Last modified by Xiaoling on 2025/07/10 16:21

From version 60.2
edited by Xiaoling
on 2023/06/01 08:37
Change comment: There is no comment for this version
To version 42.12
edited by Xiaoling
on 2023/01/31 15:55
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -PS-LB --LoRaWAN Air Water Pressure Sensor User Manual
1 +PS-LB -- LoRaWAN Air Water Pressure Sensor User Manual
Content
... ... @@ -16,33 +16,22 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 -(((
20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 -)))
19 +The Dragino PS-LB series sensors are **(% style="color:blue" %)LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
22 22  
23 -(((
24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 -)))
21 +The PS-LB series sensors include **(% style="color:blue" %)Thread Installation Type**(%%) and **(% style="color:blue" %)Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
26 26  
27 -(((
28 28  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 32  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 -)))
34 34  
35 -(((
36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 -)))
27 +PS-LB is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
38 38  
39 -(((
40 40  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 -)))
42 42  
43 43  [[image:1675071321348-194.png]]
44 44  
45 45  
34 +
46 46  == 1.2 ​Features ==
47 47  
48 48  
... ... @@ -58,44 +58,42 @@
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * 8500mAh Battery for long term use
61 -* Controllable 3.3v,5v and 12v output to power external sensor
62 62  
63 -(% style="display:none" %) (%%)
64 64  
65 65  == 1.3 Specification ==
66 66  
67 67  
68 -(% style="color:#037691" %)**Micro Controller:**
55 +**(% style="color:#037691" %)Micro Controller:**
69 69  
70 70  * MCU: 48Mhz ARM
71 71  * Flash: 256KB
72 72  * RAM: 64KB
73 73  
74 -(% style="color:#037691" %)**Common DC Characteristics:**
61 +**(% style="color:#037691" %)Common DC Characteristics:**
75 75  
76 76  * Supply Voltage: 2.5v ~~ 3.6v
77 77  * Operating Temperature: -40 ~~ 85°C
78 78  
79 -(% style="color:#037691" %)**LoRa Spec:**
66 +**(% style="color:#037691" %)LoRa Spec:**
80 80  
81 -* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz,Band 2 (LF): 410 ~~ 528 Mhz
68 +* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
82 82  * Max +22 dBm constant RF output vs.
83 83  * RX sensitivity: down to -139 dBm.
84 84  * Excellent blocking immunity
85 85  
86 -(% style="color:#037691" %)**Current Input Measuring :**
73 +**(% style="color:#037691" %)Current Input Measuring :**
87 87  
88 88  * Range: 0 ~~ 20mA
89 89  * Accuracy: 0.02mA
90 90  * Resolution: 0.001mA
91 91  
92 -(% style="color:#037691" %)**Voltage Input Measuring:**
79 +**(% style="color:#037691" %)Voltage Input Measuring:**
93 93  
94 94  * Range: 0 ~~ 30v
95 95  * Accuracy: 0.02v
96 96  * Resolution: 0.001v
97 97  
98 -(% style="color:#037691" %)**Battery:**
85 +**(% style="color:#037691" %)Battery:**
99 99  
100 100  * Li/SOCI2 un-chargeable battery
101 101  * Capacity: 8500mAh
... ... @@ -103,11 +103,12 @@
103 103  * Max continuously current: 130mA
104 104  * Max boost current: 2A, 1 second
105 105  
106 -(% style="color:#037691" %)**Power Consumption**
93 +**(% style="color:#037691" %)Power Consumption**
107 107  
108 108  * Sleep Mode: 5uA @ 3.3v
109 109  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
110 110  
98 +
111 111  == 1.4 Probe Types ==
112 112  
113 113  === 1.4.1 Thread Installation Type ===
... ... @@ -126,6 +126,7 @@
126 126  * Operating temperature: -20℃~~60℃
127 127  * Connector Type: Various Types, see order info
128 128  
117 +
129 129  === 1.4.2 Immersion Type ===
130 130  
131 131  
... ... @@ -135,20 +135,25 @@
135 135  * Measuring Range: Measure range can be customized, up to 100m.
136 136  * Accuracy: 0.2% F.S
137 137  * Long-Term Stability: ±0.2% F.S / Year
127 +* Overload 200% F.S
128 +* Zero Temperature Drift: ±2% F.S)
129 +* FS Temperature Drift: ±2% F.S
138 138  * Storage temperature: -30℃~~80℃
139 -* Operating temperature: 0℃~~50
131 +* Operating temperature: -40℃~~85℃
140 140  * Material: 316 stainless steels
141 141  
134 +
142 142  == 1.5 Probe Dimension ==
143 143  
144 144  
145 145  
139 +
146 146  == 1.6 Application and Installation ==
147 147  
148 148  === 1.6.1 Thread Installation Type ===
149 149  
150 150  
151 -(% style="color:blue" %)**Application:**
145 +**(% style="color:blue" %)Application:**
152 152  
153 153  * Hydraulic Pressure
154 154  * Petrochemical Industry
... ... @@ -166,7 +166,7 @@
166 166  === 1.6.2 Immersion Type ===
167 167  
168 168  
169 -(% style="color:blue" %)**Application:**
163 +**(% style="color:blue" %)Application:**
170 170  
171 171  Liquid & Water Pressure / Level detect.
172 172  
... ... @@ -185,9 +185,9 @@
185 185  == 1.7 Sleep mode and working mode ==
186 186  
187 187  
188 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
182 +**(% style="color:blue" %)Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
189 189  
190 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
184 +**(% style="color:blue" %)Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
191 191  
192 192  
193 193  == 1.8 Button & LEDs ==
... ... @@ -196,19 +196,24 @@
196 196  [[image:1675071855856-879.png]]
197 197  
198 198  
199 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
200 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
201 -|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
202 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
193 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
194 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action**
195 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
196 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **(% style="color:blue" %)blue led** (%%)will blink once.
197 +
203 203  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
204 204  )))
205 -|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
206 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
207 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
200 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
201 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:#037691" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
202 +
203 +**(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
204 +
208 208  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
209 209  )))
210 -|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB-NA is in Deep Sleep Mode.
207 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
211 211  
209 +
210 +
212 212  == 1.9 Pin Mapping ==
213 213  
214 214  
... ... @@ -233,6 +233,8 @@
233 233  == 1.11 Mechanical ==
234 234  
235 235  
235 +
236 +
236 236  [[image:1675143884058-338.png]]
237 237  
238 238  
... ... @@ -247,9 +247,10 @@
247 247  == 2.1 How it works ==
248 248  
249 249  
250 -The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
251 +The PS-LB is configured as **(% style="color:#037691" %)LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
251 251  
252 252  
254 +
253 253  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
254 254  
255 255  
... ... @@ -262,48 +262,59 @@
262 262  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
263 263  
264 264  
265 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
267 +**(% style="color:blue" %)Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
266 266  
267 267  Each PS-LB is shipped with a sticker with the default device EUI as below:
268 268  
269 -[[image:image-20230426085320-1.png||height="234" width="504"]]
271 +[[image:image-20230131134744-2.jpeg]]
270 270  
271 271  
274 +
272 272  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
273 273  
274 274  
275 -(% style="color:blue" %)**Register the device**
278 +**(% style="color:blue" %)Register the device**
276 276  
277 277  [[image:1675144099263-405.png]]
278 278  
279 279  
280 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
283 +**(% style="color:blue" %)Add APP EUI and DEV EUI**
281 281  
282 282  [[image:1675144117571-832.png]]
283 283  
284 284  
285 -(% style="color:blue" %)**Add APP EUI in the application**
288 +**(% style="color:blue" %)Add APP EUI in the application**
286 286  
287 287  
288 288  [[image:1675144143021-195.png]]
289 289  
290 290  
291 -(% style="color:blue" %)**Add APP KEY**
294 +**(% style="color:blue" %)Add APP KEY**
292 292  
293 293  [[image:1675144157838-392.png]]
294 294  
295 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
298 +**(% style="color:blue" %)Step 2:**(%%) Activate on PS-LB
296 296  
297 297  
298 298  Press the button for 5 seconds to activate the PS-LB.
299 299  
300 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
303 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:blue" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. **(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
301 301  
302 302  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
303 303  
304 304  
308 +
305 305  == 2.3 ​Uplink Payload ==
306 306  
311 +
312 +Uplink payloads have two types:
313 +
314 +* Distance Value: Use FPORT=2
315 +* Other control commands: Use other FPORT fields.
316 +
317 +The application server should parse the correct value based on FPORT settings.
318 +
319 +
307 307  === 2.3.1 Device Status, FPORT~=5 ===
308 308  
309 309  
... ... @@ -312,10 +312,10 @@
312 312  Users can also use the downlink command(0x26 01) to ask PS-LB to resend this uplink.
313 313  
314 314  
315 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
316 -|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
317 -|(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
318 -|(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
328 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
329 +|(% colspan="6" %)**Device Status (FPORT=5)**
330 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
331 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
319 319  
320 320  Example parse in TTNv3
321 321  
... ... @@ -322,11 +322,11 @@
322 322  [[image:1675144504430-490.png]]
323 323  
324 324  
325 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
338 +**(% style="color:#037691" %)Sensor Model**(%%): For PS-LB, this value is 0x16
326 326  
327 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
340 +**(% style="color:#037691" %)Firmware Version**(%%): 0x0100, Means: v1.0.0 version
328 328  
329 -(% style="color:#037691" %)**Frequency Band**:
342 +**(% style="color:#037691" %)Frequency Band**:
330 330  
331 331  *0x01: EU868
332 332  
... ... @@ -357,7 +357,7 @@
357 357  *0x0e: MA869
358 358  
359 359  
360 -(% style="color:#037691" %)**Sub-Band**:
373 +**(% style="color:#037691" %)Sub-Band**:
361 361  
362 362  AU915 and US915:value 0x00 ~~ 0x08
363 363  
... ... @@ -366,7 +366,7 @@
366 366  Other Bands: Always 0x00
367 367  
368 368  
369 -(% style="color:#037691" %)**Battery Info**:
382 +**(% style="color:#037691" %)Battery Info**:
370 370  
371 371  Check the battery voltage.
372 372  
... ... @@ -381,15 +381,16 @@
381 381  Uplink payload includes in total 9 bytes.
382 382  
383 383  
384 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
385 -|(% style="background-color:#d9e2f3; width:97px" %)(((
397 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
398 +|(% style="width:97px" %)(((
386 386  **Size(bytes)**
387 -)))|(% style="background-color:#d9e2f3; width:48px" %)**2**|(% style="background-color:#d9e2f3; width:71px" %)**2**|(% style="background-color:#d9e2f3; width:98px" %)**2**|(% style="background-color:#d9e2f3; width:73px" %)**2**|(% style="background-color:#d9e2f3; width:122px" %)**1**
388 -|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
400 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1**
401 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>path:#Probe_Model]]|0 ~~ 20mA value|[[0 ~~~~ 30v value>>path:#Voltage_30v]]|[[IN1 &IN2 Interrupt  flag>>path:#Int_pin]]
389 389  
390 390  [[image:1675144608950-310.png]]
391 391  
392 392  
406 +
393 393  === 2.3.3 Battery Info ===
394 394  
395 395  
... ... @@ -403,41 +403,35 @@
403 403  === 2.3.4 Probe Model ===
404 404  
405 405  
406 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
420 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
407 407  
408 408  
409 -**For example.**
423 +For example.
410 410  
411 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
412 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Part Number**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Probe Used**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4~~20mA scale**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Example: 12mA meaning**
413 -|(% style="background-color:#f2f2f2" %)PS-LB-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
414 -|(% style="background-color:#f2f2f2" %)PS-LB-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
415 -|(% style="background-color:#f2f2f2" %)PS-LB-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
425 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
426 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
427 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
428 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
416 416  
417 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
430 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
418 418  
419 419  
420 420  === 2.3.5 0~~20mA value (IDC_IN) ===
421 421  
422 422  
423 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
436 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
424 424  
425 -(% style="color:#037691" %)**Example**:
438 +**(% style="color:#037691" %)Example**:
426 426  
427 427  27AE(H) = 10158 (D)/1000 = 10.158mA.
428 428  
429 429  
430 -Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
431 -
432 -[[image:image-20230225154759-1.png||height="408" width="741"]]
433 -
434 -
435 435  === 2.3.6 0~~30V value ( pin VDC_IN) ===
436 436  
437 437  
438 438  Measure the voltage value. The range is 0 to 30V.
439 439  
440 -(% style="color:#037691" %)**Example**:
448 +**(% style="color:#037691" %)Example**:
441 441  
442 442  138E(H) = 5006(D)/1000= 5.006V
443 443  
... ... @@ -447,45 +447,27 @@
447 447  
448 448  IN1 and IN2 are used as digital input pins.
449 449  
450 -(% style="color:#037691" %)**Example**:
458 +**(% style="color:#037691" %)Example**:
451 451  
452 -09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
460 +09 (H) :(0x09&0x08)>>3=1    IN1 pin is high level.
453 453  
454 -09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
462 +09 (H) :(0x09&0x04)>>2=0    IN2 pin is low level.
455 455  
456 456  
457 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
465 +This data field shows if this packet is generated by **Interrupt Pin** or not. [[Click here>>path:#Int_mod]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
458 458  
459 -(% style="color:#037691" %)**Example:**
467 +**(% style="color:#037691" %)Example:**
460 460  
461 -09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
469 +09 (H) : (0x09&0x02)>>1=1    The level of the interrupt pin.
462 462  
463 -09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
471 +09 (H) : 0x09&0x01=1              0x00: Normal uplink packet.
464 464  
465 465  0x01: Interrupt Uplink Packet.
466 466  
467 467  
468 -=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 ===
476 +=== 2.3.8 ​Decode payload in The Things Network ===
469 469  
470 470  
471 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:508.222px" %)
472 -|(% style="background-color:#d9e2f3; width:94px" %)(((
473 -**Size(bytes)**
474 -)))|(% style="background-color:#d9e2f3; width:43px" %)**2**|(% style="background-color:#d9e2f3; width:367px" %)**n**
475 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
476 -Voltage value, each 2 bytes is a set of voltage values.
477 -)))
478 -
479 -[[image:image-20230220171300-1.png||height="207" width="863"]]
480 -
481 -Multiple sets of data collected are displayed in this form:
482 -
483 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
484 -
485 -
486 -=== 2.3.9 ​Decode payload in The Things Network ===
487 -
488 -
489 489  While using TTN network, you can add the payload format to decode the payload.
490 490  
491 491  
... ... @@ -507,9 +507,9 @@
507 507  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
508 508  
509 509  
510 -(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
500 +**(% style="color:blue" %)Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
511 511  
512 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
502 +**(% style="color:blue" %)Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
513 513  
514 514  
515 515  [[image:1675144951092-237.png]]
... ... @@ -518,9 +518,9 @@
518 518  [[image:1675144960452-126.png]]
519 519  
520 520  
521 -(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
511 +**(% style="color:blue" %)Step 3:**(%%) Create an account or log in Datacake.
522 522  
523 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
513 +**(% style="color:#blue" %)Step 4:** (%%)Create PS-LB product.
524 524  
525 525  [[image:1675145004465-869.png]]
526 526  
... ... @@ -529,10 +529,11 @@
529 529  
530 530  
531 531  
522 +
532 532  [[image:1675145029119-717.png]]
533 533  
534 534  
535 -(% style="color:blue" %)**Step 5: **(%%)add payload decode
526 +**(% style="color:blue" %)Step 5: **(%%)add payload decode
536 536  
537 537  [[image:1675145051360-659.png]]
538 538  
... ... @@ -540,6 +540,7 @@
540 540  [[image:1675145060812-420.png]]
541 541  
542 542  
534 +
543 543  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
544 544  
545 545  
... ... @@ -562,302 +562,355 @@
562 562  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
563 563  
564 564  
565 -= 3. Configure PS-LB =
566 566  
567 -== 3.1 Configure Methods ==
558 += 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
568 568  
569 569  
570 -PS-LB-NA supports below configure method:
561 +Use can configure PS-LB via AT Command or LoRaWAN Downlink.
571 571  
572 -* AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
573 -* AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
574 -* LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
563 +* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
564 +* LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
575 575  
576 -== 3.2 General Commands ==
577 577  
567 +There are two kinds of commands to configure PS-LB, they are:
578 578  
569 +* **General Commands**.
570 +
579 579  These commands are to configure:
580 580  
581 581  * General system settings like: uplink interval.
582 582  * LoRaWAN protocol & radio related command.
583 583  
584 -They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
576 +They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
585 585  
586 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
578 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
587 587  
588 588  
589 -== 3.3 Commands special design for PS-LB ==
581 +* **Commands special design for PS-LB**
590 590  
591 -
592 592  These commands only valid for PS-LB, as below:
593 593  
594 594  
595 -=== 3.3.1 Set Transmit Interval Time ===
586 +== 3.1 Set Transmit Interval Time ==
596 596  
597 597  
598 598  Feature: Change LoRaWAN End Node Transmit Interval.
599 599  
600 -(% style="color:blue" %)**AT Command: AT+TDC**
591 +**AT Command: AT+TDC**
601 601  
602 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
603 -|=(% style="width: 160px; background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 160px; background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Response**
604 -|(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
593 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
594 +|**Command Example**|**Function**|**Response**
595 +|AT+TDC=?|Show current transmit Interval|(((
605 605  30000
597 +
606 606  OK
599 +
607 607  the interval is 30000ms = 30s
608 608  )))
609 -|(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
602 +|AT+TDC=60000|Set Transmit Interval|(((
610 610  OK
604 +
611 611  Set transmit interval to 60000ms = 60 seconds
612 612  )))
613 613  
614 -(% style="color:blue" %)**Downlink Command: 0x01**
608 +**Downlink Command: 0x01**
615 615  
616 616  Format: Command Code (0x01) followed by 3 bytes time value.
617 617  
618 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
612 +If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
619 619  
620 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
621 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
614 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
615 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
622 622  
623 -=== 3.3.2 Set Interrupt Mode ===
624 624  
618 +== 3.2 Set Interrupt Mode ==
625 625  
620 +
626 626  Feature, Set Interrupt mode for GPIO_EXIT.
627 627  
628 -(% style="color:blue" %)**AT Command: AT+INTMOD**
623 +**AT Command: AT+INTMOD**
629 629  
630 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
631 -|=(% style="width: 154px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Response**
632 -|(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
625 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
626 +|**Command Example**|**Function**|**Response**
627 +|AT+INTMOD=?|Show current interrupt mode|(((
633 633  0
629 +
634 634  OK
635 -the mode is 0 =Disable Interrupt
631 +
632 +the mode is 0 = No interruption
636 636  )))
637 -|(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
634 +|AT+INTMOD=2|(((
638 638  Set Transmit Interval
639 -0. (Disable Interrupt),
640 -~1. (Trigger by rising and falling edge)
641 -2. (Trigger by falling edge)
642 -3. (Trigger by rising edge)
643 -)))|(% style="background-color:#f2f2f2; width:157px" %)OK
644 644  
645 -(% style="color:blue" %)**Downlink Command: 0x06**
637 +~1. (Disable Interrupt),
646 646  
639 +2. (Trigger by rising and falling edge),
640 +
641 +3. (Trigger by falling edge)
642 +
643 +4. (Trigger by rising edge)
644 +)))|OK
645 +
646 +**Downlink Command: 0x06**
647 +
647 647  Format: Command Code (0x06) followed by 3 bytes.
648 648  
649 649  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
650 650  
651 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
652 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
652 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
653 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
653 653  
654 -=== 3.3.3 Set the output time ===
655 655  
656 656  
657 +== 3.3 Set the output time ==
658 +
659 +
657 657  Feature, Control the output 3V3 , 5V or 12V.
658 658  
659 -(% style="color:blue" %)**AT Command: AT+3V3T**
662 +**AT Command: AT+3V3T**
660 660  
661 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
662 -|=(% style="width: 154px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 201px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 116px;background-color:#D9E2F3;color:#0070C0" %)**Response**
663 -|(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
664 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
665 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**
666 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
664 664  0
668 +
665 665  OK
666 666  )))
667 -|(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
671 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
668 668  OK
673 +
669 669  default setting
670 670  )))
671 -|(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
676 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
672 672  OK
678 +
679 +
673 673  )))
674 -|(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
681 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
675 675  OK
683 +
684 +
676 676  )))
677 677  
678 -(% style="color:blue" %)**AT Command: AT+5VT**
679 679  
680 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
681 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 114px;background-color:#D9E2F3;color:#0070C0" %)**Response**
682 -|(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
688 +**AT Command: AT+5VT**
689 +
690 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
691 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**
692 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
683 683  0
694 +
684 684  OK
685 685  )))
686 -|(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
697 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
687 687  OK
699 +
688 688  default setting
689 689  )))
690 -|(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
702 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
691 691  OK
704 +
705 +
692 692  )))
693 -|(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
707 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
694 694  OK
709 +
710 +
695 695  )))
696 696  
697 -(% style="color:blue" %)**AT Command: AT+12VT**
698 698  
699 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
700 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 199px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 83px;background-color:#D9E2F3;color:#0070C0" %)**Response**
701 -|(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
714 +**AT Command: AT+12VT**
715 +
716 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
717 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response**
718 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
702 702  0
720 +
703 703  OK
704 704  )))
705 -|(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
706 -|(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
723 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
724 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
707 707  OK
726 +
727 +
708 708  )))
709 709  
710 -(% style="color:blue" %)**Downlink Command: 0x07**
711 711  
731 +**Downlink Command: 0x07**
732 +
712 712  Format: Command Code (0x07) followed by 3 bytes.
713 713  
714 714  The first byte is which power, the second and third bytes are the time to turn on.
715 715  
716 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
717 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
718 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
719 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
720 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
721 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
737 +* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
738 +* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
739 +* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
740 +* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
741 +* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
742 +* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
722 722  
723 -=== 3.3.4 Set the Probe Model ===
724 724  
725 725  
726 -Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
746 +== 3.4 Set the Probe Model ==
727 727  
728 -(% style="color:blue" %)**AT Command: AT** **+PROBE**
729 729  
730 -AT+PROBE=aabb
749 +**AT Command: AT** **+PROBE**
731 731  
732 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
751 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
752 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response**
753 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
754 +0
733 733  
734 -When aa=01, it is the pressure mode, which converts the current into a pressure value;
756 +OK
757 +)))
758 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
759 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
760 +OK
735 735  
736 -bb represents which type of pressure sensor it is.
737 -
738 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
739 -
740 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
741 -|(% style="background-color:#d9e2f3; color:#0070c0; width:154px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:269px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Response**
742 -|(% style="background-color:#f2f2f2; width:154px" %)AT +PROBE =?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
762 +
763 +)))
764 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
743 743  OK
744 -|(% style="background-color:#f2f2f2; width:154px" %)AT +PROBE =0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
745 -|(% style="background-color:#f2f2f2; width:154px" %)(((
746 -AT +PROBE =000A
747 747  
748 748  
749 -)))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
750 -|(% style="background-color:#f2f2f2; width:154px" %)AT +PROBE =0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
751 -|(% style="background-color:#f2f2f2; width:154px" %)AT +PROBE =0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
768 +)))
752 752  
753 -(% style="color:blue" %)**Downlink Command: 0x08**
770 +**Downlink Command: 0x08**
754 754  
755 755  Format: Command Code (0x08) followed by 2 bytes.
756 756  
757 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
758 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
774 +* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
775 +* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
759 759  
760 -=== 3.3.5 Multiple collections are one uplink(Since firmware V1.1) ===
761 761  
762 762  
763 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
779 += 4. Battery & how to replace =
764 764  
765 -(% style="color:blue" %)**AT Command: AT** **+STDC**
781 +== 4.1 Battery Type ==
766 766  
767 -AT+STDC=aa,bb,bb
768 768  
769 -(% style="color:#037691" %)**aa:**(%%)
770 -**0:** means disable this function and use TDC to send packets.
771 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
772 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
773 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
784 +PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
774 774  
775 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
776 -|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:215px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Response**
777 -|(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
778 -OK
779 -|(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
780 -Attention:Take effect after ATZ
781 781  
782 -OK
783 -)))
784 -|(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
785 -Use the TDC interval to send packets.(default)
787 +The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
786 786  
787 -
788 -)))|(% style="background-color:#f2f2f2" %)(((
789 -Attention:Take effect after ATZ
789 +[[image:1675146710956-626.png]]
790 790  
791 -OK
792 -)))
793 793  
794 -(% style="color:blue" %)**Downlink Command: 0xAE**
792 +Minimum Working Voltage for the PS-LB:
795 795  
796 -Format: Command Code (0x08) followed by 5 bytes.
794 +PS-LB:  2.45v ~~ 3.6v
797 797  
798 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
799 799  
800 -= 4. Battery & Power Consumption =
797 +== 4.2 Replace Battery ==
801 801  
802 802  
803 -PS-LB-NA uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
800 +Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
804 804  
805 -[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
802 +And make sure the positive and negative pins match.
806 806  
807 807  
808 -= 5. OTA firmware update =
805 +== 4.3 Power Consumption Analyze ==
809 809  
810 810  
811 -Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
808 +Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
812 812  
813 813  
814 -= 6. FAQ =
811 +Instruction to use as below:
815 815  
816 -== 6.1 How to use AT Command via UART to access device? ==
817 817  
814 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
818 818  
819 -See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
816 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
820 820  
821 821  
822 -== 6.2 How to update firmware via UART port? ==
819 +**Step 2:** Open it and choose
823 823  
821 +* Product Model
822 +* Uplink Interval
823 +* Working Mode
824 824  
825 -See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
825 +And the Life expectation in difference case will be shown on the right.
826 826  
827 +[[image:1675146895108-304.png]]
827 827  
828 -== 6.3 How to change the LoRa Frequency Bands/Region? ==
829 829  
830 +The battery related documents as below:
830 830  
831 -You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
832 -When downloading the images, choose the required image file for download. ​
832 +* [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
833 +* [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
834 +* [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
833 833  
836 +[[image:image-20230131145708-3.png]]
834 834  
835 -= 7. Order Info =
836 836  
839 +=== 4.3.1 ​Battery Note ===
837 837  
838 -[[image:image-20230131153105-4.png]]
839 839  
842 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
840 840  
841 -= 8. Troubleshooting =
842 842  
843 -== 8.1 Water Depth Always shows 0 in payload ==
845 +=== 4.3.2 Replace the battery ===
844 844  
845 845  
846 -If your device's IDC_intput_mA is normal, but your reading always shows 0, please refer to the following points:
848 +You can change the battery in the PS-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
847 847  
848 -~1. Please set it to mod1
849 -2. Please set the command [[AT+PROBE>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB%20--%20LoRaWAN%20Pressure%20Sensor/#H3.3.4SettheProbeModel]] according to the model of your sensor
850 -3. Check the connection status of the sensor
850 +The default battery pack of PS-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
851 851  
852 852  
853 += 5. Remote Configure device =
854 +
855 +== 5.1 Connect via BLE ==
856 +
857 +
858 +Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
859 +
860 +
861 +== 5.2 AT Command Set ==
862 +
863 +
864 +
865 += 6. OTA firmware update =
866 +
867 +
868 +Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
869 +
870 +
871 += 7. FAQ =
872 +
873 +== 7.1 How to use AT Command to access device? ==
874 +
875 +
876 +See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
877 +
878 +
879 +== 7.2 How to update firmware via UART port? ==
880 +
881 +
882 +See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
883 +
884 +
885 +== 7.3 How to change the LoRa Frequency Bands/Region? ==
886 +
887 +
888 +You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
889 +When downloading the images, choose the required image file for download. ​
890 +
891 +
892 += 8. Order Info =
893 +
894 +
895 +[[image:image-20230131153105-4.png]]
896 +
897 +
853 853  = 9. ​Packing Info =
854 854  
855 855  
856 -(% style="color:#037691" %)**Package Includes**:
901 +**Package Includes**:
857 857  
858 858  * PS-LB LoRaWAN Pressure Sensor
859 859  
860 -(% style="color:#037691" %)**Dimension and weight**:
905 +**Dimension and weight**:
861 861  
862 862  * Device Size: cm
863 863  * Device Weight: g
... ... @@ -864,11 +864,12 @@
864 864  * Package Size / pcs : cm
865 865  * Weight / pcs : g
866 866  
912 +
913 +
867 867  = 10. Support =
868 868  
869 869  
870 870  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
918 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
871 871  
872 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].
873 -
874 874  
image-20230201090514-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
image-20230222174559-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -19.4 KB
Content
image-20230225154759-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -468.9 KB
Content
image-20230426085320-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -190.0 KB
Content