Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/07/10 16:21
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 33 added, 0 removed)
- image-20231120110833-1.png
- image-20231120110949-2.png
- image-20231120111036-3.png
- image-20231120111226-4.png
- image-20240109154009-1.png
- image-20240109154121-2.png
- image-20240109154227-3.png
- image-20240109154731-4.png
- image-20240109160445-5.png
- image-20240109160800-6.png
- image-20240109172423-7.png
- image-20240329175044-1.png
- image-20240511174954-1.png
- image-20240513093957-1.png
- image-20240513094047-2.png
- image-20240513094054-3.png
- image-20240513095921-4.png
- image-20240513095927-5.png
- image-20240513100129-6.png
- image-20240513100135-7.png
- image-20240817150702-1.png
- image-20241021093209-1.png
- image-20250116175954-1.png
- image-20250116180030-2.png
- image-20250117104812-1.png
- image-20250117104827-2.png
- image-20250117104837-3.png
- image-20250117104847-4.png
- image-20250401102131-1.png
- image-20250401163530-1.jpeg
- image-20250401163539-2.jpeg
- image-20250401163826-3.jpeg
- image-20250401163906-4.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -PS-LB --LoRaWAN Air Water Pressure Sensor User Manual 1 +PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual - Content
-
... ... @@ -1,9 +1,17 @@ 1 - [[image:image-20230131115217-1.png]]1 + 2 2 3 3 4 +(% style="text-align:center" %) 5 +[[image:image-20240109154731-4.png||height="671" width="945"]] 4 4 5 -**Table of Contents:** 6 6 8 + 9 + 10 + 11 + 12 + 13 +**Table of Contents :** 14 + 7 7 {{toc/}} 8 8 9 9 ... ... @@ -17,27 +17,27 @@ 17 17 18 18 19 19 ((( 20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 28 +The Dragino PS-LB/LS series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB/LS can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 21 21 ))) 22 22 23 23 ((( 24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 32 +The PS-LB/LS series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 25 25 ))) 26 26 27 27 ((( 28 -The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 36 +The LoRa wireless technology used in PS-LB/LS allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 29 ))) 30 30 31 31 ((( 32 -PS-LB supports BLE configure and wireless OTA update which make user easy to use. 40 +PS-LB/LS supports BLE configure and wireless OTA update which make user easy to use. 33 33 ))) 34 34 35 35 ((( 36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 44 +PS-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + Li-ion battery **(%%), it is designed for long term use up to 5 years. 37 37 ))) 38 38 39 39 ((( 40 -Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 48 +Each PS-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 41 41 ))) 42 42 43 43 [[image:1675071321348-194.png]] ... ... @@ -57,11 +57,10 @@ 57 57 * Support wireless OTA update firmware 58 58 * Uplink on periodically 59 59 * Downlink to change configure 60 -* 8500mAh Battery for long term use 61 61 * Controllable 3.3v,5v and 12v output to power external sensor 69 +* 8500mAh Li/SOCl2 Battery (PS-LB) 70 +* Solar panel + 3000mAh Li-ion battery (PS-LS) 62 62 63 -(% style="display:none" %) (%%) 64 - 65 65 == 1.3 Specification == 66 66 67 67 ... ... @@ -73,7 +73,7 @@ 73 73 74 74 (% style="color:#037691" %)**Common DC Characteristics:** 75 75 76 -* Supply Voltage: 2.5v ~~ 3.6v 83 +* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v 77 77 * Operating Temperature: -40 ~~ 85°C 78 78 79 79 (% style="color:#037691" %)**LoRa Spec:** ... ... @@ -129,26 +129,34 @@ 129 129 === 1.4.2 Immersion Type === 130 130 131 131 132 -[[image: 1675071521308-426.png]]139 +[[image:image-20240109160445-5.png||height="221" width="166"]] 133 133 134 134 * Immersion Type, Probe IP Level: IP68 135 135 * Measuring Range: Measure range can be customized, up to 100m. 136 136 * Accuracy: 0.2% F.S 137 137 * Long-Term Stability: ±0.2% F.S / Year 138 -* Storage temperature: -30 ℃~~80℃139 -* Operating temperature: 0 ℃~~50℃145 +* Storage temperature: -30°C~~80°C 146 +* Operating temperature: 0°C~~50°C 140 140 * Material: 316 stainless steels 141 141 142 -== 1. 5Probe Dimension ==149 +=== 1.4.3 Wireless Differential Air Pressure Sensor === 143 143 151 +[[image:image-20240511174954-1.png||height="215" width="215"]] 144 144 153 +* Measuring Range: -100KPa~~0~~100KPa(Optional measuring range). 154 +* Accuracy: 0.5% F.S, resolution is 0.05%. 155 +* Overload: 300% F.S 156 +* Zero temperature drift: ±0.03%F.S/°C 157 +* Operating temperature: -20°C~~60°C 158 +* Storage temperature: -20°C~~60°C 159 +* Compensation temperature: 0~~50°C 145 145 146 -== 1. 6Application and Installation ==161 +== 1.5 Application and Installation == 147 147 148 -=== 1. 6.1 Thread Installation Type ===163 +=== 1.5.1 Thread Installation Type === 149 149 150 150 151 - (% style="color:blue" %)**Application:**166 +Application: 152 152 153 153 * Hydraulic Pressure 154 154 * Petrochemical Industry ... ... @@ -163,10 +163,10 @@ 163 163 [[image:1675071670469-145.png]] 164 164 165 165 166 -=== 1. 6.2 Immersion Type ===181 +=== 1.5.2 Immersion Type === 167 167 168 168 169 - (% style="color:blue" %)**Application:**184 +Application: 170 170 171 171 Liquid & Water Pressure / Level detect. 172 172 ... ... @@ -173,52 +173,87 @@ 173 173 [[image:1675071725288-579.png]] 174 174 175 175 176 - TheImmersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.191 +Below is the wiring to for connect the probe to the device. 177 177 193 +The Immersion Type Sensor has different variant which defined by Ixx. For example, this means two points: 178 178 195 +* Cable Length: 10 Meters 196 +* Water Detect Range: 0 ~~ 10 Meters. 197 + 179 179 [[image:1675071736646-450.png]] 180 180 181 181 182 182 [[image:1675071776102-240.png]] 183 183 203 +Size of immersion type water depth sensor: 184 184 185 - == 1.7 Sleepmoded workingmode==205 +[[image:image-20250401102131-1.png||height="268" width="707"]] 186 186 187 187 188 - (%style="color:blue"%)**Deep Sleep Mode: **(%%)Sensordoesn'thaveany LoRaWAN activate.This modeisused forstorageandshipping tosave batterylife.208 +=== 1.5.3 Wireless Differential Air Pressure Sensor === 189 189 190 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 191 191 211 +Application: 192 192 193 - ==1.8Button &LEDs==213 +Indoor Air Control & Filter clogging Detect. 194 194 215 +[[image:image-20240513100129-6.png]] 195 195 196 -[[image: 1675071855856-879.png]]217 +[[image:image-20240513100135-7.png]] 197 197 198 198 220 +Below is the wiring to for connect the probe to the device. 221 + 222 +[[image:image-20240513093957-1.png]] 223 + 224 + 225 +Size of wind pressure transmitter: 226 + 227 +[[image:image-20240513094047-2.png]] 228 + 229 +Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm. 230 + 231 + 232 +== 1.6 Sleep mode and working mode == 233 + 234 + 235 +Deep Sleep Mode: Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 236 + 237 +Working Mode: In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 238 + 239 + 240 +== 1.7 Button & LEDs == 241 + 242 + 243 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]] 244 + 199 199 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 200 -|=(% style="width: 167px;background-color:# D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**246 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action 201 201 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)((( 202 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 248 + 249 + 250 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once. 203 203 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 204 204 ))) 205 205 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)((( 206 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 207 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 254 + 255 + 256 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. 257 +Green led will solidly turn on for 5 seconds after joined in network. 208 208 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 209 209 ))) 210 -|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %) (% style="color:red" %)**Red led**(%%)will solid on for 5 seconds. Means PS-LB-NAis in Deep Sleep Mode.260 +|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 211 211 212 -== 1. 9Pin Mapping ==262 +== 1.8 Pin Mapping == 213 213 214 214 215 215 [[image:1675072568006-274.png]] 216 216 217 217 218 -== 1. 10BLE connection ==268 +== 1.9 BLE connection == 219 219 220 220 221 -PS-LB support BLE remote configure. 271 +PS-LB/LS support BLE remote configure. 222 222 223 223 224 224 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -230,24 +230,26 @@ 230 230 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 231 231 232 232 233 -== 1.1 1Mechanical ==283 +== 1.10 Mechanical == 234 234 285 +=== 1.10.1 for LB version === 235 235 236 -[[image:1675143884058-338.png]] 237 237 288 +[[image:image-20250401163530-1.jpeg]] 238 238 239 -[[image:1675143899218-599.png]] 240 240 291 +=== 1.10.2 for LS version === 241 241 242 -[[image:1675143909447-639.png]] 243 243 294 +[[image:image-20250401163539-2.jpeg]] 244 244 245 -= 2. Configure PS-LB to connect to LoRaWAN network = 246 246 297 += 2. Configure PS-LB/LS to connect to LoRaWAN network = 298 + 247 247 == 2.1 How it works == 248 248 249 249 250 -The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%)mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.302 +The PS-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 251 251 252 252 253 253 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -255,7 +255,6 @@ 255 255 256 256 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 257 257 258 - 259 259 [[image:1675144005218-297.png]] 260 260 261 261 ... ... @@ -262,9 +262,9 @@ 262 262 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 263 263 264 264 265 - (% style="color:blue" %)**Step 1:**(%%)Create a device in TTN with the OTAA keys from PS-LB.316 +Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS. 266 266 267 -Each PS-LB is shipped with a sticker with the default device EUI as below: 318 +Each PS-LB/LS is shipped with a sticker with the default device EUI as below: 268 268 269 269 [[image:image-20230426085320-1.png||height="234" width="504"]] 270 270 ... ... @@ -272,32 +272,32 @@ 272 272 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 273 273 274 274 275 - (% style="color:blue" %)**Register the device**326 +Register the device 276 276 277 277 [[image:1675144099263-405.png]] 278 278 279 279 280 - (% style="color:blue" %)**Add APP EUI and DEV EUI**331 +Add APP EUI and DEV EUI 281 281 282 282 [[image:1675144117571-832.png]] 283 283 284 284 285 - (% style="color:blue" %)**Add APP EUI in the application**336 +Add APP EUI in the application 286 286 287 287 288 288 [[image:1675144143021-195.png]] 289 289 290 290 291 - (% style="color:blue" %)**Add APP KEY**342 +Add APP KEY 292 292 293 293 [[image:1675144157838-392.png]] 294 294 295 - (% style="color:blue" %)**Step 2:**(%%)Activate on PS-LB346 +Step 2: Activate on PS-LB/LS 296 296 297 297 298 -Press the button for 5 seconds to activate the PS-LB. 349 +Press the button for 5 seconds to activate the PS-LB/LS. 299 299 300 - (% style="color:green" %)**Green led**(%%)will fast blink 5 times, device will enter(% style="color:blue" %)**OTA mode**(%%)for 3 seconds. And then start to JOIN LoRaWAN network.(% style="color:green" %)**Green led**(%%)will solidly turn on for 5 seconds after joined in network.351 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network. 301 301 302 302 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 303 303 ... ... @@ -307,15 +307,14 @@ 307 307 === 2.3.1 Device Status, FPORT~=5 === 308 308 309 309 310 -Include device configure status. Once PS-LB Joined the network, it will uplink this message to the server. 361 +Include device configure status. Once PS-LB/LS Joined the network, it will uplink this message to the server. 311 311 312 -Users can also use the downlink command(0x26 01) to ask PS-LB to resend this uplink. 363 +Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink. 313 313 314 - 315 315 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 316 -|(% colspan="6" style="background-color:# d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**317 -|(% style="background-color:#f2f2f2; width:103px" %) **Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**318 -|(% style="background-color:#f2f2f2; width:103px" %) **Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT366 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)Device Status (FPORT=5) 367 +|(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2 368 +|(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT 319 319 320 320 Example parse in TTNv3 321 321 ... ... @@ -322,11 +322,11 @@ 322 322 [[image:1675144504430-490.png]] 323 323 324 324 325 - (% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16375 +Sensor Model: For PS-LB/LS, this value is 0x16 326 326 327 - (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version377 +Firmware Version: 0x0100, Means: v1.0.0 version 328 328 329 - (% style="color:#037691" %)**Frequency Band**:379 +Frequency Band: 330 330 331 331 *0x01: EU868 332 332 ... ... @@ -357,7 +357,7 @@ 357 357 *0x0e: MA869 358 358 359 359 360 - (% style="color:#037691" %)**Sub-Band**:410 +Sub-Band: 361 361 362 362 AU915 and US915:value 0x00 ~~ 0x08 363 363 ... ... @@ -366,7 +366,7 @@ 366 366 Other Bands: Always 0x00 367 367 368 368 369 - (% style="color:#037691" %)**Battery Info**:419 +Battery Info: 370 370 371 371 Check the battery voltage. 372 372 ... ... @@ -381,12 +381,14 @@ 381 381 Uplink payload includes in total 9 bytes. 382 382 383 383 384 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 385 -|(% style="background-color:#d9e2f3; width:97px" %)((( 386 -**Size(bytes)** 387 -)))|(% style="background-color:#d9e2f3; width:48px" %)**2**|(% style="background-color:#d9e2f3; width:71px" %)**2**|(% style="background-color:#d9e2f3; width:98px" %)**2**|(% style="background-color:#d9e2f3; width:73px" %)**2**|(% style="background-color:#d9e2f3; width:122px" %)**1** 388 -|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] 434 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 435 +|(% style="background-color:#4f81bd; color:white; width:97px" %)((( 436 + 389 389 438 +Size(bytes) 439 +)))|(% style="background-color:#4f81bd; color:white; width:50px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1 440 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] 441 + 390 390 [[image:1675144608950-310.png]] 391 391 392 392 ... ... @@ -393,7 +393,7 @@ 393 393 === 2.3.3 Battery Info === 394 394 395 395 396 -Check the battery voltage for PS-LB. 448 +Check the battery voltage for PS-LB/LS. 397 397 398 398 Ex1: 0x0B45 = 2885mV 399 399 ... ... @@ -403,16 +403,16 @@ 403 403 === 2.3.4 Probe Model === 404 404 405 405 406 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 458 +PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 407 407 408 408 409 - **For example.**461 +For example. 410 410 411 411 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 412 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Part Number**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Probe Used**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4~~20mA scale**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Example: 12mA meaning**413 -|(% style="background-color:#f2f2f2" %)PS-LB-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water 414 -|(% style="background-color:#f2f2f2" %)PS-LB-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water 415 -|(% style="background-color:#f2f2f2" %)PS-LB-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure 464 +|(% style="background-color:#4f81bd; color:white" %)Part Number|(% style="background-color:#4f81bd; color:white" %)Probe Used|(% style="background-color:#4f81bd; color:white" %)4~~20mA scale|(% style="background-color:#4f81bd; color:white" %)Example: 12mA meaning 465 +|(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water 466 +|(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water 467 +|(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure 416 416 417 417 The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value. 418 418 ... ... @@ -420,9 +420,9 @@ 420 420 === 2.3.5 0~~20mA value (IDC_IN) === 421 421 422 422 423 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.475 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level. 424 424 425 - (% style="color:#037691" %)**Example**:477 +Example: 426 426 427 427 27AE(H) = 10158 (D)/1000 = 10.158mA. 428 428 ... ... @@ -432,12 +432,12 @@ 432 432 [[image:image-20230225154759-1.png||height="408" width="741"]] 433 433 434 434 435 -=== 2.3.6 0~~30V value ( 487 +=== 2.3.6 0~~30V value (pin VDC_IN) === 436 436 437 437 438 438 Measure the voltage value. The range is 0 to 30V. 439 439 440 - (% style="color:#037691" %)**Example**:492 +Example: 441 441 442 442 138E(H) = 5006(D)/1000= 5.006V 443 443 ... ... @@ -447,7 +447,7 @@ 447 447 448 448 IN1 and IN2 are used as digital input pins. 449 449 450 - (% style="color:#037691" %)**Example**:502 +Example: 451 451 452 452 09 (H): (0x09&0x08)>>3=1 IN1 pin is high level. 453 453 ... ... @@ -454,9 +454,9 @@ 454 454 09 (H): (0x09&0x04)>>2=0 IN2 pin is low level. 455 455 456 456 457 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.509 +This data field shows if this packet is generated by Interrupt Pin or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal. 458 458 459 - (% style="color:#037691" %)**Example:**511 +Example: 460 460 461 461 09 (H): (0x09&0x02)>>1=1 The level of the interrupt pin. 462 462 ... ... @@ -465,14 +465,18 @@ 465 465 0x01: Interrupt Uplink Packet. 466 466 467 467 468 -=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 ===520 +=== 2.3.8 Sensor value, FPORT~=7 === 469 469 470 470 471 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:508.222px" %) 472 -|(% style="background-color:#d9e2f3; width:94px" %)((( 473 -**Size(bytes)** 474 -)))|(% style="background-color:#d9e2f3; width:43px" %)**2**|(% style="background-color:#d9e2f3; width:367px" %)**n** 475 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)((( 523 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %) 524 +|(% style="background-color:#4f81bd; color:white; width:65px" %)((( 525 + 526 + 527 +Size(bytes) 528 +)))|(% style="background-color:#4f81bd; color:white; width:35px" %)2|(% style="background-color:#4f81bd; color:white; width:400px" %)n 529 +|(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)((( 530 + 531 + 476 476 Voltage value, each 2 bytes is a set of voltage values. 477 477 ))) 478 478 ... ... @@ -488,17 +488,16 @@ 488 488 489 489 While using TTN network, you can add the payload format to decode the payload. 490 490 491 - 492 492 [[image:1675144839454-913.png]] 493 493 494 494 495 -PS-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 550 +PS-LB/LS TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 496 496 497 497 498 498 == 2.4 Uplink Interval == 499 499 500 500 501 -The PS-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]] 556 +The PS-LB/LS by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]] 502 502 503 503 504 504 == 2.5 Show Data in DataCake IoT Server == ... ... @@ -506,12 +506,10 @@ 506 506 507 507 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 508 508 564 +Step 1: Be sure that your device is programmed and properly connected to the network at this time. 509 509 510 - (% style="color:blue" %)**Step1:**(%%)Besure that your deviceisprogrammedandproperlyconnected to the networkatthistime.566 +Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 511 511 512 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 513 - 514 - 515 515 [[image:1675144951092-237.png]] 516 516 517 517 ... ... @@ -518,9 +518,9 @@ 518 518 [[image:1675144960452-126.png]] 519 519 520 520 521 - (% style="color:blue" %)**Step 3:**(%%)Create an account or log in Datacake.574 +Step 3: Create an account or log in Datacake. 522 522 523 - (% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.576 +Step 4: Create PS-LB/LS product. 524 524 525 525 [[image:1675145004465-869.png]] 526 526 ... ... @@ -528,11 +528,10 @@ 528 528 [[image:1675145018212-853.png]] 529 529 530 530 531 - 532 532 [[image:1675145029119-717.png]] 533 533 534 534 535 - (% style="color:blue" %)**Step 5:**(%%)add payload decode587 +Step 5: add payload decode 536 536 537 537 [[image:1675145051360-659.png]] 538 538 ... ... @@ -542,34 +542,461 @@ 542 542 543 543 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 544 544 545 - 546 546 [[image:1675145081239-376.png]] 547 547 548 548 549 -== 2.6 F requencyPlans==600 +== 2.6 Datalog Feature (Since V1.1) == 550 550 551 551 552 - ThePS-LBusesOTAA modeandbelowfrequencyplansby default.Ifuserwant touseitwithdifferentfrequencyplan,pleaserefer theAT commandsets.603 +When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot. 553 553 554 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 555 555 606 +=== 2.6.1 Unix TimeStamp === 556 556 557 -== 2.7 Firmware Change Log == 558 558 609 +PS-LB uses Unix TimeStamp format based on 559 559 560 - **Firmwaredownload link:**611 +[[image:image-20250401163826-3.jpeg]] 561 561 613 +Users can get this time from the link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] : 614 + 615 +Below is the converter example: 616 + 617 +[[image:image-20250401163906-4.jpeg]] 618 + 619 + 620 +=== 2.6.2 Set Device Time === 621 + 622 + 623 +There are two ways to set the device's time: 624 + 625 + 626 +~1. Through LoRaWAN MAC Command (Default settings) 627 + 628 +Users need to set SYNCMOD=1 to enable sync time via the MAC command. 629 + 630 +Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]]. 631 + 632 +Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature. 633 + 634 + 635 + 2. Manually Set Time 636 + 637 +Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server. 638 + 639 + 640 +=== 2.6.3 Poll sensor value === 641 + 642 +Users can poll sensor values based on timestamps. Below is the downlink command. 643 + 644 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %) 645 +|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31) 646 +|(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte 647 +|(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)((( 648 + 649 + 650 +Timestamp end 651 +)))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval 652 + 653 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval. 654 + 655 +For example, downlink command[[image:image-20250117104812-1.png]] 656 + 657 +Is to check 2024/12/20 09:34:59 to 2024/12/20 14:34:59's data 658 + 659 +Uplink Internal =5s,means PS-LB will send one packet every 5s. range 5~~255s. 660 + 661 + 662 +=== 2.6.4 Datalog Uplink payload (FPORT~=3) === 663 + 664 + 665 +The Datalog uplinks will use below payload format. 666 + 667 +Retrieval data payload: 668 + 669 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 670 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 671 +Size(bytes) 672 +)))|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)2|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)4 673 +|(% style="width:103px" %)Value|(% style="width:68px" %)((( 674 + 675 + 676 +Probe_mod 677 +)))|(% style="width:104px" %)((( 678 + 679 + 680 +VDC_intput_V 681 +)))|(% style="width:83px" %)((( 682 + 683 + 684 +IDC_intput_mA 685 +)))|(% style="width:201px" %)((( 686 + 687 + 688 +IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status 689 +)))|(% style="width:86px" %)Unix Time Stamp 690 + 691 +IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status: 692 + 693 +[[image:image-20250117104847-4.png]] 694 + 695 + 696 +No ACK Message: 1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature) 697 + 698 +Poll Message Flag: 1: This message is a poll message reply. 699 + 700 +* Poll Message Flag is set to 1. 701 + 702 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands. 703 + 704 +For example, in US915 band, the max payload for different DR is: 705 + 706 +a) DR0: max is 11 bytes so one entry of data 707 + 708 +b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 709 + 710 +c) DR2: total payload includes 11 entries of data 711 + 712 +d) DR3: total payload includes 22 entries of data. 713 + 714 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0 715 + 716 +Example: 717 + 718 +If PS-LB-NA has below data inside Flash: 719 + 720 +[[image:image-20250117104837-3.png]] 721 + 722 + 723 +If user sends below downlink command: 316788D9BF6788DB6305 724 + 725 +Where : Start time: 6788D9BF = time 25/1/16 10:04:47 726 + 727 + Stop time: 6788DB63 = time 25/1/16 10:11:47 728 + 729 + 730 +PA-LB-NA will uplink this payload. 731 + 732 +[[image:image-20250117104827-2.png]] 733 + 734 + 735 +00001B620000406788D9BF 00000D130000406788D9FB 00000D120000406788DA37 00000D110000406788DA73 00000D100000406788DAAF 00000D100000406788DAEB 00000D0F0000406788DB27 00000D100000406788DB63 736 + 737 + 738 +Where the first 11 bytes is for the first entry : 739 + 740 + 741 +0000 0D10 0000 40 6788DB63 742 + 743 + 744 +Probe_mod = 0x0000 = 0000 745 + 746 + 747 +VDC_intput_V = 0x0D10/1000=3.344V 748 + 749 +IDC_intput_mA = 0x0000/1000=0mA 750 + 751 + 752 +IN1_pin_level = (0x40& 0x08)? "High":"Low" = 0(Low) 753 + 754 +IN2_pin_level = (0x40& 0x04)? "High":"Low" = 0(Low) 755 + 756 +Exti_pin_level = (0x40& 0x02)? "High":"Low" = 0(Low) 757 + 758 +Exti_status = (0x40& 0x01)? "True":"False" = 0(False) 759 + 760 + 761 +Unix time is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47 762 + 763 +Its data format is: 764 + 765 +[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],... 766 + 767 +Note: water_deep in the data needs to be converted using decoding to get it. 768 + 769 + 770 +=== 2.6.5 Decoder in TTN V3 === 771 + 772 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]] 773 + 774 +Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 775 + 776 + 777 +== 2.7 Frequency Plans == 778 + 779 + 780 +The PS-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country. 781 + 782 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/a>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 783 + 784 + 785 +== 2.8 Report on Change Feature (Since firmware V1.2) == 786 + 787 +=== 2.8.1 Uplink payload(Enable ROC) === 788 + 789 + 790 +Used to Monitor the IDC and VDC increments, and send ROC uplink when the IDC or VDC changes exceed. 791 + 792 +With ROC enabled, the payload is as follows: 793 + 794 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 795 +|(% style="background-color:#4f81bd; color:white; width:97px" %)((( 796 + 797 + 798 +Size(bytes) 799 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1 800 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)((( 801 + 802 + 803 +[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag 804 +))) 805 + 806 +IN1 &IN2 , Interrupt flag , ROC_flag: 807 + 808 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %) 809 +|(% style="background-color:#4f81bd; color:white; width:50px" %)Size(bit)|(% style="background-color:#4f81bd; color:white; width:60px" %)bit7|(% style="background-color:#4f81bd; color:white; width:62px" %)bit6|(% style="background-color:#4f81bd; color:white; width:62px" %)bit5|(% style="background-color:#4f81bd; color:white; width:65px" %)bit4|(% style="background-color:#4f81bd; color:white; width:56px" %)bit3|(% style="background-color:#4f81bd; color:white; width:55px" %)bit2|(% style="background-color:#4f81bd; color:white; width:55px" %)bit1|(% style="background-color:#4f81bd; color:white; width:50px" %)bit0 810 +|(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status 811 + 812 +* IDC_Roc_flagL 813 + 814 +80 (H): (0x80&0x80)=80(H)=1000 0000(B) bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold. 815 + 816 +60 (H): (0x60&0x80)=0 bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold. 817 + 818 + 819 +* IDC_Roc_flagH 820 + 821 +60 (H): (0x60&0x40)=60(H)=01000 0000(B) bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold. 822 + 823 +80 (H): (0x80&0x40)=0 bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold. 824 + 825 + 826 +* VDC_Roc_flagL 827 + 828 +20 (H): (0x20&0x20)=20(H)=0010 0000(B) bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold. 829 + 830 +90 (H): (0x90&0x20)=0 bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold. 831 + 832 + 833 +* VDC_Roc_flagH 834 + 835 +90 (H): (0x90&0x10)=10(H)=0001 0000(B) bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold. 836 + 837 +20 (H): (0x20&0x10)=0 bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold. 838 + 839 + 840 +* IN1_pin_level & IN2_pin_level 841 + 842 +IN1 and IN2 are used as digital input pins. 843 + 844 +80 (H): (0x80&0x08)=0 IN1 pin is low level. 845 + 846 +80 (H): (0x09&0x04)=0 IN2 pin is low level. 847 + 848 + 849 +* Exti_pin_level &Exti_status 850 + 851 +This data field shows whether the packet is generated by an interrupt pin. 852 + 853 +Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the GPIO_EXTI pin. 854 + 855 +Exti_pin_level: 80 (H): (0x80&0x02)=0 "low", The level of the interrupt pin. 856 + 857 +Exti_status: 80 (H): (0x80&0x01)=0 "False", Normal uplink packet. 858 + 859 + 860 +=== 2.8.2 Set the Report on Change === 861 + 862 + 863 +Feature: Get or Set the Report on Change. 864 + 865 + 866 +==== 2.8.2.1 Wave alarm mode ==== 867 + 868 +Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed. 869 + 870 +* Change value: The amount by which the next detection value increases/decreases relative to the previous detection value. 871 +* Comparison value: A parameter to compare with the latest ROC test. 872 + 873 +AT Command: AT+ROC 874 + 875 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 876 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation 877 +|(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)((( 878 + 879 + 880 +0,0,0,0(default) 881 +OK 882 +))) 883 +|(% colspan="1" rowspan="4" style="width:143px" %)((( 884 + 885 + 886 + 887 + 888 + 889 +AT+ROC=a,b,c,d 890 +)))|(% style="width:154px" %)((( 891 + 892 + 893 + 894 + 895 + 896 + 897 + 898 +a: Enable or disable the ROC 899 +)))|(% style="width:197px" %)((( 900 + 901 + 902 +0: off 903 +1: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. 904 + 905 +2: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]). 906 +))) 907 +|(% style="width:154px" %)b: Set the detection interval|(% style="width:197px" %)((( 908 + 909 + 910 +Range: 0~~65535s 911 +))) 912 +|(% style="width:154px" %)c: Setting the IDC change value|(% style="width:197px" %)Unit: uA 913 +|(% style="width:154px" %)d: Setting the VDC change value|(% style="width:197px" %)Unit: mV 914 + 915 +Example: 916 + 917 +* AT+ROC=0,0,0,0 ~/~/The ROC function is not used. 918 +* AT+ROC=1,60,3000, 500 ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed. 919 +* AT+ROC=1,60,3000,0 ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. 920 +* AT+ROC=2,60,3000,0 ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed. 921 + 922 +Downlink Command: 0x09 aa bb cc dd 923 + 924 +Format: Function code (0x09) followed by 4 bytes. 925 + 926 +aa: 1 byte; Set the wave alarm mode. 927 + 928 +bb: 2 bytes; Set the detection interval. (second) 929 + 930 +cc: 2 bytes; Setting the IDC change threshold. (uA) 931 + 932 +dd: 2 bytes; Setting the VDC change threshold. (mV) 933 + 934 +Example: 935 + 936 +* Downlink Payload: 09 01 00 3C 0B B8 01 F4 ~/~/Equal to AT+ROC=1,60,3000, 500 937 +* Downlink Payload: 09 01 00 3C 0B B8 00 00 ~/~/Equal to AT+ROC=1,60,3000,0 938 +* Downlink Payload: 09 02 00 3C 0B B8 00 00 ~/~/Equal to AT+ROC=2,60,3000,0 939 + 940 +Screenshot of parsing example in TTN: 941 + 942 +* AT+ROC=1,60,3000, 500. 943 + 944 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB-NA--LoRaWAN_Analog_Sensor_User_Manual/WebHome/image-20241019170902-1.png?width=1454&height=450&rev=1.1||alt="image-20241019170902-1.png"]] 945 + 946 + 947 +==== 2.8.2.2 Over-threshold alarm mode ==== 948 + 949 +Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded. 950 + 951 +AT Command: AT+ROC=3,a,b,c,d,e 952 + 953 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 954 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation 955 +|(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)((( 956 + 957 + 958 +0,0,0,0(default) 959 +OK 960 +))) 961 +|(% colspan="1" rowspan="5" style="width:143px" %)((( 962 + 963 + 964 + 965 + 966 + 967 +AT+ROC=3,a,b,c,d,e 968 +)))|(% style="width:160px" %)((( 969 + 970 + 971 +a: Set the detection interval 972 +)))|(% style="width:185px" %)((( 973 + 974 + 975 +Range: 0~~65535s 976 +))) 977 +|(% style="width:160px" %)b: Set the IDC alarm trigger condition|(% style="width:185px" %)((( 978 + 979 + 980 +0: Less than the set IDC threshold, Alarm 981 + 982 +1: Greater than the set IDC threshold, Alarm 983 +))) 984 +|(% style="width:160px" %)((( 985 + 986 + 987 +c: IDC alarm threshold 988 +)))|(% style="width:185px" %)((( 989 + 990 + 991 +Unit: uA 992 +))) 993 +|(% style="width:160px" %)d: Set the VDC alarm trigger condition|(% style="width:185px" %)((( 994 + 995 + 996 +0: Less than the set VDC threshold, Alarm 997 + 998 +1: Greater than the set VDC threshold, Alarm 999 +))) 1000 +|(% style="width:160px" %)e: VDC alarm threshold|(% style="width:185px" %)Unit: mV 1001 + 1002 +Example: 1003 + 1004 +* AT+ROC=3,60,0,3000,0,5000 ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated. 1005 +* AT+ROC=3,180,1,3000,1,5000 ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated. 1006 +* AT+ROC=3,300,0,3000,1,5000 ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated. 1007 + 1008 +Downlink Command: 0x09 03 aa bb cc dd ee 1009 + 1010 +Format: Function code (0x09) followed by 03 and the remaining 5 bytes. 1011 + 1012 +aa: 2 bytes; Set the detection interval.(second) 1013 + 1014 +bb: 1 byte; Set the IDC alarm trigger condition. 1015 + 1016 +cc: 2 bytes; IDC alarm threshold.(uA) 1017 + 1018 + 1019 +dd: 1 byte; Set the VDC alarm trigger condition. 1020 + 1021 +ee: 2 bytes; VDC alarm threshold.(mV) 1022 + 1023 +Example: 1024 + 1025 +* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,0,5000 1026 +* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38 ~/~/Equal to AT+ROC=3,60,1,3000,1,5000 1027 +* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,1,5000 1028 + 1029 +Screenshot of parsing example in TTN: 1030 + 1031 +* AT+ROC=3,60,0,3000,0,5000 1032 + 1033 +[[image:image-20250116180030-2.png]] 1034 + 1035 + 1036 +== 2.9 Firmware Change Log == 1037 + 1038 + 1039 +Firmware download link: 1040 + 562 562 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]] 563 563 564 564 565 -= 3. Configure PS-LB = 1044 += 3. Configure PS-LB/LS = 566 566 567 567 == 3.1 Configure Methods == 568 568 569 569 570 -PS-LB -NAsupports below configure method:1049 +PS-LB/LS supports below configure method: 571 571 572 -* AT Command via Bluetooth Connection ( **Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].1051 +* AT Command via Bluetooth Connection (Recommand Way): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 573 573 * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]]. 574 574 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 575 575 ... ... @@ -586,10 +586,10 @@ 586 586 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 587 587 588 588 589 -== 3.3 Commands special design for PS-LB == 1068 +== 3.3 Commands special design for PS-LB/LS == 590 590 591 591 592 -These commands only valid for PS-LB, as below: 1071 +These commands only valid for PS-LB/LS, as below: 593 593 594 594 595 595 === 3.3.1 Set Transmit Interval Time === ... ... @@ -597,21 +597,25 @@ 597 597 598 598 Feature: Change LoRaWAN End Node Transmit Interval. 599 599 600 - (% style="color:blue" %)**AT Command: AT+TDC**1079 +AT Command: AT+TDC 601 601 602 602 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 603 -|=(% style="width: 160px; background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 160px; background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Response**1082 +|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response 604 604 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)((( 1084 + 1085 + 605 605 30000 606 606 OK 607 607 the interval is 30000ms = 30s 608 608 ))) 609 609 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)((( 1091 + 1092 + 610 610 OK 611 611 Set transmit interval to 60000ms = 60 seconds 612 612 ))) 613 613 614 - (% style="color:blue" %)**Downlink Command: 0x01**1097 +Downlink Command: 0x01 615 615 616 616 Format: Command Code (0x01) followed by 3 bytes time value. 617 617 ... ... @@ -625,16 +625,20 @@ 625 625 626 626 Feature, Set Interrupt mode for GPIO_EXIT. 627 627 628 - (% style="color:blue" %)**AT Command: AT+INTMOD**1111 +AT Command: AT+INTMOD 629 629 630 630 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 631 -|=(% style="width: 154px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Response**1114 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response 632 632 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)((( 1116 + 1117 + 633 633 0 634 634 OK 635 635 the mode is 0 =Disable Interrupt 636 636 ))) 637 637 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)((( 1123 + 1124 + 638 638 Set Transmit Interval 639 639 0. (Disable Interrupt), 640 640 ~1. (Trigger by rising and falling edge) ... ... @@ -642,7 +642,7 @@ 642 642 3. (Trigger by rising edge) 643 643 )))|(% style="background-color:#f2f2f2; width:157px" %)OK 644 644 645 - (% style="color:blue" %)**Downlink Command: 0x06**1132 +Downlink Command: 0x06 646 646 647 647 Format: Command Code (0x06) followed by 3 bytes. 648 648 ... ... @@ -656,76 +656,106 @@ 656 656 657 657 Feature, Control the output 3V3 , 5V or 12V. 658 658 659 - (% style="color:blue" %)**AT Command: AT+3V3T**1146 +AT Command: AT+3V3T 660 660 661 661 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %) 662 -|=(% style="width: 154px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 201px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 116px;background-color:#D9E2F3;color:#0070C0" %)**Response**1149 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response 663 663 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)((( 1151 + 1152 + 664 664 0 665 665 OK 666 666 ))) 667 667 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)((( 1157 + 1158 + 668 668 OK 669 669 default setting 670 670 ))) 671 671 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)((( 1163 + 1164 + 672 672 OK 673 673 ))) 674 674 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)((( 1168 + 1169 + 675 675 OK 676 676 ))) 677 677 678 - (% style="color:blue" %)**AT Command: AT+5VT**1173 +AT Command: AT+5VT 679 679 680 680 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %) 681 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 114px;background-color:#D9E2F3;color:#0070C0" %)**Response**1176 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response 682 682 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)((( 1178 + 1179 + 683 683 0 684 684 OK 685 685 ))) 686 686 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)((( 1184 + 1185 + 687 687 OK 688 688 default setting 689 689 ))) 690 690 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)((( 1190 + 1191 + 691 691 OK 692 692 ))) 693 693 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)((( 1195 + 1196 + 694 694 OK 695 695 ))) 696 696 697 - (% style="color:blue" %)**AT Command: AT+12VT**1200 +AT Command: AT+12VT 698 698 699 699 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %) 700 -|=(% style="width: 156px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 199px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 83px;background-color:#D9E2F3;color:#0070C0" %)**Response**1203 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response 701 701 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)((( 1205 + 1206 + 702 702 0 703 703 OK 704 704 ))) 705 705 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK 706 706 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)((( 1212 + 1213 + 707 707 OK 708 708 ))) 709 709 710 - (% style="color:blue" %)**Downlink Command: 0x07**1217 +Downlink Command: 0x07 711 711 712 712 Format: Command Code (0x07) followed by 3 bytes. 713 713 714 714 The first byte is which power, the second and third bytes are the time to turn on. 715 715 716 -* Example 1: Downlink Payload: 070101F4 **~-~-->**AT+3V3T=500717 -* Example 2: Downlink Payload: 0701FFFF **~-~-->**AT+3V3T=65535718 -* Example 3: Downlink Payload: 070203E8 **~-~-->**AT+5VT=1000719 -* Example 4: Downlink Payload: 07020000 **~-~-->**AT+5VT=0720 -* Example 5: Downlink Payload: 070301F4 **~-~-->**AT+12VT=500721 -* Example 6: Downlink Payload: 07030000 **~-~-->**AT+12VT=01223 +* Example 1: Downlink Payload: 070101F4 ~-~--> AT+3V3T=500 1224 +* Example 2: Downlink Payload: 0701FFFF ~-~--> AT+3V3T=65535 1225 +* Example 3: Downlink Payload: 070203E8 ~-~--> AT+5VT=1000 1226 +* Example 4: Downlink Payload: 07020000 ~-~--> AT+5VT=0 1227 +* Example 5: Downlink Payload: 070301F4 ~-~--> AT+12VT=500 1228 +* Example 6: Downlink Payload: 07030000 ~-~--> AT+12VT=0 722 722 1230 +Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds. 1231 + 1232 +Therefore, the corresponding downlink command is increased by one byte to five bytes. 1233 + 1234 +Example: 1235 + 1236 +* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 01 01 D4 C0 ~-~--> AT+3V3T=120000 1237 +* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 02 01 86 A0 ~-~--> AT+5VT=100000 1238 +* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 03 01 38 80 ~-~--> AT+12VT=80000 1239 + 723 723 === 3.3.4 Set the Probe Model === 724 724 725 725 726 726 Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value. 727 727 728 - (% style="color:blue" %)**AT Command: AT****+PROBE**1245 +AT Command: AT +PROBE 729 729 730 730 AT+PROBE=aabb 731 731 ... ... @@ -737,72 +737,86 @@ 737 737 738 738 (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C) 739 739 1257 +When aa=02, it is the Differential Pressure Sensor , which converts the current into a pressure value; 1258 + 1259 +bb represents which type of pressure sensor it is. 1260 + 1261 +(0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C) 1262 + 740 740 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 741 -|(% style="background-color:# d9e2f3; color:#0070c0; width:154px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:269px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Response**742 -|(% style="background-color:#f2f2f2; width:154px" %)AT 1264 +|(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response 1265 +|(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0 743 743 OK 744 -|(% style="background-color:#f2f2f2; width:154px" %)AT 1267 +|(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK 745 745 |(% style="background-color:#f2f2f2; width:154px" %)((( 746 -AT +PROBE =000A 747 - 748 748 1270 + 1271 +AT+PROBE=000A 749 749 )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK 750 -|(% style="background-color:#f2f2f2; width:154px" %)AT +PROBE =0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK 751 -|(% style="background-color:#f2f2f2; width:154px" %)AT +PROBE =0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK 1273 +|(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK 1274 +|(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK 1275 +|(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK 752 752 753 - (% style="color:blue" %)**Downlink Command: 0x08**1277 +Downlink Command: 0x08 754 754 755 755 Format: Command Code (0x08) followed by 2 bytes. 756 756 757 -* Example 1: Downlink Payload: 080003 **~-~-->**AT+PROBE=0003758 -* Example 2: Downlink Payload: 080101 **~-~-->**AT+PROBE=01011281 +* Example 1: Downlink Payload: 080003 ~-~--> AT+PROBE=0003 1282 +* Example 2: Downlink Payload: 080101 ~-~--> AT+PROBE=0101 759 759 760 -=== 3.3.5 Multiple collections are one uplink (Since firmware V1.1)===1284 +=== 3.3.5 Multiple collections are one uplink (Since firmware V1.1) === 761 761 762 762 763 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time. 1287 +Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time. 764 764 765 - (% style="color:blue" %)**AT Command: AT****+STDC**1289 +AT Command: AT +STDC 766 766 767 767 AT+STDC=aa,bb,bb 768 768 769 -(% style="color:#037691" %)**aa:**(%%) 770 -**0:** means disable this function and use TDC to send packets. 771 -**1:** means enable this function, use the method of multiple acquisitions to send packets. 772 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535 773 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120 1293 +aa: 1294 +0: means disable this function and use TDC to send packets. 1295 +1: means that the function is enabled to send packets by collecting VDC data for multiple times. 1296 +2: means that the function is enabled to send packets by collecting IDC data for multiple times. 1297 +bb: Each collection interval (s), the value is 1~~65535 1298 +cc: the number of collection times, the value is 1~~120 774 774 775 775 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 776 -|(% style="background-color:# d9e2f3; color:#0070c0; width:160px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:215px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Response**1301 +|(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response 777 777 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18 778 778 OK 779 779 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)((( 1305 + 1306 + 780 780 Attention:Take effect after ATZ 781 781 782 782 OK 783 783 ))) 784 784 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)((( 1312 + 1313 + 785 785 Use the TDC interval to send packets.(default) 786 786 787 787 788 788 )))|(% style="background-color:#f2f2f2" %)((( 1318 + 1319 + 789 789 Attention:Take effect after ATZ 790 790 791 791 OK 792 792 ))) 793 793 794 - (% style="color:blue" %)**Downlink Command: 0xAE**1325 +Downlink Command: 0xAE 795 795 796 -Format: Command Code (0x 08) followed by5bytes.1327 +Format: Command Code (0xAE) followed by 4 bytes. 797 797 798 -* Example 1: Downlink Payload: AE 01 02 58 12 **~-~-->**AT+STDC=1,600,181329 +* Example 1: Downlink Payload: AE 01 02 58 12 ~-~--> AT+STDC=1,600,18 799 799 800 800 = 4. Battery & Power Consumption = 801 801 802 802 803 -PS-LB -NAusesER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.1334 +PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace. 804 804 805 -[[ **Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .1336 +[[Battery Info & Power Consumption Analyze>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 806 806 807 807 808 808 = 5. OTA firmware update = ... ... @@ -832,32 +832,62 @@ 832 832 When downloading the images, choose the required image file for download. 833 833 834 834 835 -= 7.OrderInfo =1366 +== 6.4 How to measure the depth of other liquids other than water? == 836 836 837 837 838 -[[image:image-20230131153105-4.png]] 1369 +Test the current values at the depth of different liquids and convert them to a linear scale. 1370 +Replace its ratio with the ratio of water to current in the decoder. 839 839 1372 +Example: 840 840 841 - =8.Troubleshooting=1374 +Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m. 842 842 843 -== 8.1 Water Depth Always shows 0 in payload == 1376 +Calculate scale factor: 1377 +Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294 844 844 1379 +Calculation formula: 845 845 1381 +Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height 1382 + 1383 +Actual calculations: 1384 + 1385 +Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726 1386 + 1387 +Error: 1388 + 1389 +0.009810726 1390 + 1391 + 1392 +[[image:image-20240329175044-1.png]] 1393 + 1394 += 7. Troubleshooting = 1395 + 1396 +== 7.1 Water Depth Always shows 0 in payload == 1397 + 1398 + 846 846 If your device's IDC_intput_mA is normal, but your reading always shows 0, please refer to the following points: 847 847 848 848 ~1. Please set it to mod1 1402 + 849 849 2. Please set the command [[AT+PROBE>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB%20--%20LoRaWAN%20Pressure%20Sensor/#H3.3.4SettheProbeModel]] according to the model of your sensor 1404 + 850 850 3. Check the connection status of the sensor 851 851 852 852 1408 += 8. Order Info = 1409 + 1410 + 1411 + 1412 +[[image:image-20241021093209-1.png]] 1413 + 853 853 = 9. Packing Info = 854 854 855 855 856 - (% style="color:#037691" %)**Package Includes**:1417 +Package Includes: 857 857 858 -* PS-LB LoRaWAN Pressure Sensor 1419 +* PS-LB or PS-LS LoRaWAN Pressure Sensor 859 859 860 - (% style="color:#037691" %)**Dimension and weight**:1421 +Dimension and weight: 861 861 862 862 * Device Size: cm 863 863 * Device Weight: g ... ... @@ -870,5 +870,3 @@ 870 870 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 871 871 872 872 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]. 873 - 874 -
- image-20231120110833-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +255.7 KB - Content
- image-20231120110949-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +217.3 KB - Content
- image-20231120111036-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +273.4 KB - Content
- image-20231120111226-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +340.3 KB - Content
- image-20240109154009-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +297.0 KB - Content
- image-20240109154121-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +414.4 KB - Content
- image-20240109154227-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +342.4 KB - Content
- image-20240109154731-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +511.6 KB - Content
- image-20240109160445-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.8 KB - Content
- image-20240109160800-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +60.1 KB - Content
- image-20240109172423-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +62.3 KB - Content
- image-20240329175044-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Bei - Size
-
... ... @@ -1,0 +1,1 @@ 1 +55.2 KB - Content
- image-20240511174954-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +65.9 KB - Content
- image-20240513093957-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +320.4 KB - Content
- image-20240513094047-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +62.7 KB - Content
- image-20240513094054-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +201.1 KB - Content
- image-20240513095921-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +130.4 KB - Content
- image-20240513095927-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.0 KB - Content
- image-20240513100129-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +130.4 KB - Content
- image-20240513100135-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.0 KB - Content
- image-20240817150702-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Bei - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.4 KB - Content
- image-20241021093209-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +52.1 KB - Content
- image-20250116175954-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +68.6 KB - Content
- image-20250116180030-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.2 KB - Content
- image-20250117104812-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.7 KB - Content
- image-20250117104827-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +74.6 KB - Content
- image-20250117104837-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.7 KB - Content
- image-20250117104847-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.2 KB - Content
- image-20250401102131-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +64.7 KB - Content
- image-20250401163530-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +44.9 KB - Content
- image-20250401163539-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +31.1 KB - Content
- image-20250401163826-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +18.9 KB - Content
- image-20250401163906-4.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +181.6 KB - Content