Last modified by Xiaoling on 2025/07/10 16:21

From version 70.3
edited by Xiaoling
on 2024/01/09 15:49
Change comment: There is no comment for this version
To version 123.2
edited by Xiaoling
on 2025/04/01 16:43
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -PS-LB -- LoRaWAN Air Water Pressure Sensor User Manual
1 +PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Content
... ... @@ -2,7 +2,7 @@
2 2  
3 3  
4 4  (% style="text-align:center" %)
5 -[[image:image-20240109154731-4.png]]
5 +[[image:image-20240109154731-4.png||height="671" width="945"]]
6 6  
7 7  
8 8  
... ... @@ -10,13 +10,8 @@
10 10  
11 11  
12 12  
13 +**Table of Contents :**
13 13  
14 -
15 -
16 -
17 -
18 -**Table of Contents:**
19 -
20 20  {{toc/}}
21 21  
22 22  
... ... @@ -30,27 +30,27 @@
30 30  
31 31  
32 32  (((
33 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
28 +The Dragino PS-LB/LS series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB/LS can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
34 34  )))
35 35  
36 36  (((
37 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
32 +The PS-LB/LS series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
38 38  )))
39 39  
40 40  (((
41 -The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 +The LoRa wireless technology used in PS-LB/LS allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
42 42  )))
43 43  
44 44  (((
45 -PS-LB supports BLE configure and wireless OTA update which make user easy to use.
40 +PS-LB/LS supports BLE configure and wireless OTA update which make user easy to use.
46 46  )))
47 47  
48 48  (((
49 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
44 +PS-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + Li-ion battery **(%%), it is designed for long term use up to 5 years.
50 50  )))
51 51  
52 52  (((
53 -Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
48 +Each PS-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
54 54  )))
55 55  
56 56  [[image:1675071321348-194.png]]
... ... @@ -70,8 +70,9 @@
70 70  * Support wireless OTA update firmware
71 71  * Uplink on periodically
72 72  * Downlink to change configure
73 -* 8500mAh Battery for long term use
74 74  * Controllable 3.3v,5v and 12v output to power external sensor
69 +* 8500mAh Li/SOCl2 Battery (PS-LB)
70 +* Solar panel + 3000mAh Li-ion battery (PS-LS)
75 75  
76 76  == 1.3 Specification ==
77 77  
... ... @@ -84,7 +84,7 @@
84 84  
85 85  (% style="color:#037691" %)**Common DC Characteristics:**
86 86  
87 -* Supply Voltage: 2.5v ~~ 3.6v
83 +* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
88 88  * Operating Temperature: -40 ~~ 85°C
89 89  
90 90  (% style="color:#037691" %)**LoRa Spec:**
... ... @@ -140,26 +140,34 @@
140 140  === 1.4.2 Immersion Type ===
141 141  
142 142  
143 -[[image:1675071521308-426.png]]
139 +[[image:image-20240109160445-5.png||height="221" width="166"]]
144 144  
145 145  * Immersion Type, Probe IP Level: IP68
146 146  * Measuring Range: Measure range can be customized, up to 100m.
147 147  * Accuracy: 0.2% F.S
148 148  * Long-Term Stability: ±0.2% F.S / Year
149 -* Storage temperature: -30~~80
150 -* Operating temperature: 0~~50
145 +* Storage temperature: -30°C~~80°C
146 +* Operating temperature: 0°C~~50°C
151 151  * Material: 316 stainless steels
152 152  
153 -== 1.5 Probe Dimension ==
149 +=== 1.4.3 Wireless Differential Air Pressure Sensor ===
154 154  
151 +[[image:image-20240511174954-1.png||height="215" width="215"]]
155 155  
153 +* Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
154 +* Accuracy: 0.5% F.S, resolution is 0.05%.
155 +* Overload: 300% F.S
156 +* Zero temperature drift: ±0.03%F.S/°C
157 +* Operating temperature: -20°C~~60°C
158 +* Storage temperature:  -20°C~~60°C
159 +* Compensation temperature: 0~~50°C
156 156  
157 -== 1.6 Application and Installation ==
161 +== 1.5 Application and Installation ==
158 158  
159 -=== 1.6.1 Thread Installation Type ===
163 +=== 1.5.1 Thread Installation Type ===
160 160  
161 161  
162 -(% style="color:blue" %)**Application:**
166 +Application:
163 163  
164 164  * Hydraulic Pressure
165 165  * Petrochemical Industry
... ... @@ -174,10 +174,10 @@
174 174  [[image:1675071670469-145.png]]
175 175  
176 176  
177 -=== 1.6.2 Immersion Type ===
181 +=== 1.5.2 Immersion Type ===
178 178  
179 179  
180 -(% style="color:blue" %)**Application:**
184 +Application:
181 181  
182 182  Liquid & Water Pressure / Level detect.
183 183  
... ... @@ -184,52 +184,87 @@
184 184  [[image:1675071725288-579.png]]
185 185  
186 186  
187 -The Immersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.
191 +Below is the wiring to for connect the probe to the device.
188 188  
193 +The Immersion Type Sensor has different variant which defined by Ixx. For example, this means two points:
189 189  
195 +* Cable Length: 10 Meters
196 +* Water Detect Range: 0 ~~ 10 Meters.
197 +
190 190  [[image:1675071736646-450.png]]
191 191  
192 192  
193 193  [[image:1675071776102-240.png]]
194 194  
203 +Size of immersion type water depth sensor:
195 195  
196 -== 1.7 Sleep mode and working mode ==
205 +[[image:image-20250401102131-1.png||height="268" width="707"]]
197 197  
198 198  
199 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
208 +=== 1.5.3 Wireless Differential Air Pressure Sensor ===
200 200  
201 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
202 202  
211 +Application:
203 203  
204 -== 1.8 Button & LEDs ==
213 +Indoor Air Control & Filter clogging Detect.
205 205  
215 +[[image:image-20240513100129-6.png]]
206 206  
207 -[[image:1675071855856-879.png]]
217 +[[image:image-20240513100135-7.png]]
208 208  
209 209  
220 +Below is the wiring to for connect the probe to the device.
221 +
222 +[[image:image-20240513093957-1.png]]
223 +
224 +
225 +Size of wind pressure transmitter:
226 +
227 +[[image:image-20240513094047-2.png]]
228 +
229 +Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.
230 +
231 +
232 +== 1.6 Sleep mode and working mode ==
233 +
234 +
235 +Deep Sleep Mode: Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
236 +
237 +Working Mode: In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
238 +
239 +
240 +== 1.7 Button & LEDs ==
241 +
242 +
243 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
244 +
210 210  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
211 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
246 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action
212 212  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
213 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
248 +
249 +
250 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once.
214 214  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
215 215  )))
216 216  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
217 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
218 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
254 +
255 +
256 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network.
257 +Green led will solidly turn on for 5 seconds after joined in network.
219 219  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
220 220  )))
221 -|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
260 +|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
222 222  
223 -== 1.9 Pin Mapping ==
262 +== 1.8 Pin Mapping ==
224 224  
225 225  
226 226  [[image:1675072568006-274.png]]
227 227  
228 228  
229 -== 1.10 BLE connection ==
268 +== 1.9 BLE connection ==
230 230  
231 231  
232 -PS-LB support BLE remote configure.
271 +PS-LB/LS support BLE remote configure.
233 233  
234 234  
235 235  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -241,24 +241,26 @@
241 241  If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
242 242  
243 243  
244 -== 1.11 Mechanical ==
283 +== 1.10 Mechanical ==
245 245  
285 +=== 1.10.1 for LB version ===
246 246  
247 -[[image:1675143884058-338.png]]
248 248  
288 +[[image:image-20250401163530-1.jpeg]]
249 249  
250 -[[image:1675143899218-599.png]]
251 251  
291 +=== 1.10.2 for LS version ===
252 252  
253 -[[image:1675143909447-639.png]]
254 254  
294 +[[image:image-20250401163539-2.jpeg]]
255 255  
256 -= 2. Configure PS-LB to connect to LoRaWAN network =
257 257  
297 += 2. Configure PS-LB/LS to connect to LoRaWAN network =
298 +
258 258  == 2.1 How it works ==
259 259  
260 260  
261 -The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
302 +The PS-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
262 262  
263 263  
264 264  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -266,7 +266,6 @@
266 266  
267 267  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
268 268  
269 -
270 270  [[image:1675144005218-297.png]]
271 271  
272 272  
... ... @@ -273,9 +273,9 @@
273 273  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
274 274  
275 275  
276 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
316 +Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.
277 277  
278 -Each PS-LB is shipped with a sticker with the default device EUI as below:
318 +Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
279 279  
280 280  [[image:image-20230426085320-1.png||height="234" width="504"]]
281 281  
... ... @@ -283,32 +283,32 @@
283 283  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
284 284  
285 285  
286 -(% style="color:blue" %)**Register the device**
326 +Register the device
287 287  
288 288  [[image:1675144099263-405.png]]
289 289  
290 290  
291 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
331 +Add APP EUI and DEV EUI
292 292  
293 293  [[image:1675144117571-832.png]]
294 294  
295 295  
296 -(% style="color:blue" %)**Add APP EUI in the application**
336 +Add APP EUI in the application
297 297  
298 298  
299 299  [[image:1675144143021-195.png]]
300 300  
301 301  
302 -(% style="color:blue" %)**Add APP KEY**
342 +Add APP KEY
303 303  
304 304  [[image:1675144157838-392.png]]
305 305  
306 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
346 +Step 2: Activate on PS-LB/LS
307 307  
308 308  
309 -Press the button for 5 seconds to activate the PS-LB.
349 +Press the button for 5 seconds to activate the PS-LB/LS.
310 310  
311 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
351 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network.
312 312  
313 313  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
314 314  
... ... @@ -318,15 +318,14 @@
318 318  === 2.3.1 Device Status, FPORT~=5 ===
319 319  
320 320  
321 -Include device configure status. Once PS-LB Joined the network, it will uplink this message to the server.
361 +Include device configure status. Once PS-LB/LS Joined the network, it will uplink this message to the server.
322 322  
323 -Users can also use the downlink command(0x26 01) to ask PS-LB to resend this uplink.
363 +Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
324 324  
325 -
326 326  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
327 -|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
328 -|(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
329 -|(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
366 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)Device Status (FPORT=5)
367 +|(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2
368 +|(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
330 330  
331 331  Example parse in TTNv3
332 332  
... ... @@ -333,11 +333,11 @@
333 333  [[image:1675144504430-490.png]]
334 334  
335 335  
336 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
375 +Sensor Model: For PS-LB/LS, this value is 0x16
337 337  
338 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
377 +Firmware Version: 0x0100, Means: v1.0.0 version
339 339  
340 -(% style="color:#037691" %)**Frequency Band**:
379 +Frequency Band:
341 341  
342 342  *0x01: EU868
343 343  
... ... @@ -368,7 +368,7 @@
368 368  *0x0e: MA869
369 369  
370 370  
371 -(% style="color:#037691" %)**Sub-Band**:
410 +Sub-Band:
372 372  
373 373  AU915 and US915:value 0x00 ~~ 0x08
374 374  
... ... @@ -377,7 +377,7 @@
377 377  Other Bands: Always 0x00
378 378  
379 379  
380 -(% style="color:#037691" %)**Battery Info**:
419 +Battery Info:
381 381  
382 382  Check the battery voltage.
383 383  
... ... @@ -392,10 +392,12 @@
392 392  Uplink payload includes in total 9 bytes.
393 393  
394 394  
395 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
396 -|(% style="background-color:#d9e2f3; color:#0070c0; width:97px" %)(((
397 -**Size(bytes)**
398 -)))|(% style="background-color:#d9e2f3; color:#0070c0; width:48px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:71px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:98px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:73px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:122px" %)**1**
434 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
435 +|(% style="background-color:#4f81bd; color:white; width:97px" %)(((
436 +
437 +
438 +Size(bytes)
439 +)))|(% style="background-color:#4f81bd; color:white; width:50px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
399 399  |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
400 400  
401 401  [[image:1675144608950-310.png]]
... ... @@ -404,7 +404,7 @@
404 404  === 2.3.3 Battery Info ===
405 405  
406 406  
407 -Check the battery voltage for PS-LB.
448 +Check the battery voltage for PS-LB/LS.
408 408  
409 409  Ex1: 0x0B45 = 2885mV
410 410  
... ... @@ -414,16 +414,16 @@
414 414  === 2.3.4 Probe Model ===
415 415  
416 416  
417 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
458 +PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
418 418  
419 419  
420 -**For example.**
461 +For example.
421 421  
422 422  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
423 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Part Number**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Probe Used**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4~~20mA scale**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Example: 12mA meaning**
424 -|(% style="background-color:#f2f2f2" %)PS-LB-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
425 -|(% style="background-color:#f2f2f2" %)PS-LB-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
426 -|(% style="background-color:#f2f2f2" %)PS-LB-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
464 +|(% style="background-color:#4f81bd; color:white" %)Part Number|(% style="background-color:#4f81bd; color:white" %)Probe Used|(% style="background-color:#4f81bd; color:white" %)4~~20mA scale|(% style="background-color:#4f81bd; color:white" %)Example: 12mA meaning
465 +|(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
466 +|(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
467 +|(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
427 427  
428 428  The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
429 429  
... ... @@ -431,9 +431,9 @@
431 431  === 2.3.5 0~~20mA value (IDC_IN) ===
432 432  
433 433  
434 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
475 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
435 435  
436 -(% style="color:#037691" %)**Example**:
477 +Example:
437 437  
438 438  27AE(H) = 10158 (D)/1000 = 10.158mA.
439 439  
... ... @@ -443,12 +443,12 @@
443 443  [[image:image-20230225154759-1.png||height="408" width="741"]]
444 444  
445 445  
446 -=== 2.3.6 0~~30V value ( pin VDC_IN) ===
487 +=== 2.3.6 0~~30V value (pin VDC_IN) ===
447 447  
448 448  
449 449  Measure the voltage value. The range is 0 to 30V.
450 450  
451 -(% style="color:#037691" %)**Example**:
492 +Example:
452 452  
453 453  138E(H) = 5006(D)/1000= 5.006V
454 454  
... ... @@ -458,7 +458,7 @@
458 458  
459 459  IN1 and IN2 are used as digital input pins.
460 460  
461 -(% style="color:#037691" %)**Example**:
502 +Example:
462 462  
463 463  09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
464 464  
... ... @@ -465,9 +465,9 @@
465 465  09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
466 466  
467 467  
468 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
509 +This data field shows if this packet is generated by Interrupt Pin or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
469 469  
470 -(% style="color:#037691" %)**Example:**
511 +Example:
471 471  
472 472  09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
473 473  
... ... @@ -476,14 +476,18 @@
476 476  0x01: Interrupt Uplink Packet.
477 477  
478 478  
479 -=== (% style="color:inherit; font-family:inherit; font-size:23px" %)2.3.8 Sensor value, FPORT~=7(%%) ===
520 +=== 2.3.8 Sensor value, FPORT~=7 ===
480 480  
481 481  
482 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:508.222px" %)
483 -|(% style="background-color:#d9e2f3; color:#0070c0; width:94px" %)(((
484 -**Size(bytes)**
485 -)))|(% style="background-color:#d9e2f3; color:#0070c0; width:43px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:367px" %)**n**
523 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
524 +|(% style="background-color:#4f81bd; color:white; width:65px" %)(((
525 +
526 +
527 +Size(bytes)
528 +)))|(% style="background-color:#4f81bd; color:white; width:35px" %)2|(% style="background-color:#4f81bd; color:white; width:400px" %)n
486 486  |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
530 +
531 +
487 487  Voltage value, each 2 bytes is a set of voltage values.
488 488  )))
489 489  
... ... @@ -499,17 +499,16 @@
499 499  
500 500  While using TTN network, you can add the payload format to decode the payload.
501 501  
502 -
503 503  [[image:1675144839454-913.png]]
504 504  
505 505  
506 -PS-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
550 +PS-LB/LS TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
507 507  
508 508  
509 509  == 2.4 Uplink Interval ==
510 510  
511 511  
512 -The PS-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
556 +The PS-LB/LS by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
513 513  
514 514  
515 515  == 2.5 Show Data in DataCake IoT Server ==
... ... @@ -517,12 +517,10 @@
517 517  
518 518  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
519 519  
564 +Step 1: Be sure that your device is programmed and properly connected to the network at this time.
520 520  
521 -(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
566 +Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
522 522  
523 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
524 -
525 -
526 526  [[image:1675144951092-237.png]]
527 527  
528 528  
... ... @@ -529,9 +529,9 @@
529 529  [[image:1675144960452-126.png]]
530 530  
531 531  
532 -(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
574 +Step 3: Create an account or log in Datacake.
533 533  
534 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
576 +Step 4: Create PS-LB/LS product.
535 535  
536 536  [[image:1675145004465-869.png]]
537 537  
... ... @@ -539,11 +539,10 @@
539 539  [[image:1675145018212-853.png]]
540 540  
541 541  
542 -
543 543  [[image:1675145029119-717.png]]
544 544  
545 545  
546 -(% style="color:blue" %)**Step 5: **(%%)add payload decode
587 +Step 5: add payload decode
547 547  
548 548  [[image:1675145051360-659.png]]
549 549  
... ... @@ -553,34 +553,461 @@
553 553  
554 554  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
555 555  
556 -
557 557  [[image:1675145081239-376.png]]
558 558  
559 559  
560 -== 2.6 Frequency Plans ==
600 +== 2.6 Datalog Feature (Since V1.1) ==
561 561  
562 562  
563 -The PS-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
603 +When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot.
564 564  
565 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
566 566  
606 +=== 2.6.1 Unix TimeStamp ===
567 567  
568 -== 2.7 ​Firmware Change Log ==
569 569  
609 +PS-LB uses Unix TimeStamp format based on
570 570  
571 -**Firmware download link:**
611 +[[image:image-20250401163826-3.jpeg]]
572 572  
613 +Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
614 +
615 +Below is the converter example:
616 +
617 +[[image:image-20250401163906-4.jpeg]]
618 +
619 +
620 +=== 2.6.2 Set Device Time ===
621 +
622 +
623 +There are two ways to set the device's time:
624 +
625 +
626 +~1. Through LoRaWAN MAC Command (Default settings)
627 +
628 +Users need to set SYNCMOD=1 to enable sync time via the MAC command.
629 +
630 +Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
631 +
632 +Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.
633 +
634 +
635 + 2. Manually Set Time
636 +
637 +Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
638 +
639 +
640 +=== 2.6.3 Poll sensor value ===
641 +
642 +Users can poll sensor values based on timestamps. Below is the downlink command.
643 +
644 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
645 +|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31)
646 +|(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte
647 +|(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)(((
648 +
649 +
650 +Timestamp end
651 +)))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval
652 +
653 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
654 +
655 +For example, downlink command[[image:image-20250117104812-1.png]]
656 +
657 +Is to check 2024/12/20 09:34:59 to 2024/12/20 14:34:59's data
658 +
659 +Uplink Internal =5s,means PS-LB will send one packet every 5s. range 5~~255s.
660 +
661 +
662 +=== 2.6.4 Datalog Uplink payload (FPORT~=3) ===
663 +
664 +
665 +The Datalog uplinks will use below payload format.
666 +
667 +Retrieval data payload:
668 +
669 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
670 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
671 +Size(bytes)
672 +)))|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)2|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)4
673 +|(% style="width:103px" %)Value|(% style="width:68px" %)(((
674 +
675 +
676 +Probe_mod
677 +)))|(% style="width:104px" %)(((
678 +
679 +
680 +VDC_intput_V
681 +)))|(% style="width:83px" %)(((
682 +
683 +
684 +IDC_intput_mA
685 +)))|(% style="width:201px" %)(((
686 +
687 +
688 +IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status
689 +)))|(% style="width:86px" %)Unix Time Stamp
690 +
691 +IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:
692 +
693 +[[image:image-20250117104847-4.png]]
694 +
695 +
696 +No ACK Message:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
697 +
698 +Poll Message Flag: 1: This message is a poll message reply.
699 +
700 +* Poll Message Flag is set to 1.
701 +
702 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
703 +
704 +For example, in US915 band, the max payload for different DR is:
705 +
706 +a) DR0: max is 11 bytes so one entry of data
707 +
708 +b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
709 +
710 +c) DR2: total payload includes 11 entries of data
711 +
712 +d) DR3: total payload includes 22 entries of data.
713 +
714 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
715 +
716 +Example:
717 +
718 +If PS-LB-NA has below data inside Flash:
719 +
720 +[[image:image-20250117104837-3.png]]
721 +
722 +
723 +If user sends below downlink command: 316788D9BF6788DB6305
724 +
725 +Where : Start time: 6788D9BF = time 25/1/16 10:04:47
726 +
727 + Stop time: 6788DB63 = time 25/1/16 10:11:47
728 +
729 +
730 +PA-LB-NA will uplink this payload.
731 +
732 +[[image:image-20250117104827-2.png]]
733 +
734 +
735 +00001B620000406788D9BF  00000D130000406788D9FB  00000D120000406788DA37  00000D110000406788DA73  00000D100000406788DAAF  00000D100000406788DAEB  00000D0F0000406788DB27  00000D100000406788DB63
736 +
737 +
738 +Where the first 11 bytes is for the first entry :
739 +
740 +
741 +0000  0D10  0000  40  6788DB63
742 +
743 +
744 +Probe_mod = 0x0000 = 0000
745 +
746 +
747 +VDC_intput_V = 0x0D10/1000=3.344V
748 +
749 +IDC_intput_mA = 0x0000/1000=0mA
750 +
751 +
752 +IN1_pin_level = (0x40& 0x08)? "High":"Low" = 0(Low)
753 +
754 +IN2_pin_level = (0x40& 0x04)? "High":"Low" = 0(Low)
755 +
756 +Exti_pin_level = (0x40& 0x02)? "High":"Low" = 0(Low)
757 +
758 +Exti_status = (0x40& 0x01)? "True":"False" = 0(False)
759 +
760 +
761 +Unix time is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
762 +
763 +Its data format is:
764 +
765 +[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
766 +
767 +Note: water_deep in the data needs to be converted using decoding to get it.
768 +
769 +
770 +=== 2.6.5 Decoder in TTN V3 ===
771 +
772 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
773 +
774 +Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
775 +
776 +
777 +== 2.7 Frequency Plans ==
778 +
779 +
780 +The PS-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
781 +
782 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/a>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
783 +
784 +
785 +== 2.8 Report on Change Feature (Since firmware V1.2) ==
786 +
787 +=== 2.8.1 Uplink payload(Enable ROC) ===
788 +
789 +
790 +Used to Monitor the IDC and VDC increments, and send ROC uplink when the IDC or VDC changes exceed.
791 +
792 +With ROC enabled, the payload is as follows:
793 +
794 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
795 +|(% style="background-color:#4f81bd; color:white; width:97px" %)(((
796 +
797 +
798 +Size(bytes)
799 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
800 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
801 +
802 +
803 +[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag
804 +)))
805 +
806 +IN1 &IN2 , Interrupt  flag , ROC_flag:
807 +
808 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
809 +|(% style="background-color:#4f81bd; color:white; width:50px" %)Size(bit)|(% style="background-color:#4f81bd; color:white; width:60px" %)bit7|(% style="background-color:#4f81bd; color:white; width:62px" %)bit6|(% style="background-color:#4f81bd; color:white; width:62px" %)bit5|(% style="background-color:#4f81bd; color:white; width:65px" %)bit4|(% style="background-color:#4f81bd; color:white; width:56px" %)bit3|(% style="background-color:#4f81bd; color:white; width:55px" %)bit2|(% style="background-color:#4f81bd; color:white; width:55px" %)bit1|(% style="background-color:#4f81bd; color:white; width:50px" %)bit0
810 +|(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status
811 +
812 +* IDC_Roc_flagL
813 +
814 +80 (H): (0x80&0x80)=80(H)=1000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
815 +
816 +60 (H): (0x60&0x80)=0  bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
817 +
818 +
819 +* IDC_Roc_flagH
820 +
821 +60 (H): (0x60&0x40)=60(H)=01000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
822 +
823 +80 (H): (0x80&0x40)=0  bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
824 +
825 +
826 +* VDC_Roc_flagL
827 +
828 +20 (H): (0x20&0x20)=20(H)=0010 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
829 +
830 +90 (H): (0x90&0x20)=0  bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
831 +
832 +
833 +* VDC_Roc_flagH
834 +
835 +90 (H): (0x90&0x10)=10(H)=0001 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
836 +
837 +20 (H): (0x20&0x10)=0  bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
838 +
839 +
840 +* IN1_pin_level & IN2_pin_level
841 +
842 +IN1 and IN2 are used as digital input pins.
843 +
844 +80 (H): (0x80&0x08)=0  IN1 pin is low level.
845 +
846 +80 (H): (0x09&0x04)=0    IN2 pin is low level.
847 +
848 +
849 +* Exti_pin_level &Exti_status
850 +
851 +This data field shows whether the packet is generated by an interrupt pin.
852 +
853 +Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the GPIO_EXTI pin.
854 +
855 +Exti_pin_level:  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
856 +
857 +Exti_status: 80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
858 +
859 +
860 +=== 2.8.2 Set the Report on Change ===
861 +
862 +
863 +Feature: Get or Set the Report on Change.
864 +
865 +
866 +==== 2.8.2.1 Wave alarm mode ====
867 +
868 +Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed.
869 +
870 +* Change value: The amount by which the next detection value increases/decreases relative to the previous detection value.
871 +* Comparison value: A parameter to compare with the latest ROC test.
872 +
873 +AT Command: AT+ROC
874 +
875 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
876 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
877 +|(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
878 +
879 +
880 +0,0,0,0(default)
881 +OK
882 +)))
883 +|(% colspan="1" rowspan="4" style="width:143px" %)(((
884 +
885 +
886 +
887 +
888 +
889 +AT+ROC=a,b,c,d
890 +)))|(% style="width:154px" %)(((
891 +
892 +
893 +
894 +
895 +
896 +
897 +
898 +a: Enable or disable the ROC
899 +)))|(% style="width:197px" %)(((
900 +
901 +
902 +0: off
903 +1: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
904 +
905 +2: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
906 +)))
907 +|(% style="width:154px" %)b: Set the detection interval|(% style="width:197px" %)(((
908 +
909 +
910 +Range:  0~~65535s
911 +)))
912 +|(% style="width:154px" %)c: Setting the IDC change value|(% style="width:197px" %)Unit: uA
913 +|(% style="width:154px" %)d: Setting the VDC change value|(% style="width:197px" %)Unit: mV
914 +
915 +Example:
916 +
917 +* AT+ROC=0,0,0,0  ~/~/The ROC function is not used.
918 +* AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed.
919 +* AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage.
920 +* AT+ROC=2,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed.
921 +
922 +Downlink Command: 0x09 aa bb cc dd
923 +
924 +Format: Function code (0x09) followed by 4 bytes.
925 +
926 +aa: 1 byte; Set the wave alarm mode.
927 +
928 +bb: 2 bytes; Set the detection interval. (second)
929 +
930 +cc: 2 bytes; Setting the IDC change threshold. (uA)
931 +
932 +dd: 2 bytes; Setting the VDC change threshold. (mV)
933 +
934 +Example:
935 +
936 +* Downlink Payload: 09 01 00 3C 0B B8 01 F4  ~/~/Equal to AT+ROC=1,60,3000, 500
937 +* Downlink Payload: 09 01 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=1,60,3000,0
938 +* Downlink Payload: 09 02 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=2,60,3000,0
939 +
940 +Screenshot of parsing example in TTN:
941 +
942 +* AT+ROC=1,60,3000, 500.
943 +
944 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB-NA--LoRaWAN_Analog_Sensor_User_Manual/WebHome/image-20241019170902-1.png?width=1454&height=450&rev=1.1||alt="image-20241019170902-1.png"]]
945 +
946 +
947 +==== 2.8.2.2 Over-threshold alarm mode ====
948 +
949 +Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded.
950 +
951 +AT Command: AT+ROC=3,a,b,c,d,e
952 +
953 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
954 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
955 +|(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
956 +
957 +
958 +0,0,0,0(default)
959 +OK
960 +)))
961 +|(% colspan="1" rowspan="5" style="width:143px" %)(((
962 +
963 +
964 +
965 +
966 +
967 +AT+ROC=3,a,b,c,d,e
968 +)))|(% style="width:160px" %)(((
969 +
970 +
971 +a: Set the detection interval
972 +)))|(% style="width:185px" %)(((
973 +
974 +
975 +Range:  0~~65535s
976 +)))
977 +|(% style="width:160px" %)b: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
978 +
979 +
980 +0: Less than the set IDC threshold, Alarm
981 +
982 +1: Greater than the set IDC threshold, Alarm
983 +)))
984 +|(% style="width:160px" %)(((
985 +
986 +
987 +c:  IDC alarm threshold
988 +)))|(% style="width:185px" %)(((
989 +
990 +
991 +Unit: uA
992 +)))
993 +|(% style="width:160px" %)d: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
994 +
995 +
996 +0: Less than the set VDC threshold, Alarm
997 +
998 +1: Greater than the set VDC threshold, Alarm
999 +)))
1000 +|(% style="width:160px" %)e: VDC alarm threshold|(% style="width:185px" %)Unit: mV
1001 +
1002 +Example:
1003 +
1004 +* AT+ROC=3,60,0,3000,0,5000  ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
1005 +* AT+ROC=3,180,1,3000,1,5000  ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
1006 +* AT+ROC=3,300,0,3000,1,5000  ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
1007 +
1008 +Downlink Command: 0x09 03 aa bb cc dd ee
1009 +
1010 +Format: Function code (0x09) followed by 03 and the remaining 5 bytes.
1011 +
1012 +aa: 2 bytes; Set the detection interval.(second)
1013 +
1014 +bb: 1 byte; Set the IDC alarm trigger condition.
1015 +
1016 +cc: 2 bytes; IDC alarm threshold.(uA)
1017 +
1018 +
1019 +dd: 1 byte; Set the VDC alarm trigger condition.
1020 +
1021 +ee: 2 bytes; VDC alarm threshold.(mV)
1022 +
1023 +Example:
1024 +
1025 +* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
1026 +* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
1027 +* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
1028 +
1029 +Screenshot of parsing example in TTN:
1030 +
1031 +* AT+ROC=3,60,0,3000,0,5000
1032 +
1033 +[[image:image-20250116180030-2.png]]
1034 +
1035 +
1036 +== 2.9 ​Firmware Change Log ==
1037 +
1038 +
1039 +Firmware download link:
1040 +
573 573  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
574 574  
575 575  
576 -= 3. Configure PS-LB =
1044 += 3. Configure PS-LB/LS =
577 577  
578 578  == 3.1 Configure Methods ==
579 579  
580 580  
581 -PS-LB supports below configure method:
1049 +PS-LB/LS supports below configure method:
582 582  
583 -* AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1051 +* AT Command via Bluetooth Connection (Recommand Way): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
584 584  * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
585 585  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
586 586  
... ... @@ -597,10 +597,10 @@
597 597  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
598 598  
599 599  
600 -== 3.3 Commands special design for PS-LB ==
1068 +== 3.3 Commands special design for PS-LB/LS ==
601 601  
602 602  
603 -These commands only valid for PS-LB, as below:
1071 +These commands only valid for PS-LB/LS, as below:
604 604  
605 605  
606 606  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -608,21 +608,25 @@
608 608  
609 609  Feature: Change LoRaWAN End Node Transmit Interval.
610 610  
611 -(% style="color:blue" %)**AT Command: AT+TDC**
1079 +AT Command: AT+TDC
612 612  
613 613  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
614 -|=(% style="width: 160px; background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 160px; background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1082 +|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response
615 615  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
1084 +
1085 +
616 616  30000
617 617  OK
618 618  the interval is 30000ms = 30s
619 619  )))
620 620  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
1091 +
1092 +
621 621  OK
622 622  Set transmit interval to 60000ms = 60 seconds
623 623  )))
624 624  
625 -(% style="color:blue" %)**Downlink Command: 0x01**
1097 +Downlink Command: 0x01
626 626  
627 627  Format: Command Code (0x01) followed by 3 bytes time value.
628 628  
... ... @@ -636,16 +636,20 @@
636 636  
637 637  Feature, Set Interrupt mode for GPIO_EXIT.
638 638  
639 -(% style="color:blue" %)**AT Command: AT+INTMOD**
1111 +AT Command: AT+INTMOD
640 640  
641 641  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
642 -|=(% style="width: 154px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1114 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response
643 643  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
1116 +
1117 +
644 644  0
645 645  OK
646 646  the mode is 0 =Disable Interrupt
647 647  )))
648 648  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
1123 +
1124 +
649 649  Set Transmit Interval
650 650  0. (Disable Interrupt),
651 651  ~1. (Trigger by rising and falling edge)
... ... @@ -653,7 +653,7 @@
653 653  3. (Trigger by rising edge)
654 654  )))|(% style="background-color:#f2f2f2; width:157px" %)OK
655 655  
656 -(% style="color:blue" %)**Downlink Command: 0x06**
1132 +Downlink Command: 0x06
657 657  
658 658  Format: Command Code (0x06) followed by 3 bytes.
659 659  
... ... @@ -667,76 +667,106 @@
667 667  
668 668  Feature, Control the output 3V3 , 5V or 12V.
669 669  
670 -(% style="color:blue" %)**AT Command: AT+3V3T**
1146 +AT Command: AT+3V3T
671 671  
672 672  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
673 -|=(% style="width: 154px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 201px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 119px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1149 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
674 674  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
1151 +
1152 +
675 675  0
676 676  OK
677 677  )))
678 678  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1157 +
1158 +
679 679  OK
680 680  default setting
681 681  )))
682 682  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
1163 +
1164 +
683 683  OK
684 684  )))
685 685  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1168 +
1169 +
686 686  OK
687 687  )))
688 688  
689 -(% style="color:blue" %)**AT Command: AT+5VT**
1173 +AT Command: AT+5VT
690 690  
691 691  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
692 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 119px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1176 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
693 693  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1178 +
1179 +
694 694  0
695 695  OK
696 696  )))
697 697  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1184 +
1185 +
698 698  OK
699 699  default setting
700 700  )))
701 701  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
1190 +
1191 +
702 702  OK
703 703  )))
704 704  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1195 +
1196 +
705 705  OK
706 706  )))
707 707  
708 -(% style="color:blue" %)**AT Command: AT+12VT**
1200 +AT Command: AT+12VT
709 709  
710 710  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
711 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 199px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 88px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1203 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response
712 712  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1205 +
1206 +
713 713  0
714 714  OK
715 715  )))
716 716  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
717 717  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
1212 +
1213 +
718 718  OK
719 719  )))
720 720  
721 -(% style="color:blue" %)**Downlink Command: 0x07**
1217 +Downlink Command: 0x07
722 722  
723 723  Format: Command Code (0x07) followed by 3 bytes.
724 724  
725 725  The first byte is which power, the second and third bytes are the time to turn on.
726 726  
727 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
728 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
729 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
730 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
731 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
732 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
1223 +* Example 1: Downlink Payload: 070101F4  ~-~-->  AT+3V3T=500
1224 +* Example 2: Downlink Payload: 0701FFFF   ~-~-->  AT+3V3T=65535
1225 +* Example 3: Downlink Payload: 070203E8  ~-~-->  AT+5VT=1000
1226 +* Example 4: Downlink Payload: 07020000  ~-~-->  AT+5VT=0
1227 +* Example 5: Downlink Payload: 070301F4  ~-~-->  AT+12VT=500
1228 +* Example 6: Downlink Payload: 07030000  ~-~-->  AT+12VT=0
733 733  
1230 +Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.
1231 +
1232 +Therefore, the corresponding downlink command is increased by one byte to five bytes.
1233 +
1234 +Example:
1235 +
1236 +* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 01 01 D4 C0  ~-~-->  AT+3V3T=120000
1237 +* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 02 01 86 A0  ~-~-->  AT+5VT=100000
1238 +* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 03 01 38 80  ~-~-->  AT+12VT=80000
1239 +
734 734  === 3.3.4 Set the Probe Model ===
735 735  
736 736  
737 737  Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
738 738  
739 -(% style="color:blue" %)**AT Command: AT** **+PROBE**
1245 +AT Command: AT +PROBE
740 740  
741 741  AT+PROBE=aabb
742 742  
... ... @@ -748,12 +748,20 @@
748 748  
749 749  (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
750 750  
1257 +When aa=02, it is the Differential Pressure Sensor , which converts the current into a pressure value;
1258 +
1259 +bb represents which type of pressure sensor it is.
1260 +
1261 +(0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C)
1262 +
751 751  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
752 -|(% style="background-color:#d9e2f3; color:#0070c0; width:154px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:269px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Response**
1264 +|(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
753 753  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
754 754  OK
755 755  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
756 756  |(% style="background-color:#f2f2f2; width:154px" %)(((
1269 +
1270 +
757 757  AT+PROBE=000A
758 758  )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
759 759  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
... ... @@ -760,59 +760,66 @@
760 760  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
761 761  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
762 762  
763 -(% style="color:blue" %)**Downlink Command: 0x08**
1277 +Downlink Command: 0x08
764 764  
765 765  Format: Command Code (0x08) followed by 2 bytes.
766 766  
767 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
768 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
1281 +* Example 1: Downlink Payload: 080003  ~-~-->  AT+PROBE=0003
1282 +* Example 2: Downlink Payload: 080101  ~-~-->  AT+PROBE=0101
769 769  
770 -=== 3.3.5 Multiple collections are one uplinkSince firmware V1.1 ===
1284 +=== 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
771 771  
772 772  
773 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
1287 +Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time.
774 774  
775 -(% style="color:blue" %)**AT Command: AT** **+STDC**
1289 +AT Command: AT +STDC
776 776  
777 777  AT+STDC=aa,bb,bb
778 778  
779 -(% style="color:#037691" %)**aa:**(%%)
780 -**0:** means disable this function and use TDC to send packets.
781 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
782 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
783 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
1293 +aa:
1294 +0: means disable this function and use TDC to send packets.
1295 +1: means that the function is enabled to send packets by collecting VDC data for multiple times.
1296 +2: means that the function is enabled to send packets by collecting IDC data for multiple times.
1297 +bb: Each collection interval (s), the value is 1~~65535
1298 +cc: the number of collection times, the value is 1~~120
784 784  
785 785  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
786 -|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:215px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Response**
1301 +|(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
787 787  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
788 788  OK
789 789  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1305 +
1306 +
790 790  Attention:Take effect after ATZ
791 791  
792 792  OK
793 793  )))
794 794  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
1312 +
1313 +
795 795  Use the TDC interval to send packets.(default)
796 796  
797 797  
798 798  )))|(% style="background-color:#f2f2f2" %)(((
1318 +
1319 +
799 799  Attention:Take effect after ATZ
800 800  
801 801  OK
802 802  )))
803 803  
804 -(% style="color:blue" %)**Downlink Command: 0xAE**
1325 +Downlink Command: 0xAE
805 805  
806 -Format: Command Code (0x08) followed by 5 bytes.
1327 +Format: Command Code (0xAE) followed by 4 bytes.
807 807  
808 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
1329 +* Example 1: Downlink Payload: AE 01 02 58 12 ~-~-->  AT+STDC=1,600,18
809 809  
810 810  = 4. Battery & Power Consumption =
811 811  
812 812  
813 -PS-LB uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1334 +PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
814 814  
815 -[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1336 +[[Battery Info & Power Consumption Analyze>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
816 816  
817 817  
818 818  = 5. OTA firmware update =
... ... @@ -842,6 +842,34 @@
842 842  When downloading the images, choose the required image file for download. ​
843 843  
844 844  
1366 +== 6.4 How to measure the depth of other liquids other than water? ==
1367 +
1368 +
1369 +Test the current values at the depth of different liquids and convert them to a linear scale.
1370 +Replace its ratio with the ratio of water to current in the decoder.
1371 +
1372 +Example:
1373 +
1374 +Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
1375 +
1376 +Calculate scale factor:
1377 +Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
1378 +
1379 +Calculation formula:
1380 +
1381 +Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
1382 +
1383 +Actual calculations:
1384 +
1385 +Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
1386 +
1387 +Error:
1388 +
1389 +0.009810726
1390 +
1391 +
1392 +[[image:image-20240329175044-1.png]]
1393 +
845 845  = 7. Troubleshooting =
846 846  
847 847  == 7.1 Water Depth Always shows 0 in payload ==
... ... @@ -859,17 +859,17 @@
859 859  = 8. Order Info =
860 860  
861 861  
862 -[[image:image-20230131153105-4.png]]
863 863  
1412 +[[image:image-20241021093209-1.png]]
864 864  
865 865  = 9. ​Packing Info =
866 866  
867 867  
868 -(% style="color:#037691" %)**Package Includes**:
1417 +Package Includes:
869 869  
870 -* PS-LB LoRaWAN Pressure Sensor
1419 +* PS-LB or PS-LS LoRaWAN Pressure Sensor
871 871  
872 -(% style="color:#037691" %)**Dimension and weight**:
1421 +Dimension and weight:
873 873  
874 874  * Device Size: cm
875 875  * Device Weight: g
... ... @@ -882,5 +882,3 @@
882 882  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
883 883  
884 884  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].
885 -
886 -
image-20240109160445-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.8 KB
Content
image-20240109160800-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +60.1 KB
Content
image-20240109172423-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +62.3 KB
Content
image-20240329175044-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +55.2 KB
Content
image-20240511174954-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +65.9 KB
Content
image-20240513093957-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +320.4 KB
Content
image-20240513094047-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +62.7 KB
Content
image-20240513094054-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +201.1 KB
Content
image-20240513095921-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +130.4 KB
Content
image-20240513095927-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +98.0 KB
Content
image-20240513100129-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +130.4 KB
Content
image-20240513100135-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +98.0 KB
Content
image-20240817150702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +38.4 KB
Content
image-20241021093209-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +52.1 KB
Content
image-20250116175954-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +68.6 KB
Content
image-20250116180030-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +69.2 KB
Content
image-20250117104812-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +1.7 KB
Content
image-20250117104827-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +74.6 KB
Content
image-20250117104837-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +38.7 KB
Content
image-20250117104847-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 KB
Content
image-20250401102131-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +64.7 KB
Content
image-20250401163530-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +44.9 KB
Content
image-20250401163539-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +31.1 KB
Content
image-20250401163826-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +18.9 KB
Content
image-20250401163906-4.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +181.6 KB
Content