<
From version < 55.1 >
edited by Bei Jinggeng
on 2023/05/18 10:02
To version < 42.16 >
edited by Xiaoling
on 2023/01/31 16:11
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Bei
1 +XWiki.Xiaoling
Content
... ... @@ -16,33 +16,22 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 -(((
20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 -)))
19 +The Dragino PS-LB series sensors are **(% style="color:blue" %)LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
22 22  
23 -(((
24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 -)))
21 +The PS-LB series sensors include **(% style="color:blue" %)Thread Installation Type**(%%) and **(% style="color:blue" %)Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
26 26  
27 -(((
28 28  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 32  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 -)))
34 34  
35 -(((
36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 -)))
27 +PS-LB is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
38 38  
39 -(((
40 40  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 -)))
42 42  
43 43  [[image:1675071321348-194.png]]
44 44  
45 45  
34 +
46 46  == 1.2 ​Features ==
47 47  
48 48  
... ... @@ -58,24 +58,23 @@
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * 8500mAh Battery for long term use
61 -* Controllable 3.3v,5v and 12v output to power external sensor
62 62  
63 63  
64 64  == 1.3 Specification ==
65 65  
66 66  
67 -(% style="color:#037691" %)**Micro Controller:**
55 +**(% style="color:#037691" %)Micro Controller:**
68 68  
69 69  * MCU: 48Mhz ARM
70 70  * Flash: 256KB
71 71  * RAM: 64KB
72 72  
73 -(% style="color:#037691" %)**Common DC Characteristics:**
61 +**(% style="color:#037691" %)Common DC Characteristics:**
74 74  
75 75  * Supply Voltage: 2.5v ~~ 3.6v
76 76  * Operating Temperature: -40 ~~ 85°C
77 77  
78 -(% style="color:#037691" %)**LoRa Spec:**
66 +**(% style="color:#037691" %)LoRa Spec:**
79 79  
80 80  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
81 81  * Max +22 dBm constant RF output vs.
... ... @@ -82,19 +82,19 @@
82 82  * RX sensitivity: down to -139 dBm.
83 83  * Excellent blocking immunity
84 84  
85 -(% style="color:#037691" %)**Current Input Measuring :**
73 +**(% style="color:#037691" %)Current Input Measuring :**
86 86  
87 87  * Range: 0 ~~ 20mA
88 88  * Accuracy: 0.02mA
89 89  * Resolution: 0.001mA
90 90  
91 -(% style="color:#037691" %)**Voltage Input Measuring:**
79 +**(% style="color:#037691" %)Voltage Input Measuring:**
92 92  
93 93  * Range: 0 ~~ 30v
94 94  * Accuracy: 0.02v
95 95  * Resolution: 0.001v
96 96  
97 -(% style="color:#037691" %)**Battery:**
85 +**(% style="color:#037691" %)Battery:**
98 98  
99 99  * Li/SOCI2 un-chargeable battery
100 100  * Capacity: 8500mAh
... ... @@ -102,7 +102,7 @@
102 102  * Max continuously current: 130mA
103 103  * Max boost current: 2A, 1 second
104 104  
105 -(% style="color:#037691" %)**Power Consumption**
93 +**(% style="color:#037691" %)Power Consumption**
106 106  
107 107  * Sleep Mode: 5uA @ 3.3v
108 108  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
... ... @@ -136,8 +136,11 @@
136 136  * Measuring Range: Measure range can be customized, up to 100m.
137 137  * Accuracy: 0.2% F.S
138 138  * Long-Term Stability: ±0.2% F.S / Year
127 +* Overload 200% F.S
128 +* Zero Temperature Drift: ±2% F.S)
129 +* FS Temperature Drift: ±2% F.S
139 139  * Storage temperature: -30℃~~80℃
140 -* Operating temperature: 0℃~~50
131 +* Operating temperature: -40℃~~85℃
141 141  * Material: 316 stainless steels
142 142  
143 143  
... ... @@ -145,12 +145,13 @@
145 145  
146 146  
147 147  
139 +
148 148  == 1.6 Application and Installation ==
149 149  
150 150  === 1.6.1 Thread Installation Type ===
151 151  
152 152  
153 -(% style="color:blue" %)**Application:**
145 +**(% style="color:blue" %)Application:**
154 154  
155 155  * Hydraulic Pressure
156 156  * Petrochemical Industry
... ... @@ -168,7 +168,7 @@
168 168  === 1.6.2 Immersion Type ===
169 169  
170 170  
171 -(% style="color:blue" %)**Application:**
163 +**(% style="color:blue" %)Application:**
172 172  
173 173  Liquid & Water Pressure / Level detect.
174 174  
... ... @@ -187,9 +187,9 @@
187 187  == 1.7 Sleep mode and working mode ==
188 188  
189 189  
190 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
182 +**(% style="color:blue" %)Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
191 191  
192 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
184 +**(% style="color:blue" %)Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
193 193  
194 194  
195 195  == 1.8 Button & LEDs ==
... ... @@ -198,20 +198,24 @@
198 198  [[image:1675071855856-879.png]]
199 199  
200 200  
201 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
202 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
203 -|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
204 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
193 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
194 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action**
195 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
196 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **(% style="color:blue" %)blue led** (%%)will blink once.
197 +
205 205  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
206 206  )))
207 -|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
208 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
209 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
200 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
201 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:#037691" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
202 +
203 +**(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
204 +
210 210  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
211 211  )))
212 -|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB-NA is in Deep Sleep Mode.
207 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
213 213  
214 214  
210 +
215 215  == 1.9 Pin Mapping ==
216 216  
217 217  
... ... @@ -236,6 +236,8 @@
236 236  == 1.11 Mechanical ==
237 237  
238 238  
235 +
236 +
239 239  [[image:1675143884058-338.png]]
240 240  
241 241  
... ... @@ -250,9 +250,10 @@
250 250  == 2.1 How it works ==
251 251  
252 252  
253 -The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
251 +The PS-LB is configured as **(% style="color:#037691" %)LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
254 254  
255 255  
254 +
256 256  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
257 257  
258 258  
... ... @@ -265,48 +265,59 @@
265 265  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
266 266  
267 267  
268 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
267 +**(% style="color:blue" %)Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
269 269  
270 270  Each PS-LB is shipped with a sticker with the default device EUI as below:
271 271  
272 -[[image:image-20230426085320-1.png||height="234" width="504"]]
271 +[[image:image-20230131134744-2.jpeg]]
273 273  
274 274  
274 +
275 275  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
276 276  
277 277  
278 -(% style="color:blue" %)**Register the device**
278 +**(% style="color:blue" %)Register the device**
279 279  
280 280  [[image:1675144099263-405.png]]
281 281  
282 282  
283 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
283 +**(% style="color:blue" %)Add APP EUI and DEV EUI**
284 284  
285 285  [[image:1675144117571-832.png]]
286 286  
287 287  
288 -(% style="color:blue" %)**Add APP EUI in the application**
288 +**(% style="color:blue" %)Add APP EUI in the application**
289 289  
290 290  
291 291  [[image:1675144143021-195.png]]
292 292  
293 293  
294 -(% style="color:blue" %)**Add APP KEY**
294 +**(% style="color:blue" %)Add APP KEY**
295 295  
296 296  [[image:1675144157838-392.png]]
297 297  
298 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
298 +**(% style="color:blue" %)Step 2:**(%%) Activate on PS-LB
299 299  
300 300  
301 301  Press the button for 5 seconds to activate the PS-LB.
302 302  
303 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
303 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:blue" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. **(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
304 304  
305 305  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
306 306  
307 307  
308 +
308 308  == 2.3 ​Uplink Payload ==
309 309  
311 +
312 +Uplink payloads have two types:
313 +
314 +* Distance Value: Use FPORT=2
315 +* Other control commands: Use other FPORT fields.
316 +
317 +The application server should parse the correct value based on FPORT settings.
318 +
319 +
310 310  === 2.3.1 Device Status, FPORT~=5 ===
311 311  
312 312  
... ... @@ -315,10 +315,10 @@
315 315  Users can also use the downlink command(0x26 01) to ask PS-LB to resend this uplink.
316 316  
317 317  
318 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
319 -|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
320 -|(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
321 -|(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
328 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
329 +|(% colspan="6" %)**Device Status (FPORT=5)**
330 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
331 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
322 322  
323 323  Example parse in TTNv3
324 324  
... ... @@ -325,11 +325,11 @@
325 325  [[image:1675144504430-490.png]]
326 326  
327 327  
328 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
338 +**(% style="color:#037691" %)Sensor Model**(%%): For PS-LB, this value is 0x16
329 329  
330 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
340 +**(% style="color:#037691" %)Firmware Version**(%%): 0x0100, Means: v1.0.0 version
331 331  
332 -(% style="color:#037691" %)**Frequency Band**:
342 +**(% style="color:#037691" %)Frequency Band**:
333 333  
334 334  *0x01: EU868
335 335  
... ... @@ -360,7 +360,7 @@
360 360  *0x0e: MA869
361 361  
362 362  
363 -(% style="color:#037691" %)**Sub-Band**:
373 +**(% style="color:#037691" %)Sub-Band**:
364 364  
365 365  AU915 and US915:value 0x00 ~~ 0x08
366 366  
... ... @@ -369,7 +369,7 @@
369 369  Other Bands: Always 0x00
370 370  
371 371  
372 -(% style="color:#037691" %)**Battery Info**:
382 +**(% style="color:#037691" %)Battery Info**:
373 373  
374 374  Check the battery voltage.
375 375  
... ... @@ -384,15 +384,16 @@
384 384  Uplink payload includes in total 9 bytes.
385 385  
386 386  
387 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
388 -|(% style="background-color:#d9e2f3; width:97px" %)(((
397 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
398 +|(% style="width:97px" %)(((
389 389  **Size(bytes)**
390 -)))|(% style="background-color:#d9e2f3; width:48px" %)**2**|(% style="background-color:#d9e2f3; width:71px" %)**2**|(% style="background-color:#d9e2f3; width:98px" %)**2**|(% style="background-color:#d9e2f3; width:73px" %)**2**|(% style="background-color:#d9e2f3; width:122px" %)**1**
391 -|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
400 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1**
401 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
392 392  
393 393  [[image:1675144608950-310.png]]
394 394  
395 395  
406 +
396 396  === 2.3.3 Battery Info ===
397 397  
398 398  
... ... @@ -406,41 +406,35 @@
406 406  === 2.3.4 Probe Model ===
407 407  
408 408  
409 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
420 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
410 410  
411 411  
412 -**For example.**
423 +For example.
413 413  
414 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
415 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Part Number**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Probe Used**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4~~20mA scale**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Example: 12mA meaning**
416 -|(% style="background-color:#f2f2f2" %)PS-LB-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
417 -|(% style="background-color:#f2f2f2" %)PS-LB-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
418 -|(% style="background-color:#f2f2f2" %)PS-LB-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
425 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
426 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
427 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
428 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
419 419  
420 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
430 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
421 421  
422 422  
423 423  === 2.3.5 0~~20mA value (IDC_IN) ===
424 424  
425 425  
426 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
436 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
427 427  
428 -(% style="color:#037691" %)**Example**:
438 +**(% style="color:#037691" %)Example**:
429 429  
430 430  27AE(H) = 10158 (D)/1000 = 10.158mA.
431 431  
432 432  
433 -Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
434 -
435 -[[image:image-20230225154759-1.png||height="408" width="741"]]
436 -
437 -
438 438  === 2.3.6 0~~30V value ( pin VDC_IN) ===
439 439  
440 440  
441 441  Measure the voltage value. The range is 0 to 30V.
442 442  
443 -(% style="color:#037691" %)**Example**:
448 +**(% style="color:#037691" %)Example**:
444 444  
445 445  138E(H) = 5006(D)/1000= 5.006V
446 446  
... ... @@ -450,45 +450,27 @@
450 450  
451 451  IN1 and IN2 are used as digital input pins.
452 452  
453 -(% style="color:#037691" %)**Example**:
458 +**(% style="color:#037691" %)Example**:
454 454  
455 -09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
460 +09 (H):(0x09&0x08)>>3=1    IN1 pin is high level.
456 456  
457 -09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
462 +09 (H):(0x09&0x04)>>2=0    IN2 pin is low level.
458 458  
459 459  
460 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
465 +This data field shows if this packet is generated by **(% style="color:blue" %)Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
461 461  
462 -(% style="color:#037691" %)**Example:**
467 +**(% style="color:#037691" %)Example:**
463 463  
464 -09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
469 +09 (H):(0x09&0x02)>>1=1    The level of the interrupt pin.
465 465  
466 -09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
471 +09 (H):0x09&0x01=1              0x00: Normal uplink packet.
467 467  
468 468  0x01: Interrupt Uplink Packet.
469 469  
470 470  
471 -=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 ===
476 +=== 2.3.8 ​Decode payload in The Things Network ===
472 472  
473 473  
474 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:508.222px" %)
475 -|(% style="background-color:#d9e2f3; width:94px" %)(((
476 -**Size(bytes)**
477 -)))|(% style="background-color:#d9e2f3; width:43px" %)**2**|(% style="background-color:#d9e2f3; width:367px" %)**n**
478 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
479 -Voltage value, each 2 bytes is a set of voltage values.
480 -)))
481 -
482 -[[image:image-20230220171300-1.png||height="207" width="863"]]
483 -
484 -Multiple sets of data collected are displayed in this form:
485 -
486 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
487 -
488 -
489 -=== 2.3.9 ​Decode payload in The Things Network ===
490 -
491 -
492 492  While using TTN network, you can add the payload format to decode the payload.
493 493  
494 494  
... ... @@ -510,9 +510,9 @@
510 510  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
511 511  
512 512  
513 -(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
500 +**(% style="color:blue" %)Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
514 514  
515 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
502 +**(% style="color:blue" %)Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
516 516  
517 517  
518 518  [[image:1675144951092-237.png]]
... ... @@ -521,9 +521,9 @@
521 521  [[image:1675144960452-126.png]]
522 522  
523 523  
524 -(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
511 +**(% style="color:blue" %)Step 3:**(%%) Create an account or log in Datacake.
525 525  
526 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
513 +**(% style="color:#blue" %)Step 4:** (%%)Create PS-LB product.
527 527  
528 528  [[image:1675145004465-869.png]]
529 529  
... ... @@ -532,10 +532,11 @@
532 532  
533 533  
534 534  
522 +
535 535  [[image:1675145029119-717.png]]
536 536  
537 537  
538 -(% style="color:blue" %)**Step 5: **(%%)add payload decode
526 +**(% style="color:blue" %)Step 5: **(%%)add payload decode
539 539  
540 540  [[image:1675145051360-659.png]]
541 541  
... ... @@ -543,6 +543,7 @@
543 543  [[image:1675145060812-420.png]]
544 544  
545 545  
534 +
546 546  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
547 547  
548 548  
... ... @@ -565,20 +565,19 @@
565 565  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
566 566  
567 567  
568 -= 3. Configure PS-LB =
569 569  
570 -== 3.1 Configure Methods ==
558 += 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
571 571  
572 572  
573 -PS-LB-NA supports below configure method:
561 +Use can configure PS-LB via AT Command or LoRaWAN Downlink.
574 574  
575 -* AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
576 -* AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
577 -* LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
563 +* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
564 +* LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
578 578  
579 579  
580 -== 3.2 General Commands ==
567 +There are two kinds of commands to configure PS-LB, they are:
581 581  
569 +* **General Commands**.
582 582  
583 583  These commands are to configure:
584 584  
... ... @@ -585,256 +585,316 @@
585 585  * General system settings like: uplink interval.
586 586  * LoRaWAN protocol & radio related command.
587 587  
588 -They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
576 +They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
589 589  
590 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
578 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
591 591  
592 592  
593 -== 3.3 Commands special design for PS-LB ==
581 +* **Commands special design for PS-LB**
594 594  
595 -
596 596  These commands only valid for PS-LB, as below:
597 597  
598 598  
599 -=== 3.3.1 Set Transmit Interval Time ===
586 +== 3.1 Set Transmit Interval Time ==
600 600  
601 601  
602 602  Feature: Change LoRaWAN End Node Transmit Interval.
603 603  
604 -(% style="color:blue" %)**AT Command: AT+TDC**
591 +**AT Command: AT+TDC**
605 605  
606 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
607 -|=(% style="width: 160px; background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 160px; background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Response**
608 -|(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
593 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
594 +|**Command Example**|**Function**|**Response**
595 +|AT+TDC=?|Show current transmit Interval|(((
609 609  30000
597 +
610 610  OK
599 +
611 611  the interval is 30000ms = 30s
612 612  )))
613 -|(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
602 +|AT+TDC=60000|Set Transmit Interval|(((
614 614  OK
604 +
615 615  Set transmit interval to 60000ms = 60 seconds
616 616  )))
617 617  
618 -(% style="color:blue" %)**Downlink Command: 0x01**
608 +**Downlink Command: 0x01**
619 619  
620 620  Format: Command Code (0x01) followed by 3 bytes time value.
621 621  
622 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
612 +If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
623 623  
624 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
625 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
614 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
615 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
626 626  
627 627  
628 -=== 3.3.2 Set Interrupt Mode ===
618 +== 3.2 Set Interrupt Mode ==
629 629  
630 630  
631 631  Feature, Set Interrupt mode for GPIO_EXIT.
632 632  
633 -(% style="color:blue" %)**AT Command: AT+INTMOD**
623 +**AT Command: AT+INTMOD**
634 634  
635 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
636 -|=(% style="width: 154px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Response**
637 -|(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
625 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
626 +|**Command Example**|**Function**|**Response**
627 +|AT+INTMOD=?|Show current interrupt mode|(((
638 638  0
629 +
639 639  OK
640 -the mode is 0 =Disable Interrupt
631 +
632 +the mode is 0 = No interruption
641 641  )))
642 -|(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
634 +|AT+INTMOD=2|(((
643 643  Set Transmit Interval
644 -0. (Disable Interrupt),
645 -~1. (Trigger by rising and falling edge)
646 -2. (Trigger by falling edge)
647 -3. (Trigger by rising edge)
648 -)))|(% style="background-color:#f2f2f2; width:157px" %)OK
649 649  
650 -(% style="color:blue" %)**Downlink Command: 0x06**
637 +~1. (Disable Interrupt),
651 651  
639 +2. (Trigger by rising and falling edge),
640 +
641 +3. (Trigger by falling edge)
642 +
643 +4. (Trigger by rising edge)
644 +)))|OK
645 +
646 +**Downlink Command: 0x06**
647 +
652 652  Format: Command Code (0x06) followed by 3 bytes.
653 653  
654 654  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
655 655  
656 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
657 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
652 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
653 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
658 658  
659 659  
660 -=== 3.3.3 Set the output time ===
661 661  
657 +== 3.3 Set the output time ==
662 662  
659 +
663 663  Feature, Control the output 3V3 , 5V or 12V.
664 664  
665 -(% style="color:blue" %)**AT Command: AT+3V3T**
662 +**AT Command: AT+3V3T**
666 666  
667 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
668 -|=(% style="width: 154px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 201px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 116px;background-color:#D9E2F3;color:#0070C0" %)**Response**
669 -|(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
664 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
665 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**
666 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
670 670  0
668 +
671 671  OK
672 672  )))
673 -|(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
671 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
674 674  OK
673 +
675 675  default setting
676 676  )))
677 -|(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
676 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
678 678  OK
678 +
679 +
679 679  )))
680 -|(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
681 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
681 681  OK
683 +
684 +
682 682  )))
683 683  
684 -(% style="color:blue" %)**AT Command: AT+5VT**
685 685  
686 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
687 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 114px;background-color:#D9E2F3;color:#0070C0" %)**Response**
688 -|(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
688 +**AT Command: AT+5VT**
689 +
690 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
691 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**
692 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
689 689  0
694 +
690 690  OK
691 691  )))
692 -|(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
697 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
693 693  OK
699 +
694 694  default setting
695 695  )))
696 -|(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
702 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
697 697  OK
704 +
705 +
698 698  )))
699 -|(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
707 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
700 700  OK
709 +
710 +
701 701  )))
702 702  
703 -(% style="color:blue" %)**AT Command: AT+12VT**
704 704  
705 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
706 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 199px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 83px;background-color:#D9E2F3;color:#0070C0" %)**Response**
707 -|(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
714 +**AT Command: AT+12VT**
715 +
716 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
717 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response**
718 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
708 708  0
720 +
709 709  OK
710 710  )))
711 -|(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
712 -|(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
723 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
724 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
713 713  OK
726 +
727 +
714 714  )))
715 715  
716 -(% style="color:blue" %)**Downlink Command: 0x07**
717 717  
731 +**Downlink Command: 0x07**
732 +
718 718  Format: Command Code (0x07) followed by 3 bytes.
719 719  
720 720  The first byte is which power, the second and third bytes are the time to turn on.
721 721  
722 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
723 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
724 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
725 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
726 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
727 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
737 +* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
738 +* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
739 +* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
740 +* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
741 +* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
742 +* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
728 728  
729 729  
730 -=== 3.3.4 Set the Probe Model ===
731 731  
746 +== 3.4 Set the Probe Model ==
732 732  
733 -Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
734 734  
735 -(% style="color:blue" %)**AT Command: AT** **+PROBE**
749 +**AT Command: AT** **+PROBE**
736 736  
737 -AT+PROBE=aabb
751 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
752 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response**
753 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
754 +0
738 738  
739 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
756 +OK
757 +)))
758 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
759 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
760 +OK
740 740  
741 -When aa=01, it is the pressure mode, which converts the current into a pressure value;
742 -
743 -bb represents which type of pressure sensor it is.
744 -
745 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
746 -
747 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
748 -|(% style="background-color:#d9e2f3; color:#0070c0; width:154px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:269px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Response**
749 -|(% style="background-color:#f2f2f2; width:154px" %)AT +PROBE =?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
762 +
763 +)))
764 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
750 750  OK
751 -|(% style="background-color:#f2f2f2; width:154px" %)AT +PROBE =0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
752 -|(% style="background-color:#f2f2f2; width:154px" %)(((
753 -AT +PROBE =000A
754 754  
755 755  
756 -)))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
757 -|(% style="background-color:#f2f2f2; width:154px" %)AT +PROBE =0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
758 -|(% style="background-color:#f2f2f2; width:154px" %)AT +PROBE =0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
768 +)))
759 759  
760 -(% style="color:blue" %)**Downlink Command: 0x08**
770 +**Downlink Command: 0x08**
761 761  
762 762  Format: Command Code (0x08) followed by 2 bytes.
763 763  
764 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
765 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
774 +* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
775 +* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
766 766  
767 767  
768 -=== 3.3.5 Multiple collections are one uplink(Since firmware V1.1) ===
769 769  
779 += 4. Battery & how to replace =
770 770  
771 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
781 +== 4.1 Battery Type ==
772 772  
773 -(% style="color:blue" %)**AT Command: AT** **+STDC**
774 774  
775 -AT+STDC=aa,bb,bb
784 +PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
776 776  
777 -(% style="color:#037691" %)**aa:**(%%)
778 -**0:** means disable this function and use TDC to send packets.
779 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
780 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
781 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
782 782  
783 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
784 -|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:215px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Response**
785 -|(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
786 -OK
787 -|(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
788 -Attention:Take effect after ATZ
787 +The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
789 789  
790 -OK
791 -)))
792 -|(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
793 -Use the TDC interval to send packets.(default)
789 +[[image:1675146710956-626.png]]
794 794  
795 -
796 -)))|(% style="background-color:#f2f2f2" %)(((
797 -Attention:Take effect after ATZ
798 798  
799 -OK
800 -)))
792 +Minimum Working Voltage for the PS-LB:
801 801  
802 -(% style="color:blue" %)**Downlink Command: 0xAE**
794 +PS-LB:  2.45v ~~ 3.6v
803 803  
804 -Format: Command Code (0x08) followed by 5 bytes.
805 805  
806 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
797 +== 4.2 Replace Battery ==
807 807  
808 808  
809 -= 4. Battery & Power Consumption =
800 +Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
810 810  
802 +And make sure the positive and negative pins match.
811 811  
812 -PS-LB-NA uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
813 813  
814 -[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
805 +== 4.3 Power Consumption Analyze ==
815 815  
816 816  
817 -= 5. OTA firmware update =
808 +Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
818 818  
819 819  
811 +Instruction to use as below:
812 +
813 +
814 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
815 +
816 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
817 +
818 +
819 +**Step 2:** Open it and choose
820 +
821 +* Product Model
822 +* Uplink Interval
823 +* Working Mode
824 +
825 +And the Life expectation in difference case will be shown on the right.
826 +
827 +[[image:1675146895108-304.png]]
828 +
829 +
830 +The battery related documents as below:
831 +
832 +* [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
833 +* [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
834 +* [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
835 +
836 +[[image:image-20230131145708-3.png]]
837 +
838 +
839 +=== 4.3.1 ​Battery Note ===
840 +
841 +
842 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
843 +
844 +
845 +=== 4.3.2 Replace the battery ===
846 +
847 +
848 +You can change the battery in the PS-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
849 +
850 +The default battery pack of PS-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
851 +
852 +
853 += 5. Remote Configure device =
854 +
855 +== 5.1 Connect via BLE ==
856 +
857 +
858 +Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
859 +
860 +
861 +== 5.2 AT Command Set ==
862 +
863 +
864 +
865 += 6. OTA firmware update =
866 +
867 +
820 820  Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
821 821  
822 822  
823 -= 6. FAQ =
871 += 7. FAQ =
824 824  
825 -== 6.1 How to use AT Command via UART to access device? ==
873 +== 7.1 How to use AT Command to access device? ==
826 826  
827 827  
828 828  See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
829 829  
830 830  
831 -== 6.2 How to update firmware via UART port? ==
879 +== 7.2 How to update firmware via UART port? ==
832 832  
833 833  
834 834  See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
835 835  
836 836  
837 -== 6.3 How to change the LoRa Frequency Bands/Region? ==
885 +== 7.3 How to change the LoRa Frequency Bands/Region? ==
838 838  
839 839  
840 840  You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
... ... @@ -841,27 +841,20 @@
841 841  When downloading the images, choose the required image file for download. ​
842 842  
843 843  
844 -= 7. Order Info =
892 += 8. Order Info =
845 845  
846 846  
847 847  [[image:image-20230131153105-4.png]]
848 848  
849 849  
850 -= 8. Troubleshooting =
851 -
852 -Unable to display water depth in payload
853 -~1. Please set it to mod1
854 -2. Please set the command [[AT+PROBE>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB%20--%20LoRaWAN%20Pressure%20Sensor/#H3.3.4SettheProbeModel]] according to the model of your sensor
855 -3. Check the connection status of the sensor
856 -
857 857  = 9. ​Packing Info =
858 858  
859 859  
860 -(% style="color:#037691" %)**Package Includes**:
901 +**Package Includes**:
861 861  
862 862  * PS-LB LoRaWAN Pressure Sensor
863 863  
864 -(% style="color:#037691" %)**Dimension and weight**:
905 +**Dimension and weight**:
865 865  
866 866  * Device Size: cm
867 867  * Device Weight: g
... ... @@ -869,11 +869,11 @@
869 869  * Weight / pcs : g
870 870  
871 871  
913 +
872 872  = 10. Support =
873 873  
874 874  
875 875  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
918 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
876 876  
877 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].
878 -
879 879  
image-20230201090514-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
image-20230222174559-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -19.4 KB
Content
image-20230225154759-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -468.9 KB
Content
image-20230426085320-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -190.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0