Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/07/10 16:21
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 29 added, 0 removed)
- image-20240109154009-1.png
- image-20240109154121-2.png
- image-20240109154227-3.png
- image-20240109154731-4.png
- image-20240109160445-5.png
- image-20240109160800-6.png
- image-20240109172423-7.png
- image-20240329175044-1.png
- image-20240511174954-1.png
- image-20240513093957-1.png
- image-20240513094047-2.png
- image-20240513094054-3.png
- image-20240513095921-4.png
- image-20240513095927-5.png
- image-20240513100129-6.png
- image-20240513100135-7.png
- image-20240817150702-1.png
- image-20241021093209-1.png
- image-20250116175954-1.png
- image-20250116180030-2.png
- image-20250117104812-1.png
- image-20250117104827-2.png
- image-20250117104837-3.png
- image-20250117104847-4.png
- image-20250401102131-1.png
- image-20250401163530-1.jpeg
- image-20250401163539-2.jpeg
- image-20250401163826-3.jpeg
- image-20250401163906-4.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -PS-LB --LoRaWAN Air Water Pressure Sensor User Manual 1 +PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual - Content
-
... ... @@ -1,9 +1,17 @@ 1 - [[image:image-20230131115217-1.png]]1 + 2 2 3 3 4 +(% style="text-align:center" %) 5 +[[image:image-20240109154731-4.png||height="671" width="945"]] 4 4 5 -**Table of Contents:** 6 6 8 + 9 + 10 + 11 + 12 + 13 +**Table of Contents :** 14 + 7 7 {{toc/}} 8 8 9 9 ... ... @@ -17,27 +17,27 @@ 17 17 18 18 19 19 ((( 20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 28 +The Dragino PS-LB/LS series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB/LS can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 21 21 ))) 22 22 23 23 ((( 24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 32 +The PS-LB/LS series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 25 25 ))) 26 26 27 27 ((( 28 -The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 36 +The LoRa wireless technology used in PS-LB/LS allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 29 ))) 30 30 31 31 ((( 32 -PS-LB supports BLE configure and wireless OTA update which make user easy to use. 40 +PS-LB/LS supports BLE configure and wireless OTA update which make user easy to use. 33 33 ))) 34 34 35 35 ((( 36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 44 +PS-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + Li-ion battery **(%%), it is designed for long term use up to 5 years. 37 37 ))) 38 38 39 39 ((( 40 -Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 48 +Each PS-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 41 41 ))) 42 42 43 43 [[image:1675071321348-194.png]] ... ... @@ -57,11 +57,10 @@ 57 57 * Support wireless OTA update firmware 58 58 * Uplink on periodically 59 59 * Downlink to change configure 60 -* 8500mAh Battery for long term use 61 61 * Controllable 3.3v,5v and 12v output to power external sensor 69 +* 8500mAh Li/SOCl2 Battery (PS-LB) 70 +* Solar panel + 3000mAh Li-ion battery (PS-LS) 62 62 63 - 64 - 65 65 == 1.3 Specification == 66 66 67 67 ... ... @@ -73,7 +73,7 @@ 73 73 74 74 (% style="color:#037691" %)**Common DC Characteristics:** 75 75 76 -* Supply Voltage: 2.5v ~~ 3.6v 83 +* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v 77 77 * Operating Temperature: -40 ~~ 85°C 78 78 79 79 (% style="color:#037691" %)**LoRa Spec:** ... ... @@ -108,8 +108,6 @@ 108 108 * Sleep Mode: 5uA @ 3.3v 109 109 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 110 110 111 - 112 - 113 113 == 1.4 Probe Types == 114 114 115 115 === 1.4.1 Thread Installation Type === ... ... @@ -128,34 +128,38 @@ 128 128 * Operating temperature: -20℃~~60℃ 129 129 * Connector Type: Various Types, see order info 130 130 131 - 132 - 133 133 === 1.4.2 Immersion Type === 134 134 135 135 136 -[[image: 1675071521308-426.png]]139 +[[image:image-20240109160445-5.png||height="221" width="166"]] 137 137 138 138 * Immersion Type, Probe IP Level: IP68 139 139 * Measuring Range: Measure range can be customized, up to 100m. 140 140 * Accuracy: 0.2% F.S 141 141 * Long-Term Stability: ±0.2% F.S / Year 142 -* Storage temperature: -30 ℃~~80℃143 -* Operating temperature: 0 ℃~~50℃145 +* Storage temperature: -30°C~~80°C 146 +* Operating temperature: 0°C~~50°C 144 144 * Material: 316 stainless steels 145 145 149 +=== 1.4.3 Wireless Differential Air Pressure Sensor === 146 146 151 +[[image:image-20240511174954-1.png||height="215" width="215"]] 147 147 148 -== 1.5 Probe Dimension == 153 +* Measuring Range: -100KPa~~0~~100KPa(Optional measuring range). 154 +* Accuracy: 0.5% F.S, resolution is 0.05%. 155 +* Overload: 300% F.S 156 +* Zero temperature drift: ±0.03%F.S/°C 157 +* Operating temperature: -20°C~~60°C 158 +* Storage temperature: -20°C~~60°C 159 +* Compensation temperature: 0~~50°C 149 149 161 +== 1.5 Application and Installation == 150 150 163 +=== 1.5.1 Thread Installation Type === 151 151 152 -== 1.6 Application and Installation == 153 153 154 - === 1.6.1 Thread InstallationType ===166 +Application: 155 155 156 - 157 -(% style="color:blue" %)**Application:** 158 - 159 159 * Hydraulic Pressure 160 160 * Petrochemical Industry 161 161 * Health and Medical ... ... @@ -169,10 +169,10 @@ 169 169 [[image:1675071670469-145.png]] 170 170 171 171 172 -=== 1. 6.2 Immersion Type ===181 +=== 1.5.2 Immersion Type === 173 173 174 174 175 - (% style="color:blue" %)**Application:**184 +Application: 176 176 177 177 Liquid & Water Pressure / Level detect. 178 178 ... ... @@ -179,54 +179,87 @@ 179 179 [[image:1675071725288-579.png]] 180 180 181 181 182 - TheImmersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.191 +Below is the wiring to for connect the probe to the device. 183 183 193 +The Immersion Type Sensor has different variant which defined by Ixx. For example, this means two points: 184 184 195 +* Cable Length: 10 Meters 196 +* Water Detect Range: 0 ~~ 10 Meters. 197 + 185 185 [[image:1675071736646-450.png]] 186 186 187 187 188 188 [[image:1675071776102-240.png]] 189 189 203 +Size of immersion type water depth sensor: 190 190 191 - == 1.7 Sleepmoded workingmode==205 +[[image:image-20250401102131-1.png||height="268" width="707"]] 192 192 193 193 194 - (%style="color:blue"%)**Deep Sleep Mode: **(%%)Sensordoesn'thaveany LoRaWAN activate.This modeisused forstorageandshipping tosave batterylife.208 +=== 1.5.3 Wireless Differential Air Pressure Sensor === 195 195 196 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 197 197 211 +Application: 198 198 199 - ==1.8Button &LEDs==213 +Indoor Air Control & Filter clogging Detect. 200 200 215 +[[image:image-20240513100129-6.png]] 201 201 202 -[[image: 1675071855856-879.png]]217 +[[image:image-20240513100135-7.png]] 203 203 204 204 220 +Below is the wiring to for connect the probe to the device. 221 + 222 +[[image:image-20240513093957-1.png]] 223 + 224 + 225 +Size of wind pressure transmitter: 226 + 227 +[[image:image-20240513094047-2.png]] 228 + 229 +Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm. 230 + 231 + 232 +== 1.6 Sleep mode and working mode == 233 + 234 + 235 +Deep Sleep Mode: Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 236 + 237 +Working Mode: In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 238 + 239 + 240 +== 1.7 Button & LEDs == 241 + 242 + 243 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]] 244 + 205 205 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 206 -|=(% style="width: 167px;background-color:# D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**246 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action 207 207 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)((( 208 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 248 + 249 + 250 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once. 209 209 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 210 210 ))) 211 211 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)((( 212 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 213 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 254 + 255 + 256 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. 257 +Green led will solidly turn on for 5 seconds after joined in network. 214 214 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 215 215 ))) 216 -|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %) (% style="color:red" %)**Red led**(%%)will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.260 +|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 217 217 262 +== 1.8 Pin Mapping == 218 218 219 219 220 -== 1.9 Pin Mapping == 221 - 222 - 223 223 [[image:1675072568006-274.png]] 224 224 225 225 226 -== 1. 10BLE connection ==268 +== 1.9 BLE connection == 227 227 228 228 229 -PS-LB support BLE remote configure. 271 +PS-LB/LS support BLE remote configure. 230 230 231 231 232 232 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -238,24 +238,26 @@ 238 238 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 239 239 240 240 241 -== 1.1 1Mechanical ==283 +== 1.10 Mechanical == 242 242 285 +=== 1.10.1 for LB version === 243 243 244 -[[image:1675143884058-338.png]] 245 245 288 +[[image:image-20250401163530-1.jpeg]] 246 246 247 -[[image:1675143899218-599.png]] 248 248 291 +=== 1.10.2 for LS version === 249 249 250 -[[image:1675143909447-639.png]] 251 251 294 +[[image:image-20250401163539-2.jpeg]] 252 252 253 -= 2. Configure PS-LB to connect to LoRaWAN network = 254 254 297 += 2. Configure PS-LB/LS to connect to LoRaWAN network = 298 + 255 255 == 2.1 How it works == 256 256 257 257 258 -The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%)mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.302 +The PS-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 259 259 260 260 261 261 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -263,7 +263,6 @@ 263 263 264 264 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 265 265 266 - 267 267 [[image:1675144005218-297.png]] 268 268 269 269 ... ... @@ -270,9 +270,9 @@ 270 270 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 271 271 272 272 273 - (% style="color:blue" %)**Step 1:**(%%)Create a device in TTN with the OTAA keys from PS-LB.316 +Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS. 274 274 275 -Each PS-LB is shipped with a sticker with the default device EUI as below: 318 +Each PS-LB/LS is shipped with a sticker with the default device EUI as below: 276 276 277 277 [[image:image-20230426085320-1.png||height="234" width="504"]] 278 278 ... ... @@ -280,32 +280,32 @@ 280 280 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 281 281 282 282 283 - (% style="color:blue" %)**Register the device**326 +Register the device 284 284 285 285 [[image:1675144099263-405.png]] 286 286 287 287 288 - (% style="color:blue" %)**Add APP EUI and DEV EUI**331 +Add APP EUI and DEV EUI 289 289 290 290 [[image:1675144117571-832.png]] 291 291 292 292 293 - (% style="color:blue" %)**Add APP EUI in the application**336 +Add APP EUI in the application 294 294 295 295 296 296 [[image:1675144143021-195.png]] 297 297 298 298 299 - (% style="color:blue" %)**Add APP KEY**342 +Add APP KEY 300 300 301 301 [[image:1675144157838-392.png]] 302 302 303 - (% style="color:blue" %)**Step 2:**(%%)Activate on PS-LB346 +Step 2: Activate on PS-LB/LS 304 304 305 305 306 -Press the button for 5 seconds to activate the PS-LB. 349 +Press the button for 5 seconds to activate the PS-LB/LS. 307 307 308 - (% style="color:green" %)**Green led**(%%)will fast blink 5 times, device will enter(% style="color:blue" %)**OTA mode**(%%)for 3 seconds. And then start to JOIN LoRaWAN network.(% style="color:green" %)**Green led**(%%)will solidly turn on for 5 seconds after joined in network.351 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network. 309 309 310 310 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 311 311 ... ... @@ -315,15 +315,14 @@ 315 315 === 2.3.1 Device Status, FPORT~=5 === 316 316 317 317 318 -Include device configure status. Once PS-LB Joined the network, it will uplink this message to the server. 361 +Include device configure status. Once PS-LB/LS Joined the network, it will uplink this message to the server. 319 319 320 -Users can also use the downlink command(0x26 01) to ask PS-LB to resend this uplink. 363 +Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink. 321 321 322 - 323 323 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 324 -|(% colspan="6" style="background-color:# d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**325 -|(% style="background-color:#f2f2f2; width:103px" %) **Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**326 -|(% style="background-color:#f2f2f2; width:103px" %) **Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT366 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)Device Status (FPORT=5) 367 +|(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2 368 +|(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT 327 327 328 328 Example parse in TTNv3 329 329 ... ... @@ -330,11 +330,11 @@ 330 330 [[image:1675144504430-490.png]] 331 331 332 332 333 - (% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16375 +Sensor Model: For PS-LB/LS, this value is 0x16 334 334 335 - (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version377 +Firmware Version: 0x0100, Means: v1.0.0 version 336 336 337 - (% style="color:#037691" %)**Frequency Band**:379 +Frequency Band: 338 338 339 339 *0x01: EU868 340 340 ... ... @@ -365,7 +365,7 @@ 365 365 *0x0e: MA869 366 366 367 367 368 - (% style="color:#037691" %)**Sub-Band**:410 +Sub-Band: 369 369 370 370 AU915 and US915:value 0x00 ~~ 0x08 371 371 ... ... @@ -374,7 +374,7 @@ 374 374 Other Bands: Always 0x00 375 375 376 376 377 - (% style="color:#037691" %)**Battery Info**:419 +Battery Info: 378 378 379 379 Check the battery voltage. 380 380 ... ... @@ -389,10 +389,12 @@ 389 389 Uplink payload includes in total 9 bytes. 390 390 391 391 392 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 393 -|(% style="background-color:#d9e2f3; color:#0070c0; width:97px" %)((( 394 -**Size(bytes)** 395 -)))|(% style="background-color:#d9e2f3; color:#0070c0; width:48px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:71px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:98px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:73px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:122px" %)**1** 434 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 435 +|(% style="background-color:#4f81bd; color:white; width:97px" %)((( 436 + 437 + 438 +Size(bytes) 439 +)))|(% style="background-color:#4f81bd; color:white; width:50px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1 396 396 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] 397 397 398 398 [[image:1675144608950-310.png]] ... ... @@ -401,7 +401,7 @@ 401 401 === 2.3.3 Battery Info === 402 402 403 403 404 -Check the battery voltage for PS-LB. 448 +Check the battery voltage for PS-LB/LS. 405 405 406 406 Ex1: 0x0B45 = 2885mV 407 407 ... ... @@ -411,16 +411,16 @@ 411 411 === 2.3.4 Probe Model === 412 412 413 413 414 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 458 +PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 415 415 416 416 417 - **For example.**461 +For example. 418 418 419 419 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 420 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Part Number**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Probe Used**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4~~20mA scale**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Example: 12mA meaning**421 -|(% style="background-color:#f2f2f2" %)PS-LB-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water 422 -|(% style="background-color:#f2f2f2" %)PS-LB-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water 423 -|(% style="background-color:#f2f2f2" %)PS-LB-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure 464 +|(% style="background-color:#4f81bd; color:white" %)Part Number|(% style="background-color:#4f81bd; color:white" %)Probe Used|(% style="background-color:#4f81bd; color:white" %)4~~20mA scale|(% style="background-color:#4f81bd; color:white" %)Example: 12mA meaning 465 +|(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water 466 +|(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water 467 +|(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure 424 424 425 425 The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value. 426 426 ... ... @@ -428,9 +428,9 @@ 428 428 === 2.3.5 0~~20mA value (IDC_IN) === 429 429 430 430 431 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.475 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level. 432 432 433 - (% style="color:#037691" %)**Example**:477 +Example: 434 434 435 435 27AE(H) = 10158 (D)/1000 = 10.158mA. 436 436 ... ... @@ -440,12 +440,12 @@ 440 440 [[image:image-20230225154759-1.png||height="408" width="741"]] 441 441 442 442 443 -=== 2.3.6 0~~30V value ( 487 +=== 2.3.6 0~~30V value (pin VDC_IN) === 444 444 445 445 446 446 Measure the voltage value. The range is 0 to 30V. 447 447 448 - (% style="color:#037691" %)**Example**:492 +Example: 449 449 450 450 138E(H) = 5006(D)/1000= 5.006V 451 451 ... ... @@ -455,7 +455,7 @@ 455 455 456 456 IN1 and IN2 are used as digital input pins. 457 457 458 - (% style="color:#037691" %)**Example**:502 +Example: 459 459 460 460 09 (H): (0x09&0x08)>>3=1 IN1 pin is high level. 461 461 ... ... @@ -462,9 +462,9 @@ 462 462 09 (H): (0x09&0x04)>>2=0 IN2 pin is low level. 463 463 464 464 465 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.509 +This data field shows if this packet is generated by Interrupt Pin or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal. 466 466 467 - (% style="color:#037691" %)**Example:**511 +Example: 468 468 469 469 09 (H): (0x09&0x02)>>1=1 The level of the interrupt pin. 470 470 ... ... @@ -473,14 +473,18 @@ 473 473 0x01: Interrupt Uplink Packet. 474 474 475 475 476 -=== (% style="color:inherit; font-family:inherit; font-size:23px" %)2.3.8 Sensor value, FPORT~=7(%%)===520 +=== 2.3.8 Sensor value, FPORT~=7 === 477 477 478 478 479 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:508.222px" %) 480 -|(% style="background-color:#d9e2f3; color:#0070c0; width:94px" %)((( 481 -**Size(bytes)** 482 -)))|(% style="background-color:#d9e2f3; color:#0070c0; width:43px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:367px" %)**n** 523 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %) 524 +|(% style="background-color:#4f81bd; color:white; width:65px" %)((( 525 + 526 + 527 +Size(bytes) 528 +)))|(% style="background-color:#4f81bd; color:white; width:35px" %)2|(% style="background-color:#4f81bd; color:white; width:400px" %)n 483 483 |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)((( 530 + 531 + 484 484 Voltage value, each 2 bytes is a set of voltage values. 485 485 ))) 486 486 ... ... @@ -496,17 +496,16 @@ 496 496 497 497 While using TTN network, you can add the payload format to decode the payload. 498 498 499 - 500 500 [[image:1675144839454-913.png]] 501 501 502 502 503 -PS-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 550 +PS-LB/LS TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 504 504 505 505 506 506 == 2.4 Uplink Interval == 507 507 508 508 509 -The PS-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]] 556 +The PS-LB/LS by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]] 510 510 511 511 512 512 == 2.5 Show Data in DataCake IoT Server == ... ... @@ -514,12 +514,10 @@ 514 514 515 515 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 516 516 564 +Step 1: Be sure that your device is programmed and properly connected to the network at this time. 517 517 518 - (% style="color:blue" %)**Step1:**(%%)Besure that your deviceisprogrammedandproperlyconnected to the networkatthistime.566 +Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 519 519 520 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 521 - 522 - 523 523 [[image:1675144951092-237.png]] 524 524 525 525 ... ... @@ -526,9 +526,9 @@ 526 526 [[image:1675144960452-126.png]] 527 527 528 528 529 - (% style="color:blue" %)**Step 3:**(%%)Create an account or log in Datacake.574 +Step 3: Create an account or log in Datacake. 530 530 531 - (% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.576 +Step 4: Create PS-LB/LS product. 532 532 533 533 [[image:1675145004465-869.png]] 534 534 ... ... @@ -536,11 +536,10 @@ 536 536 [[image:1675145018212-853.png]] 537 537 538 538 539 - 540 540 [[image:1675145029119-717.png]] 541 541 542 542 543 - (% style="color:blue" %)**Step 5:**(%%)add payload decode587 +Step 5: add payload decode 544 544 545 545 [[image:1675145051360-659.png]] 546 546 ... ... @@ -550,39 +550,455 @@ 550 550 551 551 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 552 552 553 - 554 554 [[image:1675145081239-376.png]] 555 555 556 556 557 -== 2.6 F requencyPlans==600 +== 2.6 Datalog Feature (Since V1.1) == 558 558 559 559 560 - ThePS-LBusesOTAA modeandbelowfrequencyplansby default.Ifuserwant touseitwithdifferentfrequencyplan,pleaserefer theAT commandsets.603 +When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot. 561 561 562 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 563 563 606 +=== 2.6.1 Unix TimeStamp === 564 564 565 -== 2.7 Firmware Change Log == 566 566 609 +PS-LB uses Unix TimeStamp format based on 567 567 568 - **Firmwaredownload link:**611 +[[image:image-20250401163826-3.jpeg]] 569 569 613 +Users can get this time from the link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] : 614 + 615 +Below is the converter example: 616 + 617 +[[image:image-20250401163906-4.jpeg]] 618 + 619 + 620 +=== 2.6.2 Set Device Time === 621 + 622 + 623 +There are two ways to set the device's time: 624 + 625 + 626 +~1. Through LoRaWAN MAC Command (Default settings) 627 + 628 +Users need to set SYNCMOD=1 to enable sync time via the MAC command. 629 + 630 +Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]]. 631 + 632 +Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature. 633 + 634 + 635 + 2. Manually Set Time 636 + 637 +Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server. 638 + 639 + 640 +=== 2.6.3 Poll sensor value === 641 + 642 +Users can poll sensor values based on timestamps. Below is the downlink command. 643 + 644 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %) 645 +|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31) 646 +|(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte 647 +|(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)((( 648 + 649 + 650 +Timestamp end 651 +)))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval 652 + 653 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval. 654 + 655 +For example, downlink command[[image:image-20250117104812-1.png]] 656 + 657 +Is to check 2024/12/20 09:34:59 to 2024/12/20 14:34:59's data 658 + 659 +Uplink Internal =5s,means PS-LB will send one packet every 5s. range 5~~255s. 660 + 661 + 662 +=== 2.6.4 Datalog Uplink payload (FPORT~=3) === 663 + 664 + 665 +The Datalog uplinks will use below payload format. 666 + 667 +Retrieval data payload: 668 + 669 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 670 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 671 +Size(bytes) 672 +)))|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)2|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)4 673 +|(% style="width:103px" %)Value|(% style="width:68px" %)((( 674 +Probe_mod 675 +)))|(% style="width:104px" %)((( 676 +VDC_intput_V 677 +)))|(% style="width:83px" %)((( 678 +IDC_intput_mA 679 +)))|(% style="width:201px" %)((( 680 +IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status 681 +)))|(% style="width:86px" %)Unix Time Stamp 682 +IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status: 683 + 684 +[[image:image-20250117104847-4.png]] 685 + 686 + 687 +No ACK Message: 1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature) 688 + 689 +Poll Message Flag: 1: This message is a poll message reply. 690 + 691 +* Poll Message Flag is set to 1. 692 + 693 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands. 694 + 695 +For example, in US915 band, the max payload for different DR is: 696 + 697 +a) DR0: max is 11 bytes so one entry of data 698 + 699 +b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 700 + 701 +c) DR2: total payload includes 11 entries of data 702 + 703 +d) DR3: total payload includes 22 entries of data. 704 + 705 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0 706 + 707 +Example: 708 + 709 +If PS-LB-NA has below data inside Flash: 710 + 711 +[[image:image-20250117104837-3.png]] 712 + 713 + 714 +If user sends below downlink command: 316788D9BF6788DB6305 715 + 716 +Where : Start time: 6788D9BF = time 25/1/16 10:04:47 717 + 718 + Stop time: 6788DB63 = time 25/1/16 10:11:47 719 + 720 + 721 +PA-LB-NA will uplink this payload. 722 + 723 +[[image:image-20250117104827-2.png]] 724 + 725 + 726 +00001B620000406788D9BF 00000D130000406788D9FB 00000D120000406788DA37 00000D110000406788DA73 00000D100000406788DAAF 00000D100000406788DAEB 00000D0F0000406788DB27 00000D100000406788DB63 727 + 728 + 729 +Where the first 11 bytes is for the first entry : 730 + 731 + 732 +0000 0D10 0000 40 6788DB63 733 + 734 + 735 +Probe_mod = 0x0000 = 0000 736 + 737 + 738 +VDC_intput_V = 0x0D10/1000=3.344V 739 + 740 +IDC_intput_mA = 0x0000/1000=0mA 741 + 742 + 743 +IN1_pin_level = (0x40& 0x08)? "High":"Low" = 0(Low) 744 + 745 +IN2_pin_level = (0x40& 0x04)? "High":"Low" = 0(Low) 746 + 747 +Exti_pin_level = (0x40& 0x02)? "High":"Low" = 0(Low) 748 + 749 +Exti_status = (0x40& 0x01)? "True":"False" = 0(False) 750 + 751 + 752 +Unix time is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47 753 + 754 +Its data format is: 755 + 756 +[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],... 757 + 758 +Note: water_deep in the data needs to be converted using decoding to get it. 759 + 760 + 761 +=== 2.6.5 Decoder in TTN V3 === 762 + 763 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]] 764 + 765 +Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 766 + 767 + 768 +== 2.7 Frequency Plans == 769 + 770 + 771 +The PS-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country. 772 + 773 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/a>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 774 + 775 + 776 +== 2.8 Report on Change Feature (Since firmware V1.2) == 777 + 778 +=== 2.8.1 Uplink payload(Enable ROC) === 779 + 780 + 781 +Used to Monitor the IDC and VDC increments, and send ROC uplink when the IDC or VDC changes exceed. 782 + 783 +With ROC enabled, the payload is as follows: 784 + 785 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 786 +|(% style="background-color:#4f81bd; color:white; width:97px" %)((( 787 + 788 + 789 +Size(bytes) 790 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1 791 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)((( 792 + 793 + 794 +[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag 795 +))) 796 + 797 +IN1 &IN2 , Interrupt flag , ROC_flag: 798 + 799 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %) 800 +|(% style="background-color:#4f81bd; color:white; width:50px" %)Size(bit)|(% style="background-color:#4f81bd; color:white; width:60px" %)bit7|(% style="background-color:#4f81bd; color:white; width:62px" %)bit6|(% style="background-color:#4f81bd; color:white; width:62px" %)bit5|(% style="background-color:#4f81bd; color:white; width:65px" %)bit4|(% style="background-color:#4f81bd; color:white; width:56px" %)bit3|(% style="background-color:#4f81bd; color:white; width:55px" %)bit2|(% style="background-color:#4f81bd; color:white; width:55px" %)bit1|(% style="background-color:#4f81bd; color:white; width:50px" %)bit0 801 +|(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status 802 + 803 +* IDC_Roc_flagL 804 + 805 +80 (H): (0x80&0x80)=80(H)=1000 0000(B) bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold. 806 + 807 +60 (H): (0x60&0x80)=0 bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold. 808 + 809 + 810 +* IDC_Roc_flagH 811 + 812 +60 (H): (0x60&0x40)=60(H)=01000 0000(B) bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold. 813 + 814 +80 (H): (0x80&0x40)=0 bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold. 815 + 816 + 817 +* VDC_Roc_flagL 818 + 819 +20 (H): (0x20&0x20)=20(H)=0010 0000(B) bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold. 820 + 821 +90 (H): (0x90&0x20)=0 bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold. 822 + 823 + 824 +* VDC_Roc_flagH 825 + 826 +90 (H): (0x90&0x10)=10(H)=0001 0000(B) bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold. 827 + 828 +20 (H): (0x20&0x10)=0 bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold. 829 + 830 + 831 +* IN1_pin_level & IN2_pin_level 832 + 833 +IN1 and IN2 are used as digital input pins. 834 + 835 +80 (H): (0x80&0x08)=0 IN1 pin is low level. 836 + 837 +80 (H): (0x09&0x04)=0 IN2 pin is low level. 838 + 839 + 840 +* Exti_pin_level &Exti_status 841 + 842 +This data field shows whether the packet is generated by an interrupt pin. 843 + 844 +Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the GPIO_EXTI pin. 845 + 846 +Exti_pin_level: 80 (H): (0x80&0x02)=0 "low", The level of the interrupt pin. 847 + 848 +Exti_status: 80 (H): (0x80&0x01)=0 "False", Normal uplink packet. 849 + 850 + 851 +=== 2.8.2 Set the Report on Change === 852 + 853 + 854 +Feature: Get or Set the Report on Change. 855 + 856 + 857 +==== 2.8.2.1 Wave alarm mode ==== 858 + 859 +Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed. 860 + 861 +* Change value: The amount by which the next detection value increases/decreases relative to the previous detection value. 862 +* Comparison value: A parameter to compare with the latest ROC test. 863 + 864 +AT Command: AT+ROC 865 + 866 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 867 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation 868 +|(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)((( 869 + 870 + 871 +0,0,0,0(default) 872 +OK 873 +))) 874 +|(% colspan="1" rowspan="4" style="width:143px" %)((( 875 + 876 + 877 + 878 + 879 + 880 +AT+ROC=a,b,c,d 881 +)))|(% style="width:154px" %)((( 882 + 883 + 884 + 885 + 886 + 887 + 888 + 889 +a: Enable or disable the ROC 890 +)))|(% style="width:197px" %)((( 891 + 892 + 893 +0: off 894 +1: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. 895 + 896 +2: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]). 897 +))) 898 +|(% style="width:154px" %)b: Set the detection interval|(% style="width:197px" %)((( 899 + 900 + 901 +Range: 0~~65535s 902 +))) 903 +|(% style="width:154px" %)c: Setting the IDC change value|(% style="width:197px" %)Unit: uA 904 +|(% style="width:154px" %)d: Setting the VDC change value|(% style="width:197px" %)Unit: mV 905 + 906 +Example: 907 + 908 +* AT+ROC=0,0,0,0 ~/~/The ROC function is not used. 909 +* AT+ROC=1,60,3000, 500 ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed. 910 +* AT+ROC=1,60,3000,0 ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. 911 +* AT+ROC=2,60,3000,0 ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed. 912 + 913 +Downlink Command: 0x09 aa bb cc dd 914 + 915 +Format: Function code (0x09) followed by 4 bytes. 916 + 917 +aa: 1 byte; Set the wave alarm mode. 918 + 919 +bb: 2 bytes; Set the detection interval. (second) 920 + 921 +cc: 2 bytes; Setting the IDC change threshold. (uA) 922 + 923 +dd: 2 bytes; Setting the VDC change threshold. (mV) 924 + 925 +Example: 926 + 927 +* Downlink Payload: 09 01 00 3C 0B B8 01 F4 ~/~/Equal to AT+ROC=1,60,3000, 500 928 +* Downlink Payload: 09 01 00 3C 0B B8 00 00 ~/~/Equal to AT+ROC=1,60,3000,0 929 +* Downlink Payload: 09 02 00 3C 0B B8 00 00 ~/~/Equal to AT+ROC=2,60,3000,0 930 + 931 +Screenshot of parsing example in TTN: 932 + 933 +* AT+ROC=1,60,3000, 500. 934 + 935 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB-NA--LoRaWAN_Analog_Sensor_User_Manual/WebHome/image-20241019170902-1.png?width=1454&height=450&rev=1.1||alt="image-20241019170902-1.png"]] 936 + 937 + 938 +==== 2.8.2.2 Over-threshold alarm mode ==== 939 + 940 +Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded. 941 + 942 +AT Command: AT+ROC=3,a,b,c,d,e 943 + 944 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 945 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation 946 +|(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)((( 947 + 948 + 949 +0,0,0,0(default) 950 +OK 951 +))) 952 +|(% colspan="1" rowspan="5" style="width:143px" %)((( 953 + 954 + 955 + 956 + 957 + 958 +AT+ROC=3,a,b,c,d,e 959 +)))|(% style="width:160px" %)((( 960 + 961 + 962 +a: Set the detection interval 963 +)))|(% style="width:185px" %)((( 964 + 965 + 966 +Range: 0~~65535s 967 +))) 968 +|(% style="width:160px" %)b: Set the IDC alarm trigger condition|(% style="width:185px" %)((( 969 + 970 + 971 +0: Less than the set IDC threshold, Alarm 972 + 973 +1: Greater than the set IDC threshold, Alarm 974 +))) 975 +|(% style="width:160px" %)((( 976 + 977 + 978 +c: IDC alarm threshold 979 +)))|(% style="width:185px" %)((( 980 + 981 + 982 +Unit: uA 983 +))) 984 +|(% style="width:160px" %)d: Set the VDC alarm trigger condition|(% style="width:185px" %)((( 985 + 986 + 987 +0: Less than the set VDC threshold, Alarm 988 + 989 +1: Greater than the set VDC threshold, Alarm 990 +))) 991 +|(% style="width:160px" %)e: VDC alarm threshold|(% style="width:185px" %)Unit: mV 992 + 993 +Example: 994 + 995 +* AT+ROC=3,60,0,3000,0,5000 ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated. 996 +* AT+ROC=3,180,1,3000,1,5000 ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated. 997 +* AT+ROC=3,300,0,3000,1,5000 ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated. 998 + 999 +Downlink Command: 0x09 03 aa bb cc dd ee 1000 + 1001 +Format: Function code (0x09) followed by 03 and the remaining 5 bytes. 1002 + 1003 +aa: 2 bytes; Set the detection interval.(second) 1004 + 1005 +bb: 1 byte; Set the IDC alarm trigger condition. 1006 + 1007 +cc: 2 bytes; IDC alarm threshold.(uA) 1008 + 1009 + 1010 +dd: 1 byte; Set the VDC alarm trigger condition. 1011 + 1012 +ee: 2 bytes; VDC alarm threshold.(mV) 1013 + 1014 +Example: 1015 + 1016 +* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,0,5000 1017 +* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38 ~/~/Equal to AT+ROC=3,60,1,3000,1,5000 1018 +* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,1,5000 1019 + 1020 +Screenshot of parsing example in TTN: 1021 + 1022 +* AT+ROC=3,60,0,3000,0,5000 1023 + 1024 +[[image:image-20250116180030-2.png]] 1025 + 1026 + 1027 +== 2.9 Firmware Change Log == 1028 + 1029 + 1030 +Firmware download link: 1031 + 570 570 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]] 571 571 572 572 573 -= 3. Configure PS-LB = 1035 += 3. Configure PS-LB/LS = 574 574 575 575 == 3.1 Configure Methods == 576 576 577 577 578 -PS-LB supports below configure method: 1040 +PS-LB/LS supports below configure method: 579 579 580 -* AT Command via Bluetooth Connection ( **Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].1042 +* AT Command via Bluetooth Connection (Recommand Way): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 581 581 * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]]. 582 582 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 583 583 584 - 585 - 586 586 == 3.2 General Commands == 587 587 588 588 ... ... @@ -596,10 +596,10 @@ 596 596 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 597 597 598 598 599 -== 3.3 Commands special design for PS-LB == 1059 +== 3.3 Commands special design for PS-LB/LS == 600 600 601 601 602 -These commands only valid for PS-LB, as below: 1062 +These commands only valid for PS-LB/LS, as below: 603 603 604 604 605 605 === 3.3.1 Set Transmit Interval Time === ... ... @@ -607,21 +607,25 @@ 607 607 608 608 Feature: Change LoRaWAN End Node Transmit Interval. 609 609 610 - (% style="color:blue" %)**AT Command: AT+TDC**1070 +AT Command: AT+TDC 611 611 612 612 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 613 -|=(% style="width: 160px; background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 160px; background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Response**1073 +|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response 614 614 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)((( 1075 + 1076 + 615 615 30000 616 616 OK 617 617 the interval is 30000ms = 30s 618 618 ))) 619 619 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)((( 1082 + 1083 + 620 620 OK 621 621 Set transmit interval to 60000ms = 60 seconds 622 622 ))) 623 623 624 - (% style="color:blue" %)**Downlink Command: 0x01**1088 +Downlink Command: 0x01 625 625 626 626 Format: Command Code (0x01) followed by 3 bytes time value. 627 627 ... ... @@ -630,23 +630,25 @@ 630 630 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 631 631 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 632 632 633 - 634 - 635 635 === 3.3.2 Set Interrupt Mode === 636 636 637 637 638 638 Feature, Set Interrupt mode for GPIO_EXIT. 639 639 640 - (% style="color:blue" %)**AT Command: AT+INTMOD**1102 +AT Command: AT+INTMOD 641 641 642 642 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 643 -|=(% style="width: 154px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Response**1105 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response 644 644 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)((( 1107 + 1108 + 645 645 0 646 646 OK 647 647 the mode is 0 =Disable Interrupt 648 648 ))) 649 649 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)((( 1114 + 1115 + 650 650 Set Transmit Interval 651 651 0. (Disable Interrupt), 652 652 ~1. (Trigger by rising and falling edge) ... ... @@ -654,7 +654,7 @@ 654 654 3. (Trigger by rising edge) 655 655 )))|(% style="background-color:#f2f2f2; width:157px" %)OK 656 656 657 - (% style="color:blue" %)**Downlink Command: 0x06**1123 +Downlink Command: 0x06 658 658 659 659 Format: Command Code (0x06) followed by 3 bytes. 660 660 ... ... @@ -663,85 +663,111 @@ 663 663 * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 664 664 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 665 665 666 - 667 - 668 668 === 3.3.3 Set the output time === 669 669 670 670 671 671 Feature, Control the output 3V3 , 5V or 12V. 672 672 673 - (% style="color:blue" %)**AT Command: AT+3V3T**1137 +AT Command: AT+3V3T 674 674 675 675 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %) 676 -|=(% style="width: 154px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 201px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 116px;background-color:#D9E2F3;color:#0070C0" %)**Response**1140 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response 677 677 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)((( 1142 + 1143 + 678 678 0 679 679 OK 680 680 ))) 681 681 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)((( 1148 + 1149 + 682 682 OK 683 683 default setting 684 684 ))) 685 685 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)((( 1154 + 1155 + 686 686 OK 687 687 ))) 688 688 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)((( 1159 + 1160 + 689 689 OK 690 690 ))) 691 691 692 - (% style="color:blue" %)**AT Command: AT+5VT**1164 +AT Command: AT+5VT 693 693 694 694 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %) 695 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 114px;background-color:#D9E2F3;color:#0070C0" %)**Response**1167 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response 696 696 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)((( 1169 + 1170 + 697 697 0 698 698 OK 699 699 ))) 700 700 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)((( 1175 + 1176 + 701 701 OK 702 702 default setting 703 703 ))) 704 704 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)((( 1181 + 1182 + 705 705 OK 706 706 ))) 707 707 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)((( 1186 + 1187 + 708 708 OK 709 709 ))) 710 710 711 - (% style="color:blue" %)**AT Command: AT+12VT**1191 +AT Command: AT+12VT 712 712 713 713 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %) 714 -|=(% style="width: 156px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 199px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 83px;background-color:#D9E2F3;color:#0070C0" %)**Response**1194 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response 715 715 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)((( 1196 + 1197 + 716 716 0 717 717 OK 718 718 ))) 719 719 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK 720 720 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)((( 1203 + 1204 + 721 721 OK 722 722 ))) 723 723 724 - (% style="color:blue" %)**Downlink Command: 0x07**1208 +Downlink Command: 0x07 725 725 726 726 Format: Command Code (0x07) followed by 3 bytes. 727 727 728 728 The first byte is which power, the second and third bytes are the time to turn on. 729 729 730 -* Example 1: Downlink Payload: 070101F4 **~-~-->**AT+3V3T=500731 -* Example 2: Downlink Payload: 0701FFFF **~-~-->**AT+3V3T=65535732 -* Example 3: Downlink Payload: 070203E8 **~-~-->**AT+5VT=1000733 -* Example 4: Downlink Payload: 07020000 **~-~-->**AT+5VT=0734 -* Example 5: Downlink Payload: 070301F4 **~-~-->**AT+12VT=500735 -* Example 6: Downlink Payload: 07030000 **~-~-->**AT+12VT=01214 +* Example 1: Downlink Payload: 070101F4 ~-~--> AT+3V3T=500 1215 +* Example 2: Downlink Payload: 0701FFFF ~-~--> AT+3V3T=65535 1216 +* Example 3: Downlink Payload: 070203E8 ~-~--> AT+5VT=1000 1217 +* Example 4: Downlink Payload: 07020000 ~-~--> AT+5VT=0 1218 +* Example 5: Downlink Payload: 070301F4 ~-~--> AT+12VT=500 1219 +* Example 6: Downlink Payload: 07030000 ~-~--> AT+12VT=0 736 736 1221 +Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds. 737 737 1223 +Therefore, the corresponding downlink command is increased by one byte to five bytes. 738 738 1225 +Example: 1226 + 1227 +* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 01 01 D4 C0 ~-~--> AT+3V3T=120000 1228 +* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 02 01 86 A0 ~-~--> AT+5VT=100000 1229 +* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 03 01 38 80 ~-~--> AT+12VT=80000 1230 + 739 739 === 3.3.4 Set the Probe Model === 740 740 741 741 742 742 Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value. 743 743 744 - (% style="color:blue" %)**AT Command: AT****+PROBE**1236 +AT Command: AT +PROBE 745 745 746 746 AT+PROBE=aabb 747 747 ... ... @@ -753,12 +753,20 @@ 753 753 754 754 (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C) 755 755 1248 +When aa=02, it is the Differential Pressure Sensor , which converts the current into a pressure value; 1249 + 1250 +bb represents which type of pressure sensor it is. 1251 + 1252 +(0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C) 1253 + 756 756 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 757 -|(% style="background-color:# d9e2f3; color:#0070c0; width:154px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:269px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Response**1255 +|(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response 758 758 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0 759 759 OK 760 760 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK 761 761 |(% style="background-color:#f2f2f2; width:154px" %)((( 1260 + 1261 + 762 762 AT+PROBE=000A 763 763 )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK 764 764 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK ... ... @@ -765,63 +765,66 @@ 765 765 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK 766 766 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK 767 767 768 - (% style="color:blue" %)**Downlink Command: 0x08**1268 +Downlink Command: 0x08 769 769 770 770 Format: Command Code (0x08) followed by 2 bytes. 771 771 772 -* Example 1: Downlink Payload: 080003 **~-~-->**AT+PROBE=0003773 -* Example 2: Downlink Payload: 080101 **~-~-->**AT+PROBE=01011272 +* Example 1: Downlink Payload: 080003 ~-~--> AT+PROBE=0003 1273 +* Example 2: Downlink Payload: 080101 ~-~--> AT+PROBE=0101 774 774 1275 +=== 3.3.5 Multiple collections are one uplink (Since firmware V1.1) === 775 775 776 776 777 - ===3.3.5Multiplecollectionsare one uplink(SincefirmwareV1.1) ===1278 +Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time. 778 778 1280 +AT Command: AT +STDC 779 779 780 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time. 781 - 782 -(% style="color:blue" %)**AT Command: AT** **+STDC** 783 - 784 784 AT+STDC=aa,bb,bb 785 785 786 -(% style="color:#037691" %)**aa:**(%%) 787 -**0:** means disable this function and use TDC to send packets. 788 -**1:** means enable this function, use the method of multiple acquisitions to send packets. 789 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535 790 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120 1284 +aa: 1285 +0: means disable this function and use TDC to send packets. 1286 +1: means that the function is enabled to send packets by collecting VDC data for multiple times. 1287 +2: means that the function is enabled to send packets by collecting IDC data for multiple times. 1288 +bb: Each collection interval (s), the value is 1~~65535 1289 +cc: the number of collection times, the value is 1~~120 791 791 792 792 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 793 -|(% style="background-color:# d9e2f3; color:#0070c0; width:160px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:215px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Response**1292 +|(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response 794 794 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18 795 795 OK 796 796 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)((( 1296 + 1297 + 797 797 Attention:Take effect after ATZ 798 798 799 799 OK 800 800 ))) 801 801 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)((( 1303 + 1304 + 802 802 Use the TDC interval to send packets.(default) 803 803 804 804 805 805 )))|(% style="background-color:#f2f2f2" %)((( 1309 + 1310 + 806 806 Attention:Take effect after ATZ 807 807 808 808 OK 809 809 ))) 810 810 811 - (% style="color:blue" %)**Downlink Command: 0xAE**1316 +Downlink Command: 0xAE 812 812 813 -Format: Command Code (0x 08) followed by5bytes.1318 +Format: Command Code (0xAE) followed by 4 bytes. 814 814 815 -* Example 1: Downlink Payload: AE 01 02 58 12 **~-~-->**AT+STDC=1,600,181320 +* Example 1: Downlink Payload: AE 01 02 58 12 ~-~--> AT+STDC=1,600,18 816 816 817 - 818 - 819 819 = 4. Battery & Power Consumption = 820 820 821 821 822 -PS-LB use sER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.1325 +PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace. 823 823 824 -[[ **Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .1327 +[[Battery Info & Power Consumption Analyze>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 825 825 826 826 827 827 = 5. OTA firmware update = ... ... @@ -851,6 +851,34 @@ 851 851 When downloading the images, choose the required image file for download. 852 852 853 853 1357 +== 6.4 How to measure the depth of other liquids other than water? == 1358 + 1359 + 1360 +Test the current values at the depth of different liquids and convert them to a linear scale. 1361 +Replace its ratio with the ratio of water to current in the decoder. 1362 + 1363 +Example: 1364 + 1365 +Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m. 1366 + 1367 +Calculate scale factor: 1368 +Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294 1369 + 1370 +Calculation formula: 1371 + 1372 +Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height 1373 + 1374 +Actual calculations: 1375 + 1376 +Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726 1377 + 1378 +Error: 1379 + 1380 +0.009810726 1381 + 1382 + 1383 +[[image:image-20240329175044-1.png]] 1384 + 854 854 = 7. Troubleshooting = 855 855 856 856 == 7.1 Water Depth Always shows 0 in payload == ... ... @@ -868,17 +868,17 @@ 868 868 = 8. Order Info = 869 869 870 870 871 -[[image:image-20230131153105-4.png]] 872 872 1403 +[[image:image-20241021093209-1.png]] 873 873 874 874 = 9. Packing Info = 875 875 876 876 877 - (% style="color:#037691" %)**Package Includes**:1408 +Package Includes: 878 878 879 -* PS-LB LoRaWAN Pressure Sensor 1410 +* PS-LB or PS-LS LoRaWAN Pressure Sensor 880 880 881 - (% style="color:#037691" %)**Dimension and weight**:1412 +Dimension and weight: 882 882 883 883 * Device Size: cm 884 884 * Device Weight: g ... ... @@ -885,8 +885,6 @@ 885 885 * Package Size / pcs : cm 886 886 * Weight / pcs : g 887 887 888 - 889 - 890 890 = 10. Support = 891 891 892 892 ... ... @@ -893,5 +893,3 @@ 893 893 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 894 894 895 895 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]. 896 - 897 -
- image-20240109154009-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +297.0 KB - Content
- image-20240109154121-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +414.4 KB - Content
- image-20240109154227-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +342.4 KB - Content
- image-20240109154731-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +511.6 KB - Content
- image-20240109160445-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.8 KB - Content
- image-20240109160800-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +60.1 KB - Content
- image-20240109172423-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +62.3 KB - Content
- image-20240329175044-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Bei - Size
-
... ... @@ -1,0 +1,1 @@ 1 +55.2 KB - Content
- image-20240511174954-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +65.9 KB - Content
- image-20240513093957-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +320.4 KB - Content
- image-20240513094047-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +62.7 KB - Content
- image-20240513094054-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +201.1 KB - Content
- image-20240513095921-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +130.4 KB - Content
- image-20240513095927-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.0 KB - Content
- image-20240513100129-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +130.4 KB - Content
- image-20240513100135-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.0 KB - Content
- image-20240817150702-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Bei - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.4 KB - Content
- image-20241021093209-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +52.1 KB - Content
- image-20250116175954-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +68.6 KB - Content
- image-20250116180030-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.2 KB - Content
- image-20250117104812-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.7 KB - Content
- image-20250117104827-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +74.6 KB - Content
- image-20250117104837-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.7 KB - Content
- image-20250117104847-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.2 KB - Content
- image-20250401102131-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +64.7 KB - Content
- image-20250401163530-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +44.9 KB - Content
- image-20250401163539-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +31.1 KB - Content
- image-20250401163826-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +18.9 KB - Content
- image-20250401163906-4.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +181.6 KB - Content