Last modified by Xiaoling on 2025/07/10 16:21

From version 70.2
edited by Xiaoling
on 2024/01/09 15:49
Change comment: There is no comment for this version
To version 42.8
edited by Xiaoling
on 2023/01/31 15:48
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,12 +1,9 @@
1 -
1 +[[image:image-20230131115217-1.png]]
2 2  
3 3  
4 -[[image:image-20240109154731-4.png]]
5 5  
5 +**Table of Contents:**
6 6  
7 -
8 -**Table of Contents:**
9 -
10 10  {{toc/}}
11 11  
12 12  
... ... @@ -19,33 +19,22 @@
19 19  == 1.1 What is LoRaWAN Pressure Sensor ==
20 20  
21 21  
22 -(((
23 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
24 -)))
19 +The Dragino PS-LB series sensors are **(% style="color:blue" %)LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
25 25  
26 -(((
27 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
28 -)))
21 +The PS-LB series sensors include **(% style="color:blue" %)Thread Installation Type**(%%) and **(% style="color:blue" %)Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
29 29  
30 -(((
31 31  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 -)))
33 33  
34 -(((
35 35  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
36 -)))
37 37  
38 -(((
39 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 -)))
27 +PS-LB is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
41 41  
42 -(((
43 43  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 -)))
45 45  
46 46  [[image:1675071321348-194.png]]
47 47  
48 48  
34 +
49 49  == 1.2 ​Features ==
50 50  
51 51  
... ... @@ -61,42 +61,42 @@
61 61  * Uplink on periodically
62 62  * Downlink to change configure
63 63  * 8500mAh Battery for long term use
64 -* Controllable 3.3v,5v and 12v output to power external sensor
65 65  
51 +
66 66  == 1.3 Specification ==
67 67  
68 68  
69 -(% style="color:#037691" %)**Micro Controller:**
55 +**(% style="color:#037691" %)Micro Controller:**
70 70  
71 71  * MCU: 48Mhz ARM
72 72  * Flash: 256KB
73 73  * RAM: 64KB
74 74  
75 -(% style="color:#037691" %)**Common DC Characteristics:**
61 +**(% style="color:#037691" %)Common DC Characteristics:**
76 76  
77 77  * Supply Voltage: 2.5v ~~ 3.6v
78 78  * Operating Temperature: -40 ~~ 85°C
79 79  
80 -(% style="color:#037691" %)**LoRa Spec:**
66 +**(% style="color:#037691" %)LoRa Spec:**
81 81  
82 -* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz,Band 2 (LF): 410 ~~ 528 Mhz
68 +* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
83 83  * Max +22 dBm constant RF output vs.
84 84  * RX sensitivity: down to -139 dBm.
85 85  * Excellent blocking immunity
86 86  
87 -(% style="color:#037691" %)**Current Input Measuring :**
73 +**(% style="color:#037691" %)Current Input Measuring :**
88 88  
89 89  * Range: 0 ~~ 20mA
90 90  * Accuracy: 0.02mA
91 91  * Resolution: 0.001mA
92 92  
93 -(% style="color:#037691" %)**Voltage Input Measuring:**
79 +**(% style="color:#037691" %)Voltage Input Measuring:**
94 94  
95 95  * Range: 0 ~~ 30v
96 96  * Accuracy: 0.02v
97 97  * Resolution: 0.001v
98 98  
99 -(% style="color:#037691" %)**Battery:**
85 +**(% style="color:#037691" %)Battery:**
100 100  
101 101  * Li/SOCI2 un-chargeable battery
102 102  * Capacity: 8500mAh
... ... @@ -104,11 +104,12 @@
104 104  * Max continuously current: 130mA
105 105  * Max boost current: 2A, 1 second
106 106  
107 -(% style="color:#037691" %)**Power Consumption**
93 +**(% style="color:#037691" %)Power Consumption**
108 108  
109 109  * Sleep Mode: 5uA @ 3.3v
110 110  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
111 111  
98 +
112 112  == 1.4 Probe Types ==
113 113  
114 114  === 1.4.1 Thread Installation Type ===
... ... @@ -127,6 +127,7 @@
127 127  * Operating temperature: -20℃~~60℃
128 128  * Connector Type: Various Types, see order info
129 129  
117 +
130 130  === 1.4.2 Immersion Type ===
131 131  
132 132  
... ... @@ -136,20 +136,25 @@
136 136  * Measuring Range: Measure range can be customized, up to 100m.
137 137  * Accuracy: 0.2% F.S
138 138  * Long-Term Stability: ±0.2% F.S / Year
127 +* Overload 200% F.S
128 +* Zero Temperature Drift: ±2% F.S)
129 +* FS Temperature Drift: ±2% F.S
139 139  * Storage temperature: -30℃~~80℃
140 -* Operating temperature: 0℃~~50
131 +* Operating temperature: -40℃~~85℃
141 141  * Material: 316 stainless steels
142 142  
134 +
143 143  == 1.5 Probe Dimension ==
144 144  
145 145  
146 146  
139 +
147 147  == 1.6 Application and Installation ==
148 148  
149 149  === 1.6.1 Thread Installation Type ===
150 150  
151 151  
152 -(% style="color:blue" %)**Application:**
145 +**(% style="color:blue" %)Application:**
153 153  
154 154  * Hydraulic Pressure
155 155  * Petrochemical Industry
... ... @@ -167,7 +167,7 @@
167 167  === 1.6.2 Immersion Type ===
168 168  
169 169  
170 -(% style="color:blue" %)**Application:**
163 +**(% style="color:blue" %)Application:**
171 171  
172 172  Liquid & Water Pressure / Level detect.
173 173  
... ... @@ -186,9 +186,9 @@
186 186  == 1.7 Sleep mode and working mode ==
187 187  
188 188  
189 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
182 +**(% style="color:blue" %)Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
190 190  
191 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
184 +**(% style="color:blue" %)Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
192 192  
193 193  
194 194  == 1.8 Button & LEDs ==
... ... @@ -197,19 +197,24 @@
197 197  [[image:1675071855856-879.png]]
198 198  
199 199  
200 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
201 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
202 -|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
203 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
193 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
194 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action**
195 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
196 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **(% style="color:blue" %)blue led** (%%)will blink once.
197 +
204 204  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
205 205  )))
206 -|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
207 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
208 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
200 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
201 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:#037691" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
202 +
203 +**(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
204 +
209 209  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
210 210  )))
211 -|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
207 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
212 212  
209 +
210 +
213 213  == 1.9 Pin Mapping ==
214 214  
215 215  
... ... @@ -234,6 +234,8 @@
234 234  == 1.11 Mechanical ==
235 235  
236 236  
235 +
236 +
237 237  [[image:1675143884058-338.png]]
238 238  
239 239  
... ... @@ -248,9 +248,10 @@
248 248  == 2.1 How it works ==
249 249  
250 250  
251 -The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
251 +The PS-LB is configured as **(% style="color:#037691" %)LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
252 252  
253 253  
254 +
254 254  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
255 255  
256 256  
... ... @@ -263,48 +263,59 @@
263 263  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
264 264  
265 265  
266 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
267 +**(% style="color:blue" %)Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
267 267  
268 268  Each PS-LB is shipped with a sticker with the default device EUI as below:
269 269  
270 -[[image:image-20230426085320-1.png||height="234" width="504"]]
271 +[[image:image-20230131134744-2.jpeg]]
271 271  
272 272  
274 +
273 273  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
274 274  
275 275  
276 -(% style="color:blue" %)**Register the device**
278 +**(% style="color:blue" %)Register the device**
277 277  
278 278  [[image:1675144099263-405.png]]
279 279  
280 280  
281 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
283 +**(% style="color:blue" %)Add APP EUI and DEV EUI**
282 282  
283 283  [[image:1675144117571-832.png]]
284 284  
285 285  
286 -(% style="color:blue" %)**Add APP EUI in the application**
288 +**(% style="color:blue" %)Add APP EUI in the application**
287 287  
288 288  
289 289  [[image:1675144143021-195.png]]
290 290  
291 291  
292 -(% style="color:blue" %)**Add APP KEY**
294 +**(% style="color:blue" %)Add APP KEY**
293 293  
294 294  [[image:1675144157838-392.png]]
295 295  
296 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
298 +**(% style="color:blue" %)Step 2:**(%%) Activate on PS-LB
297 297  
298 298  
299 299  Press the button for 5 seconds to activate the PS-LB.
300 300  
301 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
303 +**Green led** will fast blink 5 times, device will enter **OTA mode** for 3 seconds. And then start to JOIN LoRaWAN network. **Green led** will solidly turn on for 5 seconds after joined in network.
302 302  
303 303  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
304 304  
305 305  
308 +
306 306  == 2.3 ​Uplink Payload ==
307 307  
311 +
312 +Uplink payloads have two types:
313 +
314 +* Distance Value: Use FPORT=2
315 +* Other control commands: Use other FPORT fields.
316 +
317 +The application server should parse the correct value based on FPORT settings.
318 +
319 +
308 308  === 2.3.1 Device Status, FPORT~=5 ===
309 309  
310 310  
... ... @@ -313,10 +313,10 @@
313 313  Users can also use the downlink command(0x26 01) to ask PS-LB to resend this uplink.
314 314  
315 315  
316 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
317 -|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
318 -|(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
319 -|(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
328 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
329 +|(% colspan="6" %)**Device Status (FPORT=5)**
330 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
331 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
320 320  
321 321  Example parse in TTNv3
322 322  
... ... @@ -323,11 +323,11 @@
323 323  [[image:1675144504430-490.png]]
324 324  
325 325  
326 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
338 +**Sensor Model**: For PS-LB, this value is 0x16
327 327  
328 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
340 +**Firmware Version**: 0x0100, Means: v1.0.0 version
329 329  
330 -(% style="color:#037691" %)**Frequency Band**:
342 +**Frequency Band**:
331 331  
332 332  *0x01: EU868
333 333  
... ... @@ -358,7 +358,7 @@
358 358  *0x0e: MA869
359 359  
360 360  
361 -(% style="color:#037691" %)**Sub-Band**:
373 +**Sub-Band**:
362 362  
363 363  AU915 and US915:value 0x00 ~~ 0x08
364 364  
... ... @@ -367,7 +367,7 @@
367 367  Other Bands: Always 0x00
368 368  
369 369  
370 -(% style="color:#037691" %)**Battery Info**:
382 +**Battery Info**:
371 371  
372 372  Check the battery voltage.
373 373  
... ... @@ -376,21 +376,22 @@
376 376  Ex2: 0x0B49 = 2889mV
377 377  
378 378  
379 -=== 2.3.2 Sensor value, FPORT~=2 ===
391 +=== 1.3.2 Sensor value, FPORT~=2 ===
380 380  
381 381  
382 382  Uplink payload includes in total 9 bytes.
383 383  
384 384  
385 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
386 -|(% style="background-color:#d9e2f3; color:#0070c0; width:97px" %)(((
397 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
398 +|(% style="width:97px" %)(((
387 387  **Size(bytes)**
388 -)))|(% style="background-color:#d9e2f3; color:#0070c0; width:48px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:71px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:98px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:73px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:122px" %)**1**
389 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
400 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1**
401 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>path:#bat]]|(% style="width:58px" %)[[Probe Model>>path:#Probe_Model]]|0 ~~ 20mA value|[[0 ~~~~ 30v value>>path:#Voltage_30v]]|[[IN1 &IN2 Interrupt  flag>>path:#Int_pin]]
390 390  
391 391  [[image:1675144608950-310.png]]
392 392  
393 393  
406 +
394 394  === 2.3.3 Battery Info ===
395 395  
396 396  
... ... @@ -404,41 +404,35 @@
404 404  === 2.3.4 Probe Model ===
405 405  
406 406  
407 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
420 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
408 408  
409 409  
410 -**For example.**
423 +For example.
411 411  
412 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
413 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Part Number**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Probe Used**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4~~20mA scale**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Example: 12mA meaning**
414 -|(% style="background-color:#f2f2f2" %)PS-LB-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
415 -|(% style="background-color:#f2f2f2" %)PS-LB-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
416 -|(% style="background-color:#f2f2f2" %)PS-LB-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
425 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
426 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
427 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
428 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
417 417  
418 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
430 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
419 419  
420 420  
421 421  === 2.3.5 0~~20mA value (IDC_IN) ===
422 422  
423 423  
424 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
436 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
425 425  
426 -(% style="color:#037691" %)**Example**:
438 +**Example**:
427 427  
428 428  27AE(H) = 10158 (D)/1000 = 10.158mA.
429 429  
430 430  
431 -Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
432 -
433 -[[image:image-20230225154759-1.png||height="408" width="741"]]
434 -
435 -
436 436  === 2.3.6 0~~30V value ( pin VDC_IN) ===
437 437  
438 438  
439 439  Measure the voltage value. The range is 0 to 30V.
440 440  
441 -(% style="color:#037691" %)**Example**:
448 +**Example**:
442 442  
443 443  138E(H) = 5006(D)/1000= 5.006V
444 444  
... ... @@ -448,45 +448,27 @@
448 448  
449 449  IN1 and IN2 are used as digital input pins.
450 450  
451 -(% style="color:#037691" %)**Example**:
458 +**Example**:
452 452  
453 -09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
460 +09 (H) :(0x09&0x08)>>3=1    IN1 pin is high level.
454 454  
455 -09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
462 +09 (H) :(0x09&0x04)>>2=0    IN2 pin is low level.
456 456  
457 457  
458 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
465 +This data field shows if this packet is generated by **Interrupt Pin** or not. [[Click here>>path:#Int_mod]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
459 459  
460 -(% style="color:#037691" %)**Example:**
467 +**Example:**
461 461  
462 -09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
469 +09 (H) : (0x09&0x02)>>1=1    The level of the interrupt pin.
463 463  
464 -09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
471 +09 (H) : 0x09&0x01=1              0x00: Normal uplink packet.
465 465  
466 466  0x01: Interrupt Uplink Packet.
467 467  
468 468  
469 -=== (% style="color:inherit; font-family:inherit; font-size:23px" %)2.3.8 Sensor value, FPORT~=7(%%) ===
476 +=== 2.3.8 ​Decode payload in The Things Network ===
470 470  
471 471  
472 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:508.222px" %)
473 -|(% style="background-color:#d9e2f3; color:#0070c0; width:94px" %)(((
474 -**Size(bytes)**
475 -)))|(% style="background-color:#d9e2f3; color:#0070c0; width:43px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:367px" %)**n**
476 -|(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
477 -Voltage value, each 2 bytes is a set of voltage values.
478 -)))
479 -
480 -[[image:image-20230220171300-1.png||height="207" width="863"]]
481 -
482 -Multiple sets of data collected are displayed in this form:
483 -
484 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
485 -
486 -
487 -=== 2.3.9 ​Decode payload in The Things Network ===
488 -
489 -
490 490  While using TTN network, you can add the payload format to decode the payload.
491 491  
492 492  
... ... @@ -508,9 +508,9 @@
508 508  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
509 509  
510 510  
511 -(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
500 +**Step 1: **Be sure that your device is programmed and properly connected to the network at this time.
512 512  
513 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
502 +**Step 2:** To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
514 514  
515 515  
516 516  [[image:1675144951092-237.png]]
... ... @@ -519,9 +519,9 @@
519 519  [[image:1675144960452-126.png]]
520 520  
521 521  
522 -(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
511 +**Step 3:** Create an account or log in Datacake.
523 523  
524 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
513 +**Step 4:** Create PS-LB product.
525 525  
526 526  [[image:1675145004465-869.png]]
527 527  
... ... @@ -530,10 +530,11 @@
530 530  
531 531  
532 532  
522 +
533 533  [[image:1675145029119-717.png]]
534 534  
535 535  
536 -(% style="color:blue" %)**Step 5: **(%%)add payload decode
526 +**Step 5: **add payload decode
537 537  
538 538  [[image:1675145051360-659.png]]
539 539  
... ... @@ -541,6 +541,7 @@
541 541  [[image:1675145060812-420.png]]
542 542  
543 543  
534 +
544 544  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
545 545  
546 546  
... ... @@ -563,289 +563,341 @@
563 563  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
564 564  
565 565  
566 -= 3. Configure PS-LB =
567 567  
568 -== 3.1 Configure Methods ==
558 += 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
569 569  
570 570  
571 -PS-LB supports below configure method:
561 +Use can configure PS-LB via AT Command or LoRaWAN Downlink.
572 572  
573 -* AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
574 -* AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
575 -* LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
563 +* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
564 +* LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
576 576  
577 -== 3.2 General Commands ==
578 578  
567 +There are two kinds of commands to configure PS-LB, they are:
579 579  
569 +* **General Commands**.
570 +
580 580  These commands are to configure:
581 581  
582 582  * General system settings like: uplink interval.
583 583  * LoRaWAN protocol & radio related command.
584 584  
585 -They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
576 +They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
586 586  
587 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
578 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
588 588  
589 589  
590 -== 3.3 Commands special design for PS-LB ==
581 +* **Commands special design for PS-LB**
591 591  
592 -
593 593  These commands only valid for PS-LB, as below:
594 594  
595 595  
596 -=== 3.3.1 Set Transmit Interval Time ===
586 +== 3.1 Set Transmit Interval Time ==
597 597  
598 598  
599 599  Feature: Change LoRaWAN End Node Transmit Interval.
600 600  
601 -(% style="color:blue" %)**AT Command: AT+TDC**
591 +**AT Command: AT+TDC**
602 602  
603 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
604 -|=(% style="width: 160px; background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 160px; background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Response**
605 -|(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
593 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
594 +|**Command Example**|**Function**|**Response**
595 +|AT+TDC=?|Show current transmit Interval|(((
606 606  30000
597 +
607 607  OK
599 +
608 608  the interval is 30000ms = 30s
609 609  )))
610 -|(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
602 +|AT+TDC=60000|Set Transmit Interval|(((
611 611  OK
604 +
612 612  Set transmit interval to 60000ms = 60 seconds
613 613  )))
614 614  
615 -(% style="color:blue" %)**Downlink Command: 0x01**
608 +**Downlink Command: 0x01**
616 616  
617 617  Format: Command Code (0x01) followed by 3 bytes time value.
618 618  
619 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
612 +If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
620 620  
621 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
622 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
614 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
615 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
623 623  
624 -=== 3.3.2 Set Interrupt Mode ===
625 625  
618 +== 3.2 Set Interrupt Mode ==
626 626  
620 +
627 627  Feature, Set Interrupt mode for GPIO_EXIT.
628 628  
629 -(% style="color:blue" %)**AT Command: AT+INTMOD**
623 +**AT Command: AT+INTMOD**
630 630  
631 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
632 -|=(% style="width: 154px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Response**
633 -|(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
625 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
626 +|**Command Example**|**Function**|**Response**
627 +|AT+INTMOD=?|Show current interrupt mode|(((
634 634  0
629 +
635 635  OK
636 -the mode is 0 =Disable Interrupt
631 +
632 +the mode is 0 = No interruption
637 637  )))
638 -|(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
634 +|AT+INTMOD=2|(((
639 639  Set Transmit Interval
640 -0. (Disable Interrupt),
641 -~1. (Trigger by rising and falling edge)
642 -2. (Trigger by falling edge)
643 -3. (Trigger by rising edge)
644 -)))|(% style="background-color:#f2f2f2; width:157px" %)OK
645 645  
646 -(% style="color:blue" %)**Downlink Command: 0x06**
637 +~1. (Disable Interrupt),
647 647  
639 +2. (Trigger by rising and falling edge),
640 +
641 +3. (Trigger by falling edge)
642 +
643 +4. (Trigger by rising edge)
644 +)))|OK
645 +
646 +**Downlink Command: 0x06**
647 +
648 648  Format: Command Code (0x06) followed by 3 bytes.
649 649  
650 650  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
651 651  
652 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
653 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
652 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
653 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
654 654  
655 -=== 3.3.3 Set the output time ===
656 656  
657 657  
657 +== 3.3 Set the output time ==
658 +
659 +
658 658  Feature, Control the output 3V3 , 5V or 12V.
659 659  
660 -(% style="color:blue" %)**AT Command: AT+3V3T**
662 +**AT Command: AT+3V3T**
661 661  
662 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
663 -|=(% style="width: 154px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 201px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 119px;background-color:#D9E2F3;color:#0070C0" %)**Response**
664 -|(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
664 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
665 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**
666 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
665 665  0
668 +
666 666  OK
667 667  )))
668 -|(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
671 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
669 669  OK
673 +
670 670  default setting
671 671  )))
672 -|(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
676 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
673 673  OK
678 +
679 +
674 674  )))
675 -|(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
681 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
676 676  OK
683 +
684 +
677 677  )))
678 678  
679 -(% style="color:blue" %)**AT Command: AT+5VT**
680 680  
681 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
682 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 119px;background-color:#D9E2F3;color:#0070C0" %)**Response**
683 -|(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
688 +**AT Command: AT+5VT**
689 +
690 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
691 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**
692 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
684 684  0
694 +
685 685  OK
686 686  )))
687 -|(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
697 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
688 688  OK
699 +
689 689  default setting
690 690  )))
691 -|(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
702 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
692 692  OK
704 +
705 +
693 693  )))
694 -|(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
707 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
695 695  OK
709 +
710 +
696 696  )))
697 697  
698 -(% style="color:blue" %)**AT Command: AT+12VT**
699 699  
700 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
701 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 199px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 88px;background-color:#D9E2F3;color:#0070C0" %)**Response**
702 -|(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
714 +**AT Command: AT+12VT**
715 +
716 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
717 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response**
718 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
703 703  0
720 +
704 704  OK
705 705  )))
706 -|(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
707 -|(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
723 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
724 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
708 708  OK
726 +
727 +
709 709  )))
710 710  
711 -(% style="color:blue" %)**Downlink Command: 0x07**
712 712  
731 +**Downlink Command: 0x07**
732 +
713 713  Format: Command Code (0x07) followed by 3 bytes.
714 714  
715 715  The first byte is which power, the second and third bytes are the time to turn on.
716 716  
717 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
718 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
719 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
720 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
721 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
722 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
737 +* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
738 +* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
739 +* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
740 +* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
741 +* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
742 +* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
723 723  
724 -=== 3.3.4 Set the Probe Model ===
725 725  
726 726  
727 -Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
746 +== 3.4 Set the Probe Model ==
728 728  
729 -(% style="color:blue" %)**AT Command: AT** **+PROBE**
730 730  
731 -AT+PROBE=aabb
749 +**AT Command: AT** **+PROBE**
732 732  
733 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
751 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
752 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response**
753 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
754 +0
734 734  
735 -When aa=01, it is the pressure mode, which converts the current into a pressure value;
756 +OK
757 +)))
758 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
759 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
760 +OK
736 736  
737 -bb represents which type of pressure sensor it is.
738 -
739 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
740 -
741 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
742 -|(% style="background-color:#d9e2f3; color:#0070c0; width:154px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:269px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Response**
743 -|(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
762 +
763 +)))
764 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
744 744  OK
745 -|(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
746 -|(% style="background-color:#f2f2f2; width:154px" %)(((
747 -AT+PROBE=000A
748 -)))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
749 -|(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
750 -|(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
751 -|(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
752 752  
753 -(% style="color:blue" %)**Downlink Command: 0x08**
767 +
768 +)))
754 754  
770 +**Downlink Command: 0x08**
771 +
755 755  Format: Command Code (0x08) followed by 2 bytes.
756 756  
757 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
758 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
774 +* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
775 +* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
759 759  
760 -=== 3.3.5 Multiple collections are one uplink(Since firmware V1.1) ===
761 761  
762 762  
763 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
779 += 4. Battery & how to replace =
764 764  
765 -(% style="color:blue" %)**AT Command: AT** **+STDC**
781 +== 4.1 Battery Type ==
766 766  
767 -AT+STDC=aa,bb,bb
768 768  
769 -(% style="color:#037691" %)**aa:**(%%)
770 -**0:** means disable this function and use TDC to send packets.
771 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
772 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
773 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
784 +PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
774 774  
775 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
776 -|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:215px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Response**
777 -|(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
778 -OK
779 -|(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
780 -Attention:Take effect after ATZ
781 781  
782 -OK
783 -)))
784 -|(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
785 -Use the TDC interval to send packets.(default)
787 +The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
786 786  
787 -
788 -)))|(% style="background-color:#f2f2f2" %)(((
789 -Attention:Take effect after ATZ
789 +[[image:1675146710956-626.png]]
790 790  
791 -OK
792 -)))
793 793  
794 -(% style="color:blue" %)**Downlink Command: 0xAE**
792 +Minimum Working Voltage for the PS-LB:
795 795  
796 -Format: Command Code (0x08) followed by 5 bytes.
794 +PS-LB:  2.45v ~~ 3.6v
797 797  
798 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
799 799  
800 -= 4. Battery & Power Consumption =
797 +== 4.2 Replace Battery ==
801 801  
802 802  
803 -PS-LB uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
800 +Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
804 804  
805 -[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
802 +And make sure the positive and negative pins match.
806 806  
807 807  
808 -= 5. OTA firmware update =
805 +== 4.3 Power Consumption Analyze ==
809 809  
810 810  
811 -Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
808 +Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
812 812  
813 813  
814 -= 6. FAQ =
811 +Instruction to use as below:
815 815  
816 -== 6.1 How to use AT Command via UART to access device? ==
817 817  
814 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
818 818  
819 -See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
816 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
820 820  
821 821  
822 -== 6.2 How to update firmware via UART port? ==
819 +**Step 2:** Open it and choose
823 823  
821 +* Product Model
822 +* Uplink Interval
823 +* Working Mode
824 824  
825 -See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
825 +And the Life expectation in difference case will be shown on the right.
826 826  
827 +[[image:1675146895108-304.png]]
827 827  
828 -== 6.3 How to change the LoRa Frequency Bands/Region? ==
829 829  
830 +The battery related documents as below:
830 830  
831 -You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
832 -When downloading the images, choose the required image file for download. ​
832 +* [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
833 +* [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
834 +* [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
833 833  
836 +[[image:image-20230131145708-3.png]]
834 834  
835 -= 7. Troubleshooting =
836 836  
837 -== 7.1 Water Depth Always shows 0 in payload ==
839 +=== 4.3.1 ​Battery Note ===
838 838  
839 839  
840 -If your device's IDC_intput_mA is normal, but your reading always shows 0, please refer to the following points:
842 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
841 841  
842 -~1. Please set it to mod1
843 843  
844 -2. Please set the command [[AT+PROBE>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB%20--%20LoRaWAN%20Pressure%20Sensor/#H3.3.4SettheProbeModel]] according to the model of your sensor
845 +=== 4.3.2 Replace the battery ===
845 845  
846 -3. Check the connection status of the sensor
847 847  
848 +You can change the battery in the PS-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
848 848  
850 +The default battery pack of PS-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
851 +
852 +
853 += 5. Remote Configure device =
854 +
855 +== 5.1 Connect via BLE ==
856 +
857 +
858 +Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
859 +
860 +
861 +== 5.2 AT Command Set ==
862 +
863 +
864 +
865 += 6. OTA firmware update =
866 +
867 +
868 +Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
869 +
870 +
871 += 7. FAQ =
872 +
873 +== 7.1 How to use AT Command to access device? ==
874 +
875 +
876 +See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
877 +
878 +
879 +== 7.2 How to update firmware via UART port? ==
880 +
881 +
882 +See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
883 +
884 +
885 +== 7.3 How to change the LoRa Frequency Bands/Region? ==
886 +
887 +
888 +You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
889 +When downloading the images, choose the required image file for download. ​
890 +
891 +
849 849  = 8. Order Info =
850 850  
851 851  
... ... @@ -855,11 +855,11 @@
855 855  = 9. ​Packing Info =
856 856  
857 857  
858 -(% style="color:#037691" %)**Package Includes**:
901 +**Package Includes**:
859 859  
860 860  * PS-LB LoRaWAN Pressure Sensor
861 861  
862 -(% style="color:#037691" %)**Dimension and weight**:
905 +**Dimension and weight**:
863 863  
864 864  * Device Size: cm
865 865  * Device Weight: g
... ... @@ -866,11 +866,12 @@
866 866  * Package Size / pcs : cm
867 867  * Weight / pcs : g
868 868  
912 +
913 +
869 869  = 10. Support =
870 870  
871 871  
872 872  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
918 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
873 873  
874 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].
875 -
876 876  
image-20230201090514-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
image-20230222174559-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -19.4 KB
Content
image-20230225154759-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -468.9 KB
Content
image-20230426085320-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -190.0 KB
Content
image-20231120110833-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -255.7 KB
Content
image-20231120110949-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -217.3 KB
Content
image-20231120111036-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -273.4 KB
Content
image-20231120111226-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -340.3 KB
Content
image-20240109154009-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -297.0 KB
Content
image-20240109154121-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -414.4 KB
Content
image-20240109154227-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -342.4 KB
Content
image-20240109154731-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -511.6 KB
Content