Last modified by Xiaoling on 2025/07/10 16:21

From version 70.2
edited by Xiaoling
on 2024/01/09 15:49
Change comment: There is no comment for this version
To version 123.5
edited by Xiaoling
on 2025/04/01 16:54
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -PS-LB -- LoRaWAN Air Water Pressure Sensor User Manual
1 +PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Content
... ... @@ -1,12 +1,17 @@
1 1  
2 2  
3 3  
4 -[[image:image-20240109154731-4.png]]
4 +(% style="text-align:center" %)
5 +[[image:image-20240109154731-4.png||height="671" width="945"]]
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 +
11 +
12 +
13 +**Table of Contents :**
14 +
10 10  {{toc/}}
11 11  
12 12  
... ... @@ -20,27 +20,27 @@
20 20  
21 21  
22 22  (((
23 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
28 +The Dragino PS-LB/LS series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB/LS can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
24 24  )))
25 25  
26 26  (((
27 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
32 +The PS-LB/LS series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
28 28  )))
29 29  
30 30  (((
31 -The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 +The LoRa wireless technology used in PS-LB/LS allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 32  )))
33 33  
34 34  (((
35 -PS-LB supports BLE configure and wireless OTA update which make user easy to use.
40 +PS-LB/LS supports BLE configure and wireless OTA update which make user easy to use.
36 36  )))
37 37  
38 38  (((
39 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
44 +PS-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + Li-ion battery **(%%), it is designed for long term use up to 5 years.
40 40  )))
41 41  
42 42  (((
43 -Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
48 +Each PS-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 44  )))
45 45  
46 46  [[image:1675071321348-194.png]]
... ... @@ -60,8 +60,9 @@
60 60  * Support wireless OTA update firmware
61 61  * Uplink on periodically
62 62  * Downlink to change configure
63 -* 8500mAh Battery for long term use
64 64  * Controllable 3.3v,5v and 12v output to power external sensor
69 +* 8500mAh Li/SOCl2 Battery (PS-LB)
70 +* Solar panel + 3000mAh Li-ion battery (PS-LS)
65 65  
66 66  == 1.3 Specification ==
67 67  
... ... @@ -74,7 +74,7 @@
74 74  
75 75  (% style="color:#037691" %)**Common DC Characteristics:**
76 76  
77 -* Supply Voltage: 2.5v ~~ 3.6v
83 +* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
78 78  * Operating Temperature: -40 ~~ 85°C
79 79  
80 80  (% style="color:#037691" %)**LoRa Spec:**
... ... @@ -130,26 +130,34 @@
130 130  === 1.4.2 Immersion Type ===
131 131  
132 132  
133 -[[image:1675071521308-426.png]]
139 +[[image:image-20240109160445-5.png||height="221" width="166"]]
134 134  
135 135  * Immersion Type, Probe IP Level: IP68
136 136  * Measuring Range: Measure range can be customized, up to 100m.
137 137  * Accuracy: 0.2% F.S
138 138  * Long-Term Stability: ±0.2% F.S / Year
139 -* Storage temperature: -30~~80
140 -* Operating temperature: 0~~50
145 +* Storage temperature: -30°C~~80°C
146 +* Operating temperature: 0°C~~50°C
141 141  * Material: 316 stainless steels
142 142  
143 -== 1.5 Probe Dimension ==
149 +=== 1.4.3 Wireless Differential Air Pressure Sensor ===
144 144  
151 +[[image:image-20240511174954-1.png||height="215" width="215"]]
145 145  
153 +* Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
154 +* Accuracy: 0.5% F.S, resolution is 0.05%.
155 +* Overload: 300% F.S
156 +* Zero temperature drift: ±0.03%F.S/°C
157 +* Operating temperature: -20°C~~60°C
158 +* Storage temperature:  -20°C~~60°C
159 +* Compensation temperature: 0~~50°C
146 146  
147 -== 1.6 Application and Installation ==
161 +== 1.5 Application and Installation ==
148 148  
149 -=== 1.6.1 Thread Installation Type ===
163 +=== 1.5.1 Thread Installation Type ===
150 150  
151 151  
152 -(% style="color:blue" %)**Application:**
166 +Application:
153 153  
154 154  * Hydraulic Pressure
155 155  * Petrochemical Industry
... ... @@ -164,10 +164,10 @@
164 164  [[image:1675071670469-145.png]]
165 165  
166 166  
167 -=== 1.6.2 Immersion Type ===
181 +=== 1.5.2 Immersion Type ===
168 168  
169 169  
170 -(% style="color:blue" %)**Application:**
184 +Application:
171 171  
172 172  Liquid & Water Pressure / Level detect.
173 173  
... ... @@ -174,52 +174,87 @@
174 174  [[image:1675071725288-579.png]]
175 175  
176 176  
177 -The Immersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.
191 +Below is the wiring to for connect the probe to the device.
178 178  
193 +The Immersion Type Sensor has different variant which defined by Ixx. For example, this means two points:
179 179  
195 +* Cable Length: 10 Meters
196 +* Water Detect Range: 0 ~~ 10 Meters.
197 +
180 180  [[image:1675071736646-450.png]]
181 181  
182 182  
183 183  [[image:1675071776102-240.png]]
184 184  
203 +Size of immersion type water depth sensor:
185 185  
186 -== 1.7 Sleep mode and working mode ==
205 +[[image:image-20250401102131-1.png||height="268" width="707"]]
187 187  
188 188  
189 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
208 +=== 1.5.3 Wireless Differential Air Pressure Sensor ===
190 190  
191 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
192 192  
211 +Application:
193 193  
194 -== 1.8 Button & LEDs ==
213 +Indoor Air Control & Filter clogging Detect.
195 195  
215 +[[image:image-20240513100129-6.png]]
196 196  
197 -[[image:1675071855856-879.png]]
217 +[[image:image-20240513100135-7.png]]
198 198  
199 199  
220 +Below is the wiring to for connect the probe to the device.
221 +
222 +[[image:image-20240513093957-1.png]]
223 +
224 +
225 +Size of wind pressure transmitter:
226 +
227 +[[image:image-20240513094047-2.png]]
228 +
229 +Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.
230 +
231 +
232 +== 1.6 Sleep mode and working mode ==
233 +
234 +
235 +Deep Sleep Mode: Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
236 +
237 +Working Mode: In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
238 +
239 +
240 +== 1.7 Button & LEDs ==
241 +
242 +
243 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
244 +
200 200  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
201 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
246 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action
202 202  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
203 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
248 +
249 +
250 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once.
204 204  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
205 205  )))
206 206  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
207 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
208 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
254 +
255 +
256 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network.
257 +Green led will solidly turn on for 5 seconds after joined in network.
209 209  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
210 210  )))
211 -|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
260 +|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
212 212  
213 -== 1.9 Pin Mapping ==
262 +== 1.8 Pin Mapping ==
214 214  
215 215  
216 216  [[image:1675072568006-274.png]]
217 217  
218 218  
219 -== 1.10 BLE connection ==
268 +== 1.9 BLE connection ==
220 220  
221 221  
222 -PS-LB support BLE remote configure.
271 +PS-LB/LS support BLE remote configure.
223 223  
224 224  
225 225  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -231,24 +231,26 @@
231 231  If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
232 232  
233 233  
234 -== 1.11 Mechanical ==
283 +== 1.10 Mechanical ==
235 235  
285 +=== 1.10.1 for LB version ===
236 236  
237 -[[image:1675143884058-338.png]]
238 238  
288 +[[image:image-20250401163530-1.jpeg]]
239 239  
240 -[[image:1675143899218-599.png]]
241 241  
291 +=== 1.10.2 for LS version ===
242 242  
243 -[[image:1675143909447-639.png]]
244 244  
294 +[[image:image-20250401163539-2.jpeg]]
245 245  
246 -= 2. Configure PS-LB to connect to LoRaWAN network =
247 247  
297 += 2. Configure PS-LB/LS to connect to LoRaWAN network =
298 +
248 248  == 2.1 How it works ==
249 249  
250 250  
251 -The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
302 +The PS-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
252 252  
253 253  
254 254  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -256,7 +256,6 @@
256 256  
257 257  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
258 258  
259 -
260 260  [[image:1675144005218-297.png]]
261 261  
262 262  
... ... @@ -263,9 +263,9 @@
263 263  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
264 264  
265 265  
266 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
316 +Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.
267 267  
268 -Each PS-LB is shipped with a sticker with the default device EUI as below:
318 +Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
269 269  
270 270  [[image:image-20230426085320-1.png||height="234" width="504"]]
271 271  
... ... @@ -273,32 +273,32 @@
273 273  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
274 274  
275 275  
276 -(% style="color:blue" %)**Register the device**
326 +Register the device
277 277  
278 278  [[image:1675144099263-405.png]]
279 279  
280 280  
281 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
331 +Add APP EUI and DEV EUI
282 282  
283 283  [[image:1675144117571-832.png]]
284 284  
285 285  
286 -(% style="color:blue" %)**Add APP EUI in the application**
336 +Add APP EUI in the application
287 287  
288 288  
289 289  [[image:1675144143021-195.png]]
290 290  
291 291  
292 -(% style="color:blue" %)**Add APP KEY**
342 +Add APP KEY
293 293  
294 294  [[image:1675144157838-392.png]]
295 295  
296 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
346 +Step 2: Activate on PS-LB/LS
297 297  
298 298  
299 -Press the button for 5 seconds to activate the PS-LB.
349 +Press the button for 5 seconds to activate the PS-LB/LS.
300 300  
301 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
351 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network.
302 302  
303 303  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
304 304  
... ... @@ -308,15 +308,14 @@
308 308  === 2.3.1 Device Status, FPORT~=5 ===
309 309  
310 310  
311 -Include device configure status. Once PS-LB Joined the network, it will uplink this message to the server.
361 +Include device configure status. Once PS-LB/LS Joined the network, it will uplink this message to the server.
312 312  
313 -Users can also use the downlink command(0x26 01) to ask PS-LB to resend this uplink.
363 +Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
314 314  
315 -
316 316  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
317 -|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
318 -|(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
319 -|(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
366 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)Device Status (FPORT=5)
367 +|(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2
368 +|(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
320 320  
321 321  Example parse in TTNv3
322 322  
... ... @@ -323,11 +323,11 @@
323 323  [[image:1675144504430-490.png]]
324 324  
325 325  
326 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
375 +Sensor Model: For PS-LB/LS, this value is 0x16
327 327  
328 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
377 +Firmware Version: 0x0100, Means: v1.0.0 version
329 329  
330 -(% style="color:#037691" %)**Frequency Band**:
379 +Frequency Band:
331 331  
332 332  *0x01: EU868
333 333  
... ... @@ -358,7 +358,7 @@
358 358  *0x0e: MA869
359 359  
360 360  
361 -(% style="color:#037691" %)**Sub-Band**:
410 +Sub-Band:
362 362  
363 363  AU915 and US915:value 0x00 ~~ 0x08
364 364  
... ... @@ -367,7 +367,7 @@
367 367  Other Bands: Always 0x00
368 368  
369 369  
370 -(% style="color:#037691" %)**Battery Info**:
419 +Battery Info:
371 371  
372 372  Check the battery voltage.
373 373  
... ... @@ -382,10 +382,12 @@
382 382  Uplink payload includes in total 9 bytes.
383 383  
384 384  
385 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
386 -|(% style="background-color:#d9e2f3; color:#0070c0; width:97px" %)(((
387 -**Size(bytes)**
388 -)))|(% style="background-color:#d9e2f3; color:#0070c0; width:48px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:71px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:98px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:73px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:122px" %)**1**
434 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
435 +|(% style="background-color:#4f81bd; color:white; width:97px" %)(((
436 +
437 +
438 +Size(bytes)
439 +)))|(% style="background-color:#4f81bd; color:white; width:50px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
389 389  |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
390 390  
391 391  [[image:1675144608950-310.png]]
... ... @@ -394,7 +394,7 @@
394 394  === 2.3.3 Battery Info ===
395 395  
396 396  
397 -Check the battery voltage for PS-LB.
448 +Check the battery voltage for PS-LB/LS.
398 398  
399 399  Ex1: 0x0B45 = 2885mV
400 400  
... ... @@ -404,16 +404,16 @@
404 404  === 2.3.4 Probe Model ===
405 405  
406 406  
407 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
458 +PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
408 408  
409 409  
410 -**For example.**
461 +For example.
411 411  
412 412  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
413 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Part Number**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Probe Used**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4~~20mA scale**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Example: 12mA meaning**
414 -|(% style="background-color:#f2f2f2" %)PS-LB-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
415 -|(% style="background-color:#f2f2f2" %)PS-LB-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
416 -|(% style="background-color:#f2f2f2" %)PS-LB-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
464 +|(% style="background-color:#4f81bd; color:white" %)Part Number|(% style="background-color:#4f81bd; color:white" %)Probe Used|(% style="background-color:#4f81bd; color:white" %)4~~20mA scale|(% style="background-color:#4f81bd; color:white" %)Example: 12mA meaning
465 +|(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
466 +|(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
467 +|(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
417 417  
418 418  The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
419 419  
... ... @@ -421,9 +421,9 @@
421 421  === 2.3.5 0~~20mA value (IDC_IN) ===
422 422  
423 423  
424 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
475 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
425 425  
426 -(% style="color:#037691" %)**Example**:
477 +Example:
427 427  
428 428  27AE(H) = 10158 (D)/1000 = 10.158mA.
429 429  
... ... @@ -433,12 +433,12 @@
433 433  [[image:image-20230225154759-1.png||height="408" width="741"]]
434 434  
435 435  
436 -=== 2.3.6 0~~30V value ( pin VDC_IN) ===
487 +=== 2.3.6 0~~30V value (pin VDC_IN) ===
437 437  
438 438  
439 439  Measure the voltage value. The range is 0 to 30V.
440 440  
441 -(% style="color:#037691" %)**Example**:
492 +Example:
442 442  
443 443  138E(H) = 5006(D)/1000= 5.006V
444 444  
... ... @@ -448,7 +448,7 @@
448 448  
449 449  IN1 and IN2 are used as digital input pins.
450 450  
451 -(% style="color:#037691" %)**Example**:
502 +Example:
452 452  
453 453  09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
454 454  
... ... @@ -455,9 +455,9 @@
455 455  09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
456 456  
457 457  
458 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
509 +This data field shows if this packet is generated by Interrupt Pin or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
459 459  
460 -(% style="color:#037691" %)**Example:**
511 +Example:
461 461  
462 462  09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
463 463  
... ... @@ -466,14 +466,18 @@
466 466  0x01: Interrupt Uplink Packet.
467 467  
468 468  
469 -=== (% style="color:inherit; font-family:inherit; font-size:23px" %)2.3.8 Sensor value, FPORT~=7(%%) ===
520 +=== 2.3.8 Sensor value, FPORT~=7 ===
470 470  
471 471  
472 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:508.222px" %)
473 -|(% style="background-color:#d9e2f3; color:#0070c0; width:94px" %)(((
474 -**Size(bytes)**
475 -)))|(% style="background-color:#d9e2f3; color:#0070c0; width:43px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:367px" %)**n**
523 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
524 +|(% style="background-color:#4f81bd; color:white; width:65px" %)(((
525 +
526 +
527 +Size(bytes)
528 +)))|(% style="background-color:#4f81bd; color:white; width:35px" %)2|(% style="background-color:#4f81bd; color:white; width:400px" %)n
476 476  |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
530 +
531 +
477 477  Voltage value, each 2 bytes is a set of voltage values.
478 478  )))
479 479  
... ... @@ -489,17 +489,16 @@
489 489  
490 490  While using TTN network, you can add the payload format to decode the payload.
491 491  
492 -
493 493  [[image:1675144839454-913.png]]
494 494  
495 495  
496 -PS-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
550 +PS-LB/LS TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
497 497  
498 498  
499 499  == 2.4 Uplink Interval ==
500 500  
501 501  
502 -The PS-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
556 +The PS-LB/LS by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
503 503  
504 504  
505 505  == 2.5 Show Data in DataCake IoT Server ==
... ... @@ -507,12 +507,10 @@
507 507  
508 508  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
509 509  
564 +Step 1: Be sure that your device is programmed and properly connected to the network at this time.
510 510  
511 -(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
566 +Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
512 512  
513 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
514 -
515 -
516 516  [[image:1675144951092-237.png]]
517 517  
518 518  
... ... @@ -519,9 +519,9 @@
519 519  [[image:1675144960452-126.png]]
520 520  
521 521  
522 -(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
574 +Step 3: Create an account or log in Datacake.
523 523  
524 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
576 +Step 4: Create PS-LB/LS product.
525 525  
526 526  [[image:1675145004465-869.png]]
527 527  
... ... @@ -529,11 +529,10 @@
529 529  [[image:1675145018212-853.png]]
530 530  
531 531  
532 -
533 533  [[image:1675145029119-717.png]]
534 534  
535 535  
536 -(% style="color:blue" %)**Step 5: **(%%)add payload decode
587 +Step 5: add payload decode
537 537  
538 538  [[image:1675145051360-659.png]]
539 539  
... ... @@ -543,34 +543,453 @@
543 543  
544 544  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
545 545  
546 -
547 547  [[image:1675145081239-376.png]]
548 548  
549 549  
550 -== 2.6 Frequency Plans ==
600 +== 2.6 Datalog Feature (Since V1.1) ==
551 551  
552 552  
553 -The PS-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
603 +When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot.
554 554  
555 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
556 556  
606 +=== 2.6.1 Unix TimeStamp ===
557 557  
558 -== 2.7 ​Firmware Change Log ==
559 559  
609 +PS-LB uses Unix TimeStamp format based on
560 560  
561 -**Firmware download link:**
611 +[[image:image-20250401163826-3.jpeg]]
562 562  
613 +Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
614 +
615 +Below is the converter example:
616 +
617 +[[image:image-20250401163906-4.jpeg]]
618 +
619 +
620 +=== 2.6.2 Set Device Time ===
621 +
622 +
623 +There are two ways to set the device's time:
624 +
625 +
626 +~1. Through LoRaWAN MAC Command (Default settings)
627 +
628 +Users need to set SYNCMOD=1 to enable sync time via the MAC command.
629 +
630 +Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
631 +
632 +Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.
633 +
634 +
635 + 2. Manually Set Time
636 +
637 +Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
638 +
639 +
640 +=== 2.6.3 Poll sensor value ===
641 +
642 +Users can poll sensor values based on timestamps. Below is the downlink command.
643 +
644 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
645 +|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31)
646 +|(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte
647 +|(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)(((
648 +Timestamp end
649 +)))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval
650 +
651 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
652 +
653 +For example, downlink command[[image:image-20250117104812-1.png]]
654 +
655 +Is to check 2024/12/20 09:34:59 to 2024/12/20 14:34:59's data
656 +
657 +Uplink Internal =5s,means PS-LB will send one packet every 5s. range 5~~255s.
658 +
659 +
660 +=== 2.6.4 Datalog Uplink payload (FPORT~=3) ===
661 +
662 +
663 +The Datalog uplinks will use below payload format.
664 +
665 +Retrieval data payload:
666 +
667 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
668 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
669 +Size(bytes)
670 +)))|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)2|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)4
671 +|(% style="width:103px" %)Value|(% style="width:68px" %)(((
672 +Probe_mod
673 +)))|(% style="width:104px" %)(((
674 +VDC_intput_V
675 +)))|(% style="width:83px" %)(((
676 +IDC_intput_mA
677 +)))|(% style="width:201px" %)(((
678 +IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status
679 +)))|(% style="width:86px" %)Unix Time Stamp
680 +
681 +
682 +
683 +IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:
684 +
685 +[[image:image-20250117104847-4.png]]
686 +
687 +
688 +No ACK Message:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
689 +
690 +Poll Message Flag: 1: This message is a poll message reply.
691 +
692 +* Poll Message Flag is set to 1.
693 +
694 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
695 +
696 +For example, in US915 band, the max payload for different DR is:
697 +
698 +a) DR0: max is 11 bytes so one entry of data
699 +
700 +b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
701 +
702 +c) DR2: total payload includes 11 entries of data
703 +
704 +d) DR3: total payload includes 22 entries of data.
705 +
706 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
707 +
708 +Example:
709 +
710 +If PS-LB-NA has below data inside Flash:
711 +
712 +[[image:image-20250117104837-3.png]]
713 +
714 +
715 +If user sends below downlink command: 316788D9BF6788DB6305
716 +
717 +Where : Start time: 6788D9BF = time 25/1/16 10:04:47
718 +
719 + Stop time: 6788DB63 = time 25/1/16 10:11:47
720 +
721 +
722 +PA-LB-NA will uplink this payload.
723 +
724 +[[image:image-20250117104827-2.png]]
725 +
726 +
727 +00001B620000406788D9BF  00000D130000406788D9FB  00000D120000406788DA37  00000D110000406788DA73  00000D100000406788DAAF  00000D100000406788DAEB  00000D0F0000406788DB27  00000D100000406788DB63
728 +
729 +
730 +Where the first 11 bytes is for the first entry :
731 +
732 +
733 +0000  0D10  0000  40  6788DB63
734 +
735 +
736 +Probe_mod = 0x0000 = 0000
737 +
738 +
739 +VDC_intput_V = 0x0D10/1000=3.344V
740 +
741 +IDC_intput_mA = 0x0000/1000=0mA
742 +
743 +
744 +IN1_pin_level = (0x40& 0x08)? "High":"Low" = 0(Low)
745 +
746 +IN2_pin_level = (0x40& 0x04)? "High":"Low" = 0(Low)
747 +
748 +Exti_pin_level = (0x40& 0x02)? "High":"Low" = 0(Low)
749 +
750 +Exti_status = (0x40& 0x01)? "True":"False" = 0(False)
751 +
752 +
753 +Unix time is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
754 +
755 +Its data format is:
756 +
757 +[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
758 +
759 +Note: water_deep in the data needs to be converted using decoding to get it.
760 +
761 +
762 +=== 2.6.5 Decoder in TTN V3 ===
763 +
764 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
765 +
766 +Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
767 +
768 +
769 +== 2.7 Frequency Plans ==
770 +
771 +
772 +The PS-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
773 +
774 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/a>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
775 +
776 +
777 +== 2.8 Report on Change Feature (Since firmware V1.2) ==
778 +
779 +=== 2.8.1 Uplink payload(Enable ROC) ===
780 +
781 +
782 +Used to Monitor the IDC and VDC increments, and send ROC uplink when the IDC or VDC changes exceed.
783 +
784 +With ROC enabled, the payload is as follows:
785 +
786 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
787 +|(% style="background-color:#4f81bd; color:white; width:97px" %)(((
788 +
789 +
790 +Size(bytes)
791 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
792 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
793 +
794 +
795 +[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag
796 +)))
797 +
798 +IN1 &IN2 , Interrupt  flag , ROC_flag:
799 +
800 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
801 +|(% style="background-color:#4f81bd; color:white; width:50px" %)Size(bit)|(% style="background-color:#4f81bd; color:white; width:60px" %)bit7|(% style="background-color:#4f81bd; color:white; width:62px" %)bit6|(% style="background-color:#4f81bd; color:white; width:62px" %)bit5|(% style="background-color:#4f81bd; color:white; width:65px" %)bit4|(% style="background-color:#4f81bd; color:white; width:56px" %)bit3|(% style="background-color:#4f81bd; color:white; width:55px" %)bit2|(% style="background-color:#4f81bd; color:white; width:55px" %)bit1|(% style="background-color:#4f81bd; color:white; width:50px" %)bit0
802 +|(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status
803 +
804 +* IDC_Roc_flagL
805 +
806 +80 (H): (0x80&0x80)=80(H)=1000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
807 +
808 +60 (H): (0x60&0x80)=0  bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
809 +
810 +
811 +* IDC_Roc_flagH
812 +
813 +60 (H): (0x60&0x40)=60(H)=01000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
814 +
815 +80 (H): (0x80&0x40)=0  bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
816 +
817 +
818 +* VDC_Roc_flagL
819 +
820 +20 (H): (0x20&0x20)=20(H)=0010 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
821 +
822 +90 (H): (0x90&0x20)=0  bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
823 +
824 +
825 +* VDC_Roc_flagH
826 +
827 +90 (H): (0x90&0x10)=10(H)=0001 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
828 +
829 +20 (H): (0x20&0x10)=0  bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
830 +
831 +
832 +* IN1_pin_level & IN2_pin_level
833 +
834 +IN1 and IN2 are used as digital input pins.
835 +
836 +80 (H): (0x80&0x08)=0  IN1 pin is low level.
837 +
838 +80 (H): (0x09&0x04)=0    IN2 pin is low level.
839 +
840 +
841 +* Exti_pin_level &Exti_status
842 +
843 +This data field shows whether the packet is generated by an interrupt pin.
844 +
845 +Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the GPIO_EXTI pin.
846 +
847 +Exti_pin_level:  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
848 +
849 +Exti_status: 80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
850 +
851 +
852 +=== 2.8.2 Set the Report on Change ===
853 +
854 +
855 +Feature: Get or Set the Report on Change.
856 +
857 +
858 +==== 2.8.2.1 Wave alarm mode ====
859 +
860 +Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed.
861 +
862 +* Change value: The amount by which the next detection value increases/decreases relative to the previous detection value.
863 +* Comparison value: A parameter to compare with the latest ROC test.
864 +
865 +AT Command: AT+ROC
866 +
867 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
868 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
869 +|(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
870 +
871 +
872 +0,0,0,0(default)
873 +OK
874 +)))
875 +|(% colspan="1" rowspan="4" style="width:143px" %)(((
876 +
877 +
878 +
879 +
880 +
881 +AT+ROC=a,b,c,d
882 +)))|(% style="width:154px" %)(((
883 +
884 +
885 +
886 +
887 +
888 +
889 +
890 +a: Enable or disable the ROC
891 +)))|(% style="width:197px" %)(((
892 +
893 +
894 +0: off
895 +1: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
896 +
897 +2: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
898 +)))
899 +|(% style="width:154px" %)b: Set the detection interval|(% style="width:197px" %)(((
900 +
901 +
902 +Range:  0~~65535s
903 +)))
904 +|(% style="width:154px" %)c: Setting the IDC change value|(% style="width:197px" %)Unit: uA
905 +|(% style="width:154px" %)d: Setting the VDC change value|(% style="width:197px" %)Unit: mV
906 +
907 +Example:
908 +
909 +* AT+ROC=0,0,0,0  ~/~/The ROC function is not used.
910 +* AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed.
911 +* AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage.
912 +* AT+ROC=2,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed.
913 +
914 +Downlink Command: 0x09 aa bb cc dd
915 +
916 +Format: Function code (0x09) followed by 4 bytes.
917 +
918 +aa: 1 byte; Set the wave alarm mode.
919 +
920 +bb: 2 bytes; Set the detection interval. (second)
921 +
922 +cc: 2 bytes; Setting the IDC change threshold. (uA)
923 +
924 +dd: 2 bytes; Setting the VDC change threshold. (mV)
925 +
926 +Example:
927 +
928 +* Downlink Payload: 09 01 00 3C 0B B8 01 F4  ~/~/Equal to AT+ROC=1,60,3000, 500
929 +* Downlink Payload: 09 01 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=1,60,3000,0
930 +* Downlink Payload: 09 02 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=2,60,3000,0
931 +
932 +Screenshot of parsing example in TTN:
933 +
934 +* AT+ROC=1,60,3000, 500.
935 +
936 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB-NA--LoRaWAN_Analog_Sensor_User_Manual/WebHome/image-20241019170902-1.png?width=1454&height=450&rev=1.1||alt="image-20241019170902-1.png"]]
937 +
938 +
939 +==== 2.8.2.2 Over-threshold alarm mode ====
940 +
941 +Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded.
942 +
943 +AT Command: AT+ROC=3,a,b,c,d,e
944 +
945 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
946 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
947 +|(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
948 +
949 +
950 +0,0,0,0(default)
951 +OK
952 +)))
953 +|(% colspan="1" rowspan="5" style="width:143px" %)(((
954 +
955 +
956 +
957 +
958 +
959 +AT+ROC=3,a,b,c,d,e
960 +)))|(% style="width:160px" %)(((
961 +
962 +
963 +a: Set the detection interval
964 +)))|(% style="width:185px" %)(((
965 +
966 +
967 +Range:  0~~65535s
968 +)))
969 +|(% style="width:160px" %)b: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
970 +
971 +
972 +0: Less than the set IDC threshold, Alarm
973 +
974 +1: Greater than the set IDC threshold, Alarm
975 +)))
976 +|(% style="width:160px" %)(((
977 +
978 +
979 +c:  IDC alarm threshold
980 +)))|(% style="width:185px" %)(((
981 +
982 +
983 +Unit: uA
984 +)))
985 +|(% style="width:160px" %)d: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
986 +
987 +
988 +0: Less than the set VDC threshold, Alarm
989 +
990 +1: Greater than the set VDC threshold, Alarm
991 +)))
992 +|(% style="width:160px" %)e: VDC alarm threshold|(% style="width:185px" %)Unit: mV
993 +
994 +Example:
995 +
996 +* AT+ROC=3,60,0,3000,0,5000  ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
997 +* AT+ROC=3,180,1,3000,1,5000  ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
998 +* AT+ROC=3,300,0,3000,1,5000  ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
999 +
1000 +Downlink Command: 0x09 03 aa bb cc dd ee
1001 +
1002 +Format: Function code (0x09) followed by 03 and the remaining 5 bytes.
1003 +
1004 +aa: 2 bytes; Set the detection interval.(second)
1005 +
1006 +bb: 1 byte; Set the IDC alarm trigger condition.
1007 +
1008 +cc: 2 bytes; IDC alarm threshold.(uA)
1009 +
1010 +
1011 +dd: 1 byte; Set the VDC alarm trigger condition.
1012 +
1013 +ee: 2 bytes; VDC alarm threshold.(mV)
1014 +
1015 +Example:
1016 +
1017 +* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
1018 +* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
1019 +* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
1020 +
1021 +Screenshot of parsing example in TTN:
1022 +
1023 +* AT+ROC=3,60,0,3000,0,5000
1024 +
1025 +[[image:image-20250116180030-2.png]]
1026 +
1027 +
1028 +== 2.9 ​Firmware Change Log ==
1029 +
1030 +
1031 +Firmware download link:
1032 +
563 563  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
564 564  
565 565  
566 -= 3. Configure PS-LB =
1036 += 3. Configure PS-LB/LS =
567 567  
568 568  == 3.1 Configure Methods ==
569 569  
570 570  
571 -PS-LB supports below configure method:
1041 +PS-LB/LS supports below configure method:
572 572  
573 -* AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1043 +* AT Command via Bluetooth Connection (Recommand Way): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
574 574  * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
575 575  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
576 576  
... ... @@ -587,10 +587,10 @@
587 587  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
588 588  
589 589  
590 -== 3.3 Commands special design for PS-LB ==
1060 +== 3.3 Commands special design for PS-LB/LS ==
591 591  
592 592  
593 -These commands only valid for PS-LB, as below:
1063 +These commands only valid for PS-LB/LS, as below:
594 594  
595 595  
596 596  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -598,21 +598,25 @@
598 598  
599 599  Feature: Change LoRaWAN End Node Transmit Interval.
600 600  
601 -(% style="color:blue" %)**AT Command: AT+TDC**
1071 +AT Command: AT+TDC
602 602  
603 603  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
604 -|=(% style="width: 160px; background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 160px; background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1074 +|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response
605 605  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
1076 +
1077 +
606 606  30000
607 607  OK
608 608  the interval is 30000ms = 30s
609 609  )))
610 610  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
1083 +
1084 +
611 611  OK
612 612  Set transmit interval to 60000ms = 60 seconds
613 613  )))
614 614  
615 -(% style="color:blue" %)**Downlink Command: 0x01**
1089 +Downlink Command: 0x01
616 616  
617 617  Format: Command Code (0x01) followed by 3 bytes time value.
618 618  
... ... @@ -626,16 +626,20 @@
626 626  
627 627  Feature, Set Interrupt mode for GPIO_EXIT.
628 628  
629 -(% style="color:blue" %)**AT Command: AT+INTMOD**
1103 +AT Command: AT+INTMOD
630 630  
631 631  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
632 -|=(% style="width: 154px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1106 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response
633 633  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
1108 +
1109 +
634 634  0
635 635  OK
636 636  the mode is 0 =Disable Interrupt
637 637  )))
638 638  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
1115 +
1116 +
639 639  Set Transmit Interval
640 640  0. (Disable Interrupt),
641 641  ~1. (Trigger by rising and falling edge)
... ... @@ -643,7 +643,7 @@
643 643  3. (Trigger by rising edge)
644 644  )))|(% style="background-color:#f2f2f2; width:157px" %)OK
645 645  
646 -(% style="color:blue" %)**Downlink Command: 0x06**
1124 +Downlink Command: 0x06
647 647  
648 648  Format: Command Code (0x06) followed by 3 bytes.
649 649  
... ... @@ -657,76 +657,106 @@
657 657  
658 658  Feature, Control the output 3V3 , 5V or 12V.
659 659  
660 -(% style="color:blue" %)**AT Command: AT+3V3T**
1138 +AT Command: AT+3V3T
661 661  
662 662  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
663 -|=(% style="width: 154px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 201px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 119px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1141 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
664 664  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
1143 +
1144 +
665 665  0
666 666  OK
667 667  )))
668 668  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1149 +
1150 +
669 669  OK
670 670  default setting
671 671  )))
672 672  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
1155 +
1156 +
673 673  OK
674 674  )))
675 675  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1160 +
1161 +
676 676  OK
677 677  )))
678 678  
679 -(% style="color:blue" %)**AT Command: AT+5VT**
1165 +AT Command: AT+5VT
680 680  
681 681  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
682 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 119px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1168 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
683 683  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1170 +
1171 +
684 684  0
685 685  OK
686 686  )))
687 687  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1176 +
1177 +
688 688  OK
689 689  default setting
690 690  )))
691 691  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
1182 +
1183 +
692 692  OK
693 693  )))
694 694  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1187 +
1188 +
695 695  OK
696 696  )))
697 697  
698 -(% style="color:blue" %)**AT Command: AT+12VT**
1192 +AT Command: AT+12VT
699 699  
700 700  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
701 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 199px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 88px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1195 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response
702 702  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1197 +
1198 +
703 703  0
704 704  OK
705 705  )))
706 706  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
707 707  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
1204 +
1205 +
708 708  OK
709 709  )))
710 710  
711 -(% style="color:blue" %)**Downlink Command: 0x07**
1209 +Downlink Command: 0x07
712 712  
713 713  Format: Command Code (0x07) followed by 3 bytes.
714 714  
715 715  The first byte is which power, the second and third bytes are the time to turn on.
716 716  
717 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
718 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
719 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
720 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
721 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
722 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
1215 +* Example 1: Downlink Payload: 070101F4  ~-~-->  AT+3V3T=500
1216 +* Example 2: Downlink Payload: 0701FFFF   ~-~-->  AT+3V3T=65535
1217 +* Example 3: Downlink Payload: 070203E8  ~-~-->  AT+5VT=1000
1218 +* Example 4: Downlink Payload: 07020000  ~-~-->  AT+5VT=0
1219 +* Example 5: Downlink Payload: 070301F4  ~-~-->  AT+12VT=500
1220 +* Example 6: Downlink Payload: 07030000  ~-~-->  AT+12VT=0
723 723  
1222 +Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.
1223 +
1224 +Therefore, the corresponding downlink command is increased by one byte to five bytes.
1225 +
1226 +Example:
1227 +
1228 +* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 01 01 D4 C0  ~-~-->  AT+3V3T=120000
1229 +* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 02 01 86 A0  ~-~-->  AT+5VT=100000
1230 +* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 03 01 38 80  ~-~-->  AT+12VT=80000
1231 +
724 724  === 3.3.4 Set the Probe Model ===
725 725  
726 726  
727 727  Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
728 728  
729 -(% style="color:blue" %)**AT Command: AT** **+PROBE**
1237 +AT Command: AT +PROBE
730 730  
731 731  AT+PROBE=aabb
732 732  
... ... @@ -738,12 +738,20 @@
738 738  
739 739  (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
740 740  
1249 +When aa=02, it is the Differential Pressure Sensor , which converts the current into a pressure value;
1250 +
1251 +bb represents which type of pressure sensor it is.
1252 +
1253 +(0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C)
1254 +
741 741  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
742 -|(% style="background-color:#d9e2f3; color:#0070c0; width:154px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:269px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Response**
1256 +|(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
743 743  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
744 744  OK
745 745  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
746 746  |(% style="background-color:#f2f2f2; width:154px" %)(((
1261 +
1262 +
747 747  AT+PROBE=000A
748 748  )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
749 749  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
... ... @@ -750,59 +750,66 @@
750 750  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
751 751  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
752 752  
753 -(% style="color:blue" %)**Downlink Command: 0x08**
1269 +Downlink Command: 0x08
754 754  
755 755  Format: Command Code (0x08) followed by 2 bytes.
756 756  
757 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
758 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
1273 +* Example 1: Downlink Payload: 080003  ~-~-->  AT+PROBE=0003
1274 +* Example 2: Downlink Payload: 080101  ~-~-->  AT+PROBE=0101
759 759  
760 -=== 3.3.5 Multiple collections are one uplinkSince firmware V1.1 ===
1276 +=== 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
761 761  
762 762  
763 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
1279 +Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time.
764 764  
765 -(% style="color:blue" %)**AT Command: AT** **+STDC**
1281 +AT Command: AT +STDC
766 766  
767 767  AT+STDC=aa,bb,bb
768 768  
769 -(% style="color:#037691" %)**aa:**(%%)
770 -**0:** means disable this function and use TDC to send packets.
771 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
772 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
773 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
1285 +aa:
1286 +0: means disable this function and use TDC to send packets.
1287 +1: means that the function is enabled to send packets by collecting VDC data for multiple times.
1288 +2: means that the function is enabled to send packets by collecting IDC data for multiple times.
1289 +bb: Each collection interval (s), the value is 1~~65535
1290 +cc: the number of collection times, the value is 1~~120
774 774  
775 775  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
776 -|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:215px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Response**
1293 +|(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
777 777  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
778 778  OK
779 779  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1297 +
1298 +
780 780  Attention:Take effect after ATZ
781 781  
782 782  OK
783 783  )))
784 784  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
1304 +
1305 +
785 785  Use the TDC interval to send packets.(default)
786 786  
787 787  
788 788  )))|(% style="background-color:#f2f2f2" %)(((
1310 +
1311 +
789 789  Attention:Take effect after ATZ
790 790  
791 791  OK
792 792  )))
793 793  
794 -(% style="color:blue" %)**Downlink Command: 0xAE**
1317 +Downlink Command: 0xAE
795 795  
796 -Format: Command Code (0x08) followed by 5 bytes.
1319 +Format: Command Code (0xAE) followed by 4 bytes.
797 797  
798 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
1321 +* Example 1: Downlink Payload: AE 01 02 58 12 ~-~-->  AT+STDC=1,600,18
799 799  
800 800  = 4. Battery & Power Consumption =
801 801  
802 802  
803 -PS-LB uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1326 +PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
804 804  
805 -[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1328 +[[Battery Info & Power Consumption Analyze>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
806 806  
807 807  
808 808  = 5. OTA firmware update =
... ... @@ -832,6 +832,34 @@
832 832  When downloading the images, choose the required image file for download. ​
833 833  
834 834  
1358 +== 6.4 How to measure the depth of other liquids other than water? ==
1359 +
1360 +
1361 +Test the current values at the depth of different liquids and convert them to a linear scale.
1362 +Replace its ratio with the ratio of water to current in the decoder.
1363 +
1364 +Example:
1365 +
1366 +Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
1367 +
1368 +Calculate scale factor:
1369 +Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
1370 +
1371 +Calculation formula:
1372 +
1373 +Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
1374 +
1375 +Actual calculations:
1376 +
1377 +Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
1378 +
1379 +Error:
1380 +
1381 +0.009810726
1382 +
1383 +
1384 +[[image:image-20240329175044-1.png]]
1385 +
835 835  = 7. Troubleshooting =
836 836  
837 837  == 7.1 Water Depth Always shows 0 in payload ==
... ... @@ -849,17 +849,17 @@
849 849  = 8. Order Info =
850 850  
851 851  
852 -[[image:image-20230131153105-4.png]]
853 853  
1404 +[[image:image-20241021093209-1.png]]
854 854  
855 855  = 9. ​Packing Info =
856 856  
857 857  
858 -(% style="color:#037691" %)**Package Includes**:
1409 +Package Includes:
859 859  
860 -* PS-LB LoRaWAN Pressure Sensor
1411 +* PS-LB or PS-LS LoRaWAN Pressure Sensor
861 861  
862 -(% style="color:#037691" %)**Dimension and weight**:
1413 +Dimension and weight:
863 863  
864 864  * Device Size: cm
865 865  * Device Weight: g
... ... @@ -872,5 +872,3 @@
872 872  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
873 873  
874 874  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].
875 -
876 -
image-20240109160445-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.8 KB
Content
image-20240109160800-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +60.1 KB
Content
image-20240109172423-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +62.3 KB
Content
image-20240329175044-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +55.2 KB
Content
image-20240511174954-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +65.9 KB
Content
image-20240513093957-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +320.4 KB
Content
image-20240513094047-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +62.7 KB
Content
image-20240513094054-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +201.1 KB
Content
image-20240513095921-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +130.4 KB
Content
image-20240513095927-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +98.0 KB
Content
image-20240513100129-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +130.4 KB
Content
image-20240513100135-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +98.0 KB
Content
image-20240817150702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +38.4 KB
Content
image-20241021093209-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +52.1 KB
Content
image-20250116175954-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +68.6 KB
Content
image-20250116180030-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +69.2 KB
Content
image-20250117104812-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +1.7 KB
Content
image-20250117104827-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +74.6 KB
Content
image-20250117104837-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +38.7 KB
Content
image-20250117104847-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 KB
Content
image-20250401102131-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +64.7 KB
Content
image-20250401163530-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +44.9 KB
Content
image-20250401163539-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +31.1 KB
Content
image-20250401163826-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +18.9 KB
Content
image-20250401163906-4.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +181.6 KB
Content