* Storage temperature: -30 ℃~~80℃146 -* Operating temperature: 0 ℃~~50℃145 +* Storage temperature: -30°C~~80°C 146 +* Operating temperature: 0°C~~50°C 147 147 * Material: 316 stainless steels 148 148 149 -== 1. 5Probe Dimension ==149 +=== 1.4.3 Wireless Differential Air Pressure Sensor === 150 150 151 +[[image:image-20240511174954-1.png||height="215" width="215"]] 151 151 153 +* Measuring Range: -100KPa~~0~~100KPa(Optional measuring range). 154 +* Accuracy: 0.5% F.S, resolution is 0.05%. 155 +* Overload: 300% F.S 156 +* Zero temperature drift: ±0.03%F.S/°C 157 +* Operating temperature: -20°C~~60°C 158 +* Storage temperature: -20°C~~60°C 159 +* Compensation temperature: 0~~50°C 152 152 153 -== 1. 6Application and Installation ==161 +== 1.5 Application and Installation == 154 154 155 -=== 1. 6.1 Thread Installation Type ===163 +=== 1.5.1 Thread Installation Type === 156 156 157 157 158 - (% style="color:blue" %)**Application:**166 +Application: 159 159 160 160 * Hydraulic Pressure 161 161 * Petrochemical Industry ... ... @@ -170,10 +170,10 @@ 170 170 [[image:1675071670469-145.png]] 171 171 172 172 173 -=== 1. 6.2 Immersion Type ===181 +=== 1.5.2 Immersion Type === 174 174 175 175 176 - (% style="color:blue" %)**Application:**184 +Application: 177 177 178 178 Liquid & Water Pressure / Level detect. 179 179 ... ... @@ -180,51 +180,87 @@ 180 180 [[image:1675071725288-579.png]] 181 181 182 182 183 - TheImmersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.191 +Below is the wiring to for connect the probe to the device. 184 184 193 +The Immersion Type Sensor has different variant which defined by Ixx. For example, this means two points: 185 185 195 +* Cable Length: 10 Meters 196 +* Water Detect Range: 0 ~~ 10 Meters. 197 + 186 186 [[image:1675071736646-450.png]] 187 187 188 188 189 189 [[image:1675071776102-240.png]] 190 190 203 +Size of immersion type water depth sensor: 191 191 192 - == 1.7 Sleepmoded workingmode==205 +[[image:image-20250401102131-1.png||height="268" width="707"]] 193 193 194 194 195 - (%style="color:blue"%)**Deep Sleep Mode: **(%%)Sensordoesn'thaveany LoRaWAN activate.This modeisused forstorageandshipping tosave batterylife.208 +=== 1.5.3 Wireless Differential Air Pressure Sensor === 196 196 197 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 198 198 211 +Application: 199 199 200 - ==1.8Button &LEDs==213 +Indoor Air Control & Filter clogging Detect. 201 201 215 +[[image:image-20240513100129-6.png]] 202 202 203 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]](% style="display:none" %)217 +[[image:image-20240513100135-7.png]] 204 204 219 + 220 +Below is the wiring to for connect the probe to the device. 221 + 222 +[[image:image-20240513093957-1.png]] 223 + 224 + 225 +Size of wind pressure transmitter: 226 + 227 +[[image:image-20240513094047-2.png]] 228 + 229 +Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm. 230 + 231 + 232 +== 1.6 Sleep mode and working mode == 233 + 234 + 235 +Deep Sleep Mode: Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 236 + 237 +Working Mode: In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 238 + 239 + 240 +== 1.7 Button & LEDs == 241 + 242 + 243 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]] 244 + 205 205 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 206 -|=(% style="width: 167px;background-color:# D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**246 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action 207 207 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)((( 208 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 248 + 249 + 250 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once. 209 209 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 210 210 ))) 211 211 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)((( 212 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 213 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 254 + 255 + 256 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. 257 +Green led will solidly turn on for 5 seconds after joined in network. 214 214 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 215 215 ))) 216 -|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %) (% style="color:red" %)**Red led**(%%)will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.260 +|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 217 217 218 -== 1. 9Pin Mapping ==262 +== 1.8 Pin Mapping == 219 219 220 220 221 221 [[image:1675072568006-274.png]] 222 222 223 223 224 -== 1. 10BLE connection ==268 +== 1.9 BLE connection == 225 225 226 226 227 -PS-LB support BLE remote configure. 271 +PS-LB/LS support BLE remote configure. 228 228 229 229 230 230 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -236,23 +236,26 @@ 236 236 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 237 237 238 238 239 -== 1.1 1Mechanical ==283 +== 1.10 Mechanical == 240 240 241 -=== 1.1 1.1 for LB version(%style="display:none" %) (%%)===285 +=== 1.10.1 for LB version === 242 242 243 243 244 -[[image: 1675143884058-338.png]] [[image:1675143899218-599.png]]288 +[[image:image-20250401163530-1.jpeg]] 245 245 246 246 247 - [[image:1675143909447-639.png]]291 +=== 1.10.2 for LS version === 248 248 249 249 250 - = 2. ConfigurePS-LB to connect to LoRaWAN network =294 +[[image:image-20250401163539-2.jpeg]] 251 251 296 + 297 += 2. Configure PS-LB/LS to connect to LoRaWAN network = 298 + 252 252 == 2.1 How it works == 253 253 254 254 255 -The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%)mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.302 +The PS-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 256 256 257 257 258 258 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -260,7 +260,6 @@ 260 260 261 261 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 262 262 263 - 264 264 [[image:1675144005218-297.png]] 265 265 266 266 ... ... @@ -267,9 +267,9 @@ 267 267 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 268 268 269 269 270 - (% style="color:blue" %)**Step 1:**(%%)Create a device in TTN with the OTAA keys from PS-LB.316 +Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS. 271 271 272 -Each PS-LB is shipped with a sticker with the default device EUI as below: 318 +Each PS-LB/LS is shipped with a sticker with the default device EUI as below: 273 273 274 274 [[image:image-20230426085320-1.png||height="234" width="504"]] 275 275 ... ... @@ -277,32 +277,32 @@ 277 277 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 278 278 279 279 280 - (% style="color:blue" %)**Register the device**326 +Register the device 281 281 282 282 [[image:1675144099263-405.png]] 283 283 284 284 285 - (% style="color:blue" %)**Add APP EUI and DEV EUI**331 +Add APP EUI and DEV EUI 286 286 287 287 [[image:1675144117571-832.png]] 288 288 289 289 290 - (% style="color:blue" %)**Add APP EUI in the application**336 +Add APP EUI in the application 291 291 292 292 293 293 [[image:1675144143021-195.png]] 294 294 295 295 296 - (% style="color:blue" %)**Add APP KEY**342 +Add APP KEY 297 297 298 298 [[image:1675144157838-392.png]] 299 299 300 - (% style="color:blue" %)**Step 2:**(%%)Activate on PS-LB346 +Step 2: Activate on PS-LB/LS 301 301 302 302 303 -Press the button for 5 seconds to activate the PS-LB. 349 +Press the button for 5 seconds to activate the PS-LB/LS. 304 304 305 - (% style="color:green" %)**Green led**(%%)will fast blink 5 times, device will enter(% style="color:blue" %)**OTA mode**(%%)for 3 seconds. And then start to JOIN LoRaWAN network.(% style="color:green" %)**Green led**(%%)will solidly turn on for 5 seconds after joined in network.351 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network. 306 306 307 307 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 308 308 ... ... @@ -312,15 +312,14 @@ 312 312 === 2.3.1 Device Status, FPORT~=5 === 313 313 314 314 315 -Include device configure status. Once PS-LB Joined the network, it will uplink this message to the server. 361 +Include device configure status. Once PS-LB/LS Joined the network, it will uplink this message to the server. 316 316 317 -Users can also use the downlink command(0x26 01) to ask PS-LB to resend this uplink. 363 +Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink. 318 318 319 - 320 320 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 321 -|(% colspan="6" style="background-color:# d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**322 -|(% style="background-color:#f2f2f2; width:103px" %) **Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**323 -|(% style="background-color:#f2f2f2; width:103px" %) **Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT366 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)Device Status (FPORT=5) 367 +|(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2 368 +|(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT 324 324 325 325 Example parse in TTNv3 326 326 ... ... @@ -327,11 +327,11 @@ 327 327 [[image:1675144504430-490.png]] 328 328 329 329 330 - (% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16375 +Sensor Model: For PS-LB/LS, this value is 0x16 331 331 332 - (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version377 +Firmware Version: 0x0100, Means: v1.0.0 version 333 333 334 - (% style="color:#037691" %)**Frequency Band**:379 +Frequency Band: 335 335 336 336 *0x01: EU868 337 337 ... ... @@ -362,7 +362,7 @@ 362 362 *0x0e: MA869 363 363 364 364 365 - (% style="color:#037691" %)**Sub-Band**:410 +Sub-Band: 366 366 367 367 AU915 and US915:value 0x00 ~~ 0x08 368 368 ... ... @@ -371,7 +371,7 @@ 371 371 Other Bands: Always 0x00 372 372 373 373 374 - (% style="color:#037691" %)**Battery Info**:419 +Battery Info: 375 375 376 376 Check the battery voltage. 377 377 ... ... @@ -386,10 +386,12 @@ 386 386 Uplink payload includes in total 9 bytes. 387 387 388 388 389 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 390 -|(% style="background-color:#d9e2f3; color:#0070c0; width:97px" %)((( 391 -**Size(bytes)** 392 -)))|(% style="background-color:#d9e2f3; color:#0070c0; width:48px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:71px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:98px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:73px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:122px" %)**1** 434 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 435 +|(% style="background-color:#4f81bd; color:white; width:97px" %)((( 436 + 437 + 438 +Size(bytes) 439 +)))|(% style="background-color:#4f81bd; color:white; width:50px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1 393 393 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] 394 394 395 395 [[image:1675144608950-310.png]] ... ... @@ -398,7 +398,7 @@ 398 398 === 2.3.3 Battery Info === 399 399 400 400 401 -Check the battery voltage for PS-LB. 448 +Check the battery voltage for PS-LB/LS. 402 402 403 403 Ex1: 0x0B45 = 2885mV 404 404 ... ... @@ -408,16 +408,16 @@ 408 408 === 2.3.4 Probe Model === 409 409 410 410 411 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 458 +PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 412 412 413 413 414 - **For example.**461 +For example. 415 415 416 416 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 417 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Part Number**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Probe Used**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4~~20mA scale**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Example: 12mA meaning**418 -|(% style="background-color:#f2f2f2" %)PS-LB-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water 419 -|(% style="background-color:#f2f2f2" %)PS-LB-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water 420 -|(% style="background-color:#f2f2f2" %)PS-LB-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure 464 +|(% style="background-color:#4f81bd; color:white" %)Part Number|(% style="background-color:#4f81bd; color:white" %)Probe Used|(% style="background-color:#4f81bd; color:white" %)4~~20mA scale|(% style="background-color:#4f81bd; color:white" %)Example: 12mA meaning 465 +|(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water 466 +|(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water 467 +|(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure 421 421 422 422 The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value. 423 423 ... ... @@ -425,9 +425,9 @@ 425 425 === 2.3.5 0~~20mA value (IDC_IN) === 426 426 427 427 428 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.475 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level. 429 429 430 - (% style="color:#037691" %)**Example**:477 +Example: 431 431 432 432 27AE(H) = 10158 (D)/1000 = 10.158mA. 433 433 ... ... @@ -437,12 +437,12 @@ 437 437 [[image:image-20230225154759-1.png||height="408" width="741"]] 438 438 439 439 440 -=== 2.3.6 0~~30V value ( 487 +=== 2.3.6 0~~30V value (pin VDC_IN) === 441 441 442 442 443 443 Measure the voltage value. The range is 0 to 30V. 444 444 445 - (% style="color:#037691" %)**Example**:492 +Example: 446 446 447 447 138E(H) = 5006(D)/1000= 5.006V 448 448 ... ... @@ -452,7 +452,7 @@ 452 452 453 453 IN1 and IN2 are used as digital input pins. 454 454 455 - (% style="color:#037691" %)**Example**:502 +Example: 456 456 457 457 09 (H): (0x09&0x08)>>3=1 IN1 pin is high level. 458 458 ... ... @@ -459,9 +459,9 @@ 459 459 09 (H): (0x09&0x04)>>2=0 IN2 pin is low level. 460 460 461 461 462 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.509 +This data field shows if this packet is generated by Interrupt Pin or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal. 463 463 464 - (% style="color:#037691" %)**Example:**511 +Example: 465 465 466 466 09 (H): (0x09&0x02)>>1=1 The level of the interrupt pin. 467 467 ... ... @@ -470,14 +470,18 @@ 470 470 0x01: Interrupt Uplink Packet. 471 471 472 472 473 -=== (% style="color:inherit; font-family:inherit; font-size:23px" %)2.3.8 Sensor value, FPORT~=7(%%)===520 +=== 2.3.8 Sensor value, FPORT~=7 === 474 474 475 475 476 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:508.222px" %) 477 -|(% style="background-color:#d9e2f3; color:#0070c0; width:94px" %)((( 478 -**Size(bytes)** 479 -)))|(% style="background-color:#d9e2f3; color:#0070c0; width:43px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:367px" %)**n** 523 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %) 524 +|(% style="background-color:#4f81bd; color:white; width:65px" %)((( 525 + 526 + 527 +Size(bytes) 528 +)))|(% style="background-color:#4f81bd; color:white; width:35px" %)2|(% style="background-color:#4f81bd; color:white; width:400px" %)n 480 480 |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)((( 530 + 531 + 481 481 Voltage value, each 2 bytes is a set of voltage values. 482 482 ))) 483 483 ... ... @@ -493,17 +493,16 @@ 493 493 494 494 While using TTN network, you can add the payload format to decode the payload. 495 495 496 - 497 497 [[image:1675144839454-913.png]] 498 498 499 499 500 -PS-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 550 +PS-LB/LS TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 501 501 502 502 503 503 == 2.4 Uplink Interval == 504 504 505 505 506 -The PS-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]] 556 +The PS-LB/LS by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]] 507 507 508 508 509 509 == 2.5 Show Data in DataCake IoT Server == ... ... @@ -511,12 +511,10 @@ 511 511 512 512 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 513 513 564 +Step 1: Be sure that your device is programmed and properly connected to the network at this time. 514 514 515 - (% style="color:blue" %)**Step1:**(%%)Besure that your deviceisprogrammedandproperlyconnected to the networkatthistime.566 +Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 516 516 517 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 518 - 519 - 520 520 [[image:1675144951092-237.png]] 521 521 522 522 ... ... @@ -523,9 +523,9 @@ 523 523 [[image:1675144960452-126.png]] 524 524 525 525 526 - (% style="color:blue" %)**Step 3:**(%%)Create an account or log in Datacake.574 +Step 3: Create an account or log in Datacake. 527 527 528 - (% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.576 +Step 4: Create PS-LB/LS product. 529 529 530 530 [[image:1675145004465-869.png]] 531 531 ... ... @@ -533,11 +533,10 @@ 533 533 [[image:1675145018212-853.png]] 534 534 535 535 536 - 537 537 [[image:1675145029119-717.png]] 538 538 539 539 540 - (% style="color:blue" %)**Step 5:**(%%)add payload decode587 +Step 5: add payload decode 541 541 542 542 [[image:1675145051360-659.png]] 543 543 ... ... @@ -547,34 +547,461 @@ 547 547 548 548 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 549 549 550 - 551 551 [[image:1675145081239-376.png]] 552 552 553 553 554 -== 2.6 F requencyPlans==600 +== 2.6 Datalog Feature (Since V1.1) == 555 555 556 556 557 - ThePS-LBusesOTAA modeandbelowfrequencyplansby default.Ifuserwant touseitwithdifferentfrequencyplan,pleaserefer theAT commandsets.603 +When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot. 558 558 559 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 560 560 606 +=== 2.6.1 Unix TimeStamp === 561 561 562 -== 2.7 Firmware Change Log == 563 563 609 +PS-LB uses Unix TimeStamp format based on 564 564 565 - **Firmwaredownload link:**611 +[[image:image-20250401163826-3.jpeg]] 566 566 613 +Users can get this time from the link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] : 614 + 615 +Below is the converter example: 616 + 617 +[[image:image-20250401163906-4.jpeg]] 618 + 619 + 620 +=== 2.6.2 Set Device Time === 621 + 622 + 623 +There are two ways to set the device's time: 624 + 625 + 626 +~1. Through LoRaWAN MAC Command (Default settings) 627 + 628 +Users need to set SYNCMOD=1 to enable sync time via the MAC command. 629 + 630 +Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]]. 631 + 632 +Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature. 633 + 634 + 635 + 2. Manually Set Time 636 + 637 +Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server. 638 + 639 + 640 +=== 2.6.3 Poll sensor value === 641 + 642 +Users can poll sensor values based on timestamps. Below is the downlink command. 643 + 644 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %) 645 +|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31) 646 +|(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte 647 +|(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)((( 648 + 649 + 650 +Timestamp end 651 +)))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval 652 + 653 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval. 654 + 655 +For example, downlink command[[image:image-20250117104812-1.png]] 656 + 657 +Is to check 2024/12/20 09:34:59 to 2024/12/20 14:34:59's data 658 + 659 +Uplink Internal =5s,means PS-LB will send one packet every 5s. range 5~~255s. 660 + 661 + 662 +=== 2.6.4 Datalog Uplink payload (FPORT~=3) === 663 + 664 + 665 +The Datalog uplinks will use below payload format. 666 + 667 +Retrieval data payload: 668 + 669 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 670 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 671 +Size(bytes) 672 +)))|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)2|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)4 673 +|(% style="width:103px" %)Value|(% style="width:68px" %)((( 674 + 675 + 676 +Probe_mod 677 +)))|(% style="width:104px" %)((( 678 + 679 + 680 +VDC_intput_V 681 +)))|(% style="width:83px" %)((( 682 + 683 + 684 +IDC_intput_mA 685 +)))|(% style="width:201px" %)((( 686 + 687 + 688 +IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status 689 +)))|(% style="width:86px" %)Unix Time Stamp 690 + 691 +IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status: 692 + 693 +[[image:image-20250117104847-4.png]] 694 + 695 + 696 +No ACK Message: 1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature) 697 + 698 +Poll Message Flag: 1: This message is a poll message reply. 699 + 700 +* Poll Message Flag is set to 1. 701 + 702 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands. 703 + 704 +For example, in US915 band, the max payload for different DR is: 705 + 706 +a) DR0: max is 11 bytes so one entry of data 707 + 708 +b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 709 + 710 +c) DR2: total payload includes 11 entries of data 711 + 712 +d) DR3: total payload includes 22 entries of data. 713 + 714 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0 715 + 716 +Example: 717 + 718 +If PS-LB-NA has below data inside Flash: 719 + 720 +[[image:image-20250117104837-3.png]] 721 + 722 + 723 +If user sends below downlink command: 316788D9BF6788DB6305 724 + 725 +Where : Start time: 6788D9BF = time 25/1/16 10:04:47 726 + 727 + Stop time: 6788DB63 = time 25/1/16 10:11:47 728 + 729 + 730 +PA-LB-NA will uplink this payload. 731 + 732 +[[image:image-20250117104827-2.png]] 733 + 734 + 735 +00001B620000406788D9BF 00000D130000406788D9FB 00000D120000406788DA37 00000D110000406788DA73 00000D100000406788DAAF 00000D100000406788DAEB 00000D0F0000406788DB27 00000D100000406788DB63 736 + 737 + 738 +Where the first 11 bytes is for the first entry : 739 + 740 + 741 +0000 0D10 0000 40 6788DB63 742 + 743 + 744 +Probe_mod = 0x0000 = 0000 745 + 746 + 747 +VDC_intput_V = 0x0D10/1000=3.344V 748 + 749 +IDC_intput_mA = 0x0000/1000=0mA 750 + 751 + 752 +IN1_pin_level = (0x40& 0x08)? "High":"Low" = 0(Low) 753 + 754 +IN2_pin_level = (0x40& 0x04)? "High":"Low" = 0(Low) 755 + 756 +Exti_pin_level = (0x40& 0x02)? "High":"Low" = 0(Low) 757 + 758 +Exti_status = (0x40& 0x01)? "True":"False" = 0(False) 759 + 760 + 761 +Unix time is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47 762 + 763 +Its data format is: 764 + 765 +[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],... 766 + 767 +Note: water_deep in the data needs to be converted using decoding to get it. 768 + 769 + 770 +=== 2.6.5 Decoder in TTN V3 === 771 + 772 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]] 773 + 774 +Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 775 + 776 + 777 +== 2.7 Frequency Plans == 778 + 779 + 780 +The PS-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country. 781 + 782 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/a>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 783 + 784 + 785 +== 2.8 Report on Change Feature (Since firmware V1.2) == 786 + 787 +=== 2.8.1 Uplink payload(Enable ROC) === 788 + 789 + 790 +Used to Monitor the IDC and VDC increments, and send ROC uplink when the IDC or VDC changes exceed. 791 + 792 +With ROC enabled, the payload is as follows: 793 + 794 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 795 +|(% style="background-color:#4f81bd; color:white; width:97px" %)((( 796 + 797 + 798 +Size(bytes) 799 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1 800 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)((( 801 + 802 + 803 +[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag 804 +))) 805 + 806 +IN1 &IN2 , Interrupt flag , ROC_flag: 807 + 808 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %) 809 +|(% style="background-color:#4f81bd; color:white; width:50px" %)Size(bit)|(% style="background-color:#4f81bd; color:white; width:60px" %)bit7|(% style="background-color:#4f81bd; color:white; width:62px" %)bit6|(% style="background-color:#4f81bd; color:white; width:62px" %)bit5|(% style="background-color:#4f81bd; color:white; width:65px" %)bit4|(% style="background-color:#4f81bd; color:white; width:56px" %)bit3|(% style="background-color:#4f81bd; color:white; width:55px" %)bit2|(% style="background-color:#4f81bd; color:white; width:55px" %)bit1|(% style="background-color:#4f81bd; color:white; width:50px" %)bit0 810 +|(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status 811 + 812 +* IDC_Roc_flagL 813 + 814 +80 (H): (0x80&0x80)=80(H)=1000 0000(B) bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold. 815 + 816 +60 (H): (0x60&0x80)=0 bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold. 817 + 818 + 819 +* IDC_Roc_flagH 820 + 821 +60 (H): (0x60&0x40)=60(H)=01000 0000(B) bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold. 822 + 823 +80 (H): (0x80&0x40)=0 bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold. 824 + 825 + 826 +* VDC_Roc_flagL 827 + 828 +20 (H): (0x20&0x20)=20(H)=0010 0000(B) bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold. 829 + 830 +90 (H): (0x90&0x20)=0 bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold. 831 + 832 + 833 +* VDC_Roc_flagH 834 + 835 +90 (H): (0x90&0x10)=10(H)=0001 0000(B) bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold. 836 + 837 +20 (H): (0x20&0x10)=0 bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold. 838 + 839 + 840 +* IN1_pin_level & IN2_pin_level 841 + 842 +IN1 and IN2 are used as digital input pins. 843 + 844 +80 (H): (0x80&0x08)=0 IN1 pin is low level. 845 + 846 +80 (H): (0x09&0x04)=0 IN2 pin is low level. 847 + 848 + 849 +* Exti_pin_level &Exti_status 850 + 851 +This data field shows whether the packet is generated by an interrupt pin. 852 + 853 +Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the GPIO_EXTI pin. 854 + 855 +Exti_pin_level: 80 (H): (0x80&0x02)=0 "low", The level of the interrupt pin. 856 + 857 +Exti_status: 80 (H): (0x80&0x01)=0 "False", Normal uplink packet. 858 + 859 + 860 +=== 2.8.2 Set the Report on Change === 861 + 862 + 863 +Feature: Get or Set the Report on Change. 864 + 865 + 866 +==== 2.8.2.1 Wave alarm mode ==== 867 + 868 +Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed. 869 + 870 +* Change value: The amount by which the next detection value increases/decreases relative to the previous detection value. 871 +* Comparison value: A parameter to compare with the latest ROC test. 872 + 873 +AT Command: AT+ROC 874 + 875 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 876 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation 877 +|(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)((( 878 + 879 + 880 +0,0,0,0(default) 881 +OK 882 +))) 883 +|(% colspan="1" rowspan="4" style="width:143px" %)((( 884 + 885 + 886 + 887 + 888 + 889 +AT+ROC=a,b,c,d 890 +)))|(% style="width:154px" %)((( 891 + 892 + 893 + 894 + 895 + 896 + 897 + 898 +a: Enable or disable the ROC 899 +)))|(% style="width:197px" %)((( 900 + 901 + 902 +0: off 903 +1: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. 904 + 905 +2: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]). 906 +))) 907 +|(% style="width:154px" %)b: Set the detection interval|(% style="width:197px" %)((( 908 + 909 + 910 +Range: 0~~65535s 911 +))) 912 +|(% style="width:154px" %)c: Setting the IDC change value|(% style="width:197px" %)Unit: uA 913 +|(% style="width:154px" %)d: Setting the VDC change value|(% style="width:197px" %)Unit: mV 914 + 915 +Example: 916 + 917 +* AT+ROC=0,0,0,0 ~/~/The ROC function is not used. 918 +* AT+ROC=1,60,3000, 500 ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed. 919 +* AT+ROC=1,60,3000,0 ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. 920 +* AT+ROC=2,60,3000,0 ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed. 921 + 922 +Downlink Command: 0x09 aa bb cc dd 923 + 924 +Format: Function code (0x09) followed by 4 bytes. 925 + 926 +aa: 1 byte; Set the wave alarm mode. 927 + 928 +bb: 2 bytes; Set the detection interval. (second) 929 + 930 +cc: 2 bytes; Setting the IDC change threshold. (uA) 931 + 932 +dd: 2 bytes; Setting the VDC change threshold. (mV) 933 + 934 +Example: 935 + 936 +* Downlink Payload: 09 01 00 3C 0B B8 01 F4 ~/~/Equal to AT+ROC=1,60,3000, 500 937 +* Downlink Payload: 09 01 00 3C 0B B8 00 00 ~/~/Equal to AT+ROC=1,60,3000,0 938 +* Downlink Payload: 09 02 00 3C 0B B8 00 00 ~/~/Equal to AT+ROC=2,60,3000,0 939 + 940 +Screenshot of parsing example in TTN: 941 + 942 +* AT+ROC=1,60,3000, 500. 943 + 944 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB-NA--LoRaWAN_Analog_Sensor_User_Manual/WebHome/image-20241019170902-1.png?width=1454&height=450&rev=1.1||alt="image-20241019170902-1.png"]] 945 + 946 + 947 +==== 2.8.2.2 Over-threshold alarm mode ==== 948 + 949 +Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded. 950 + 951 +AT Command: AT+ROC=3,a,b,c,d,e 952 + 953 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 954 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation 955 +|(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)((( 956 + 957 + 958 +0,0,0,0(default) 959 +OK 960 +))) 961 +|(% colspan="1" rowspan="5" style="width:143px" %)((( 962 + 963 + 964 + 965 + 966 + 967 +AT+ROC=3,a,b,c,d,e 968 +)))|(% style="width:160px" %)((( 969 + 970 + 971 +a: Set the detection interval 972 +)))|(% style="width:185px" %)((( 973 + 974 + 975 +Range: 0~~65535s 976 +))) 977 +|(% style="width:160px" %)b: Set the IDC alarm trigger condition|(% style="width:185px" %)((( 978 + 979 + 980 +0: Less than the set IDC threshold, Alarm 981 + 982 +1: Greater than the set IDC threshold, Alarm 983 +))) 984 +|(% style="width:160px" %)((( 985 + 986 + 987 +c: IDC alarm threshold 988 +)))|(% style="width:185px" %)((( 989 + 990 + 991 +Unit: uA 992 +))) 993 +|(% style="width:160px" %)d: Set the VDC alarm trigger condition|(% style="width:185px" %)((( 994 + 995 + 996 +0: Less than the set VDC threshold, Alarm 997 + 998 +1: Greater than the set VDC threshold, Alarm 999 +))) 1000 +|(% style="width:160px" %)e: VDC alarm threshold|(% style="width:185px" %)Unit: mV 1001 + 1002 +Example: 1003 + 1004 +* AT+ROC=3,60,0,3000,0,5000 ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated. 1005 +* AT+ROC=3,180,1,3000,1,5000 ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated. 1006 +* AT+ROC=3,300,0,3000,1,5000 ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated. 1007 + 1008 +Downlink Command: 0x09 03 aa bb cc dd ee 1009 + 1010 +Format: Function code (0x09) followed by 03 and the remaining 5 bytes. 1011 + 1012 +aa: 2 bytes; Set the detection interval.(second) 1013 + 1014 +bb: 1 byte; Set the IDC alarm trigger condition. 1015 + 1016 +cc: 2 bytes; IDC alarm threshold.(uA) 1017 + 1018 + 1019 +dd: 1 byte; Set the VDC alarm trigger condition. 1020 + 1021 +ee: 2 bytes; VDC alarm threshold.(mV) 1022 + 1023 +Example: 1024 + 1025 +* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,0,5000 1026 +* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38 ~/~/Equal to AT+ROC=3,60,1,3000,1,5000 1027 +* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,1,5000 1028 + 1029 +Screenshot of parsing example in TTN: 1030 + 1031 +* AT+ROC=3,60,0,3000,0,5000 1032 + 1033 +[[image:image-20250116180030-2.png]] 1034 + 1035 + 1036 +== 2.9 Firmware Change Log == 1037 + 1038 + 1039 +Firmware download link: 1040 + 567 567 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]] 568 568 569 569 570 -= 3. Configure PS-LB = 1044 += 3. Configure PS-LB/LS = 571 571 572 572 == 3.1 Configure Methods == 573 573 574 574 575 -PS-LB supports below configure method: 1049 +PS-LB/LS supports below configure method: 576 576 577 -* AT Command via Bluetooth Connection ( **Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].1051 +* AT Command via Bluetooth Connection (Recommand Way): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 578 578 * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]]. 579 579 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 580 580 ... ... @@ -591,10 +591,10 @@ 591 591 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 592 592 593 593 594 -== 3.3 Commands special design for PS-LB == 1068 +== 3.3 Commands special design for PS-LB/LS == 595 595 596 596 597 -These commands only valid for PS-LB, as below: 1071 +These commands only valid for PS-LB/LS, as below: 598 598 599 599 600 600 === 3.3.1 Set Transmit Interval Time === ... ... @@ -602,21 +602,25 @@ 602 602 603 603 Feature: Change LoRaWAN End Node Transmit Interval. 604 604 605 - (% style="color:blue" %)**AT Command: AT+TDC**1079 +AT Command: AT+TDC 606 606 607 607 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 608 -|=(% style="width: 160px; background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 160px; background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Response**1082 +|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response 609 609 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)((( 1084 + 1085 + 610 610 30000 611 611 OK 612 612 the interval is 30000ms = 30s 613 613 ))) 614 614 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)((( 1091 + 1092 + 615 615 OK 616 616 Set transmit interval to 60000ms = 60 seconds 617 617 ))) 618 618 619 - (% style="color:blue" %)**Downlink Command: 0x01**1097 +Downlink Command: 0x01 620 620 621 621 Format: Command Code (0x01) followed by 3 bytes time value. 622 622 ... ... @@ -630,16 +630,20 @@ 630 630 631 631 Feature, Set Interrupt mode for GPIO_EXIT. 632 632 633 - (% style="color:blue" %)**AT Command: AT+INTMOD**1111 +AT Command: AT+INTMOD 634 634 635 635 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 636 -|=(% style="width: 154px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Response**1114 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response 637 637 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)((( 1116 + 1117 + 638 638 0 639 639 OK 640 640 the mode is 0 =Disable Interrupt 641 641 ))) 642 642 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)((( 1123 + 1124 + 643 643 Set Transmit Interval 644 644 0. (Disable Interrupt), 645 645 ~1. (Trigger by rising and falling edge) ... ... @@ -647,7 +647,7 @@ 647 647 3. (Trigger by rising edge) 648 648 )))|(% style="background-color:#f2f2f2; width:157px" %)OK 649 649 650 - (% style="color:blue" %)**Downlink Command: 0x06**1132 +Downlink Command: 0x06 651 651 652 652 Format: Command Code (0x06) followed by 3 bytes. 653 653 ... ... @@ -661,76 +661,106 @@ 661 661 662 662 Feature, Control the output 3V3 , 5V or 12V. 663 663 664 - (% style="color:blue" %)**AT Command: AT+3V3T**1146 +AT Command: AT+3V3T 665 665 666 666 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %) 667 -|=(% style="width: 154px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 201px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 119px;background-color:#D9E2F3;color:#0070C0" %)**Response**1149 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response 668 668 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)((( 1151 + 1152 + 669 669 0 670 670 OK 671 671 ))) 672 672 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)((( 1157 + 1158 + 673 673 OK 674 674 default setting 675 675 ))) 676 676 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)((( 1163 + 1164 + 677 677 OK 678 678 ))) 679 679 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)((( 1168 + 1169 + 680 680 OK 681 681 ))) 682 682 683 - (% style="color:blue" %)**AT Command: AT+5VT**1173 +AT Command: AT+5VT 684 684 685 685 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %) 686 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 119px;background-color:#D9E2F3;color:#0070C0" %)**Response**1176 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response 687 687 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)((( 1178 + 1179 + 688 688 0 689 689 OK 690 690 ))) 691 691 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)((( 1184 + 1185 + 692 692 OK 693 693 default setting 694 694 ))) 695 695 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)((( 1190 + 1191 + 696 696 OK 697 697 ))) 698 698 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)((( 1195 + 1196 + 699 699 OK 700 700 ))) 701 701 702 - (% style="color:blue" %)**AT Command: AT+12VT**1200 +AT Command: AT+12VT 703 703 704 704 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %) 705 -|=(% style="width: 156px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 199px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 88px;background-color:#D9E2F3;color:#0070C0" %)**Response**1203 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response 706 706 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)((( 1205 + 1206 + 707 707 0 708 708 OK 709 709 ))) 710 710 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK 711 711 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)((( 1212 + 1213 + 712 712 OK 713 713 ))) 714 714 715 - (% style="color:blue" %)**Downlink Command: 0x07**1217 +Downlink Command: 0x07 716 716 717 717 Format: Command Code (0x07) followed by 3 bytes. 718 718 719 719 The first byte is which power, the second and third bytes are the time to turn on. 720 720 721 -* Example 1: Downlink Payload: 070101F4 **~-~-->**AT+3V3T=500722 -* Example 2: Downlink Payload: 0701FFFF **~-~-->**AT+3V3T=65535723 -* Example 3: Downlink Payload: 070203E8 **~-~-->**AT+5VT=1000724 -* Example 4: Downlink Payload: 07020000 **~-~-->**AT+5VT=0725 -* Example 5: Downlink Payload: 070301F4 **~-~-->**AT+12VT=500726 -* Example 6: Downlink Payload: 07030000 **~-~-->**AT+12VT=01223 +* Example 1: Downlink Payload: 070101F4 ~-~--> AT+3V3T=500 1224 +* Example 2: Downlink Payload: 0701FFFF ~-~--> AT+3V3T=65535 1225 +* Example 3: Downlink Payload: 070203E8 ~-~--> AT+5VT=1000 1226 +* Example 4: Downlink Payload: 07020000 ~-~--> AT+5VT=0 1227 +* Example 5: Downlink Payload: 070301F4 ~-~--> AT+12VT=500 1228 +* Example 6: Downlink Payload: 07030000 ~-~--> AT+12VT=0 727 727 1230 +Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds. 1231 + 1232 +Therefore, the corresponding downlink command is increased by one byte to five bytes. 1233 + 1234 +Example: 1235 + 1236 +* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 01 01 D4 C0 ~-~--> AT+3V3T=120000 1237 +* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 02 01 86 A0 ~-~--> AT+5VT=100000 1238 +* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 03 01 38 80 ~-~--> AT+12VT=80000 1239 + 728 728 === 3.3.4 Set the Probe Model === 729 729 730 730 731 731 Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value. 732 732 733 - (% style="color:blue" %)**AT Command: AT****+PROBE**1245 +AT Command: AT +PROBE 734 734 735 735 AT+PROBE=aabb 736 736 ... ... @@ -742,12 +742,20 @@ 742 742 743 743 (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C) 744 744 1257 +When aa=02, it is the Differential Pressure Sensor , which converts the current into a pressure value; 1258 + 1259 +bb represents which type of pressure sensor it is. 1260 + 1261 +(0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C) 1262 + 745 745 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 746 -|(% style="background-color:# d9e2f3; color:#0070c0; width:154px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:269px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Response**1264 +|(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response 747 747 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0 748 748 OK 749 749 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK 750 750 |(% style="background-color:#f2f2f2; width:154px" %)((( 1269 + 1270 + 751 751 AT+PROBE=000A 752 752 )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK 753 753 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK ... ... @@ -754,59 +754,66 @@ 754 754 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK 755 755 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK 756 756 757 - (% style="color:blue" %)**Downlink Command: 0x08**1277 +Downlink Command: 0x08 758 758 759 759 Format: Command Code (0x08) followed by 2 bytes. 760 760 761 -* Example 1: Downlink Payload: 080003 **~-~-->**AT+PROBE=0003762 -* Example 2: Downlink Payload: 080101 **~-~-->**AT+PROBE=01011281 +* Example 1: Downlink Payload: 080003 ~-~--> AT+PROBE=0003 1282 +* Example 2: Downlink Payload: 080101 ~-~--> AT+PROBE=0101 763 763 764 -=== 3.3.5 Multiple collections are one uplink (Since firmware V1.1)===1284 +=== 3.3.5 Multiple collections are one uplink (Since firmware V1.1) === 765 765 766 766 767 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time. 1287 +Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time. 768 768 769 - (% style="color:blue" %)**AT Command: AT****+STDC**1289 +AT Command: AT +STDC 770 770 771 771 AT+STDC=aa,bb,bb 772 772 773 -(% style="color:#037691" %)**aa:**(%%) 774 -**0:** means disable this function and use TDC to send packets. 775 -**1:** means enable this function, use the method of multiple acquisitions to send packets. 776 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535 777 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120 1293 +aa: 1294 +0: means disable this function and use TDC to send packets. 1295 +1: means that the function is enabled to send packets by collecting VDC data for multiple times. 1296 +2: means that the function is enabled to send packets by collecting IDC data for multiple times. 1297 +bb: Each collection interval (s), the value is 1~~65535 1298 +cc: the number of collection times, the value is 1~~120 778 778 779 779 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 780 -|(% style="background-color:# d9e2f3; color:#0070c0; width:160px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:215px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Response**1301 +|(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response 781 781 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18 782 782 OK 783 783 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)((( 1305 + 1306 + 784 784 Attention:Take effect after ATZ 785 785 786 786 OK 787 787 ))) 788 788 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)((( 1312 + 1313 + 789 789 Use the TDC interval to send packets.(default) 790 790 791 791 792 792 )))|(% style="background-color:#f2f2f2" %)((( 1318 + 1319 + 793 793 Attention:Take effect after ATZ 794 794 795 795 OK 796 796 ))) 797 797 798 - (% style="color:blue" %)**Downlink Command: 0xAE**1325 +Downlink Command: 0xAE 799 799 800 -Format: Command Code (0x 08) followed by5bytes.1327 +Format: Command Code (0xAE) followed by 4 bytes. 801 801 802 -* Example 1: Downlink Payload: AE 01 02 58 12 **~-~-->**AT+STDC=1,600,181329 +* Example 1: Downlink Payload: AE 01 02 58 12 ~-~--> AT+STDC=1,600,18 803 803 804 804 = 4. Battery & Power Consumption = 805 805 806 806 807 -PS-LB use sER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.1334 +PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace. 808 808 809 -[[ **Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .1336 +[[Battery Info & Power Consumption Analyze>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 810 810 811 811 812 812 = 5. OTA firmware update = ... ... @@ -836,6 +836,34 @@ 836 836 When downloading the images, choose the required image file for download. 837 837 838 838 1366 +== 6.4 How to measure the depth of other liquids other than water? == 1367 + 1368 + 1369 +Test the current values at the depth of different liquids and convert them to a linear scale. 1370 +Replace its ratio with the ratio of water to current in the decoder. 1371 + 1372 +Example: 1373 + 1374 +Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m. 1375 + 1376 +Calculate scale factor: 1377 +Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294 1378 + 1379 +Calculation formula: 1380 + 1381 +Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height 1382 + 1383 +Actual calculations: 1384 + 1385 +Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726 1386 + 1387 +Error: 1388 + 1389 +0.009810726 1390 + 1391 + 1392 +[[image:image-20240329175044-1.png]] 1393 + 839 839 = 7. Troubleshooting = 840 840 841 841 == 7.1 Water Depth Always shows 0 in payload == ... ... @@ -853,17 +853,17 @@ 853 853 = 8. Order Info = 854 854 855 855 856 -[[image:image-20230131153105-4.png]] 857 857 1412 +[[image:image-20241021093209-1.png]] 858 858 859 859 = 9. Packing Info = 860 860 861 861 862 - (% style="color:#037691" %)**Package Includes**:1417 +Package Includes: 863 863 864 -* PS-LB LoRaWAN Pressure Sensor 1419 +* PS-LB or PS-LS LoRaWAN Pressure Sensor 865 865 866 - (% style="color:#037691" %)**Dimension and weight**:1421 +Dimension and weight: 867 867 868 868 * Device Size: cm 869 869 * Device Weight: g ... ... @@ -876,5 +876,3 @@ 876 876 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 877 877 878 878 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]. 879 - 880 -
- image-20240109160800-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +60.1 KB - Content
- image-20240109172423-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +62.3 KB - Content
- image-20240329175044-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Bei - Size
-
... ... @@ -1,0 +1,1 @@ 1 +55.2 KB - Content
- image-20240511174954-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +65.9 KB - Content
- image-20240513093957-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +320.4 KB - Content
- image-20240513094047-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +62.7 KB - Content
- image-20240513094054-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +201.1 KB - Content
- image-20240513095921-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +130.4 KB - Content
- image-20240513095927-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.0 KB - Content
- image-20240513100129-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +130.4 KB - Content
- image-20240513100135-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.0 KB - Content
- image-20240817150702-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Bei - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.4 KB - Content
- image-20241021093209-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +52.1 KB - Content
- image-20250116175954-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +68.6 KB - Content
- image-20250116180030-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.2 KB - Content
- image-20250117104812-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.7 KB - Content
- image-20250117104827-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +74.6 KB - Content
- image-20250117104837-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.7 KB - Content
- image-20250117104847-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.2 KB - Content
- image-20250401102131-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +64.7 KB - Content
- image-20250401163530-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +44.9 KB - Content
- image-20250401163539-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +31.1 KB - Content
- image-20250401163826-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +18.9 KB - Content
- image-20250401163906-4.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +181.6 KB - Content