Last modified by Xiaoling on 2025/07/10 16:21

From version 53.26
edited by Xiaoling
on 2023/04/17 13:53
Change comment: There is no comment for this version
To version 123.2
edited by Xiaoling
on 2025/04/01 16:43
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -PS-LB -- LoRaWAN Air Water Pressure Sensor User Manual
1 +PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Content
... ... @@ -1,9 +1,17 @@
1 -[[image:image-20230131115217-1.png]]
1 +
2 2  
3 3  
4 +(% style="text-align:center" %)
5 +[[image:image-20240109154731-4.png||height="671" width="945"]]
4 4  
5 -**Table of Contents:**
6 6  
8 +
9 +
10 +
11 +
12 +
13 +**Table of Contents :**
14 +
7 7  {{toc/}}
8 8  
9 9  
... ... @@ -17,27 +17,27 @@
17 17  
18 18  
19 19  (((
20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
28 +The Dragino PS-LB/LS series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB/LS can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 21  )))
22 22  
23 23  (((
24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
32 +The PS-LB/LS series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 25  )))
26 26  
27 27  (((
28 -The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 +The LoRa wireless technology used in PS-LB/LS allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 29  )))
30 30  
31 31  (((
32 -PS-LB supports BLE configure and wireless OTA update which make user easy to use.
40 +PS-LB/LS supports BLE configure and wireless OTA update which make user easy to use.
33 33  )))
34 34  
35 35  (((
36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
44 +PS-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + Li-ion battery **(%%), it is designed for long term use up to 5 years.
37 37  )))
38 38  
39 39  (((
40 -Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
48 +Each PS-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 41  )))
42 42  
43 43  [[image:1675071321348-194.png]]
... ... @@ -57,10 +57,10 @@
57 57  * Support wireless OTA update firmware
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 -* 8500mAh Battery for long term use
61 61  * Controllable 3.3v,5v and 12v output to power external sensor
69 +* 8500mAh Li/SOCl2 Battery (PS-LB)
70 +* Solar panel + 3000mAh Li-ion battery (PS-LS)
62 62  
63 -
64 64  == 1.3 Specification ==
65 65  
66 66  
... ... @@ -72,12 +72,12 @@
72 72  
73 73  (% style="color:#037691" %)**Common DC Characteristics:**
74 74  
75 -* Supply Voltage: 2.5v ~~ 3.6v
83 +* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
76 76  * Operating Temperature: -40 ~~ 85°C
77 77  
78 78  (% style="color:#037691" %)**LoRa Spec:**
79 79  
80 -* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
88 +* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz,Band 2 (LF): 410 ~~ 528 Mhz
81 81  * Max +22 dBm constant RF output vs.
82 82  * RX sensitivity: down to -139 dBm.
83 83  * Excellent blocking immunity
... ... @@ -107,7 +107,6 @@
107 107  * Sleep Mode: 5uA @ 3.3v
108 108  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
109 109  
110 -
111 111  == 1.4 Probe Types ==
112 112  
113 113  === 1.4.1 Thread Installation Type ===
... ... @@ -126,32 +126,38 @@
126 126  * Operating temperature: -20℃~~60℃
127 127  * Connector Type: Various Types, see order info
128 128  
129 -
130 130  === 1.4.2 Immersion Type ===
131 131  
132 132  
133 -[[image:1675071521308-426.png]]
139 +[[image:image-20240109160445-5.png||height="221" width="166"]]
134 134  
135 135  * Immersion Type, Probe IP Level: IP68
136 136  * Measuring Range: Measure range can be customized, up to 100m.
137 137  * Accuracy: 0.2% F.S
138 138  * Long-Term Stability: ±0.2% F.S / Year
139 -* Storage temperature: -30~~80
140 -* Operating temperature: 0~~50
145 +* Storage temperature: -30°C~~80°C
146 +* Operating temperature: 0°C~~50°C
141 141  * Material: 316 stainless steels
142 142  
149 +=== 1.4.3 Wireless Differential Air Pressure Sensor ===
143 143  
144 -== 1.5 Probe Dimension ==
151 +[[image:image-20240511174954-1.png||height="215" width="215"]]
145 145  
153 +* Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
154 +* Accuracy: 0.5% F.S, resolution is 0.05%.
155 +* Overload: 300% F.S
156 +* Zero temperature drift: ±0.03%F.S/°C
157 +* Operating temperature: -20°C~~60°C
158 +* Storage temperature:  -20°C~~60°C
159 +* Compensation temperature: 0~~50°C
146 146  
161 +== 1.5 Application and Installation ==
147 147  
148 -== 1.6 Application and Installation ==
163 +=== 1.5.1 Thread Installation Type ===
149 149  
150 -=== 1.6.1 Thread Installation Type ===
151 151  
166 +Application:
152 152  
153 -(% style="color:blue" %)**Application:**
154 -
155 155  * Hydraulic Pressure
156 156  * Petrochemical Industry
157 157  * Health and Medical
... ... @@ -165,10 +165,10 @@
165 165  [[image:1675071670469-145.png]]
166 166  
167 167  
168 -=== 1.6.2 Immersion Type ===
181 +=== 1.5.2 Immersion Type ===
169 169  
170 170  
171 -(% style="color:blue" %)**Application:**
184 +Application:
172 172  
173 173  Liquid & Water Pressure / Level detect.
174 174  
... ... @@ -175,53 +175,87 @@
175 175  [[image:1675071725288-579.png]]
176 176  
177 177  
178 -The Immersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.
191 +Below is the wiring to for connect the probe to the device.
179 179  
193 +The Immersion Type Sensor has different variant which defined by Ixx. For example, this means two points:
180 180  
195 +* Cable Length: 10 Meters
196 +* Water Detect Range: 0 ~~ 10 Meters.
197 +
181 181  [[image:1675071736646-450.png]]
182 182  
183 183  
184 184  [[image:1675071776102-240.png]]
185 185  
203 +Size of immersion type water depth sensor:
186 186  
187 -== 1.7 Sleep mode and working mode ==
205 +[[image:image-20250401102131-1.png||height="268" width="707"]]
188 188  
189 189  
190 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
208 +=== 1.5.3 Wireless Differential Air Pressure Sensor ===
191 191  
192 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
193 193  
211 +Application:
194 194  
195 -== 1.8 Button & LEDs ==
213 +Indoor Air Control & Filter clogging Detect.
196 196  
215 +[[image:image-20240513100129-6.png]]
197 197  
198 -[[image:1675071855856-879.png]]
217 +[[image:image-20240513100135-7.png]]
199 199  
200 200  
201 -(% border="1" cellspacing="4" style="width:510px;background-color:#F2F2F2" %)
202 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
220 +Below is the wiring to for connect the probe to the device.
221 +
222 +[[image:image-20240513093957-1.png]]
223 +
224 +
225 +Size of wind pressure transmitter:
226 +
227 +[[image:image-20240513094047-2.png]]
228 +
229 +Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.
230 +
231 +
232 +== 1.6 Sleep mode and working mode ==
233 +
234 +
235 +Deep Sleep Mode: Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
236 +
237 +Working Mode: In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
238 +
239 +
240 +== 1.7 Button & LEDs ==
241 +
242 +
243 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
244 +
245 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
246 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action
203 203  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
204 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
248 +
249 +
250 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once.
205 205  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
206 206  )))
207 207  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
208 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
209 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
254 +
255 +
256 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network.
257 +Green led will solidly turn on for 5 seconds after joined in network.
210 210  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
211 211  )))
212 -|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB-NA is in Deep Sleep Mode.
260 +|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
213 213  
262 +== 1.8 Pin Mapping ==
214 214  
215 -== 1.9 Pin Mapping ==
216 216  
217 -
218 218  [[image:1675072568006-274.png]]
219 219  
220 220  
221 -== 1.10 BLE connection ==
268 +== 1.9 BLE connection ==
222 222  
223 223  
224 -PS-LB support BLE remote configure.
271 +PS-LB/LS support BLE remote configure.
225 225  
226 226  
227 227  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -233,24 +233,26 @@
233 233  If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
234 234  
235 235  
236 -== 1.11 Mechanical ==
283 +== 1.10 Mechanical ==
237 237  
285 +=== 1.10.1 for LB version ===
238 238  
239 -[[image:1675143884058-338.png]]
240 240  
288 +[[image:image-20250401163530-1.jpeg]]
241 241  
242 -[[image:1675143899218-599.png]]
243 243  
291 +=== 1.10.2 for LS version ===
244 244  
245 -[[image:1675143909447-639.png]]
246 246  
294 +[[image:image-20250401163539-2.jpeg]]
247 247  
248 -= 2. Configure PS-LB to connect to LoRaWAN network =
249 249  
297 += 2. Configure PS-LB/LS to connect to LoRaWAN network =
298 +
250 250  == 2.1 How it works ==
251 251  
252 252  
253 -The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
302 +The PS-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
254 254  
255 255  
256 256  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -258,7 +258,6 @@
258 258  
259 259  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
260 260  
261 -
262 262  [[image:1675144005218-297.png]]
263 263  
264 264  
... ... @@ -265,43 +265,42 @@
265 265  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
266 266  
267 267  
268 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
316 +Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.
269 269  
270 -Each PS-LB is shipped with a sticker with the default device EUI as below:
318 +Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
271 271  
272 -[[image:image-20230131134744-2.jpeg]]
320 +[[image:image-20230426085320-1.png||height="234" width="504"]]
273 273  
274 274  
275 -
276 276  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
277 277  
278 278  
279 -(% style="color:blue" %)**Register the device**
326 +Register the device
280 280  
281 281  [[image:1675144099263-405.png]]
282 282  
283 283  
284 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
331 +Add APP EUI and DEV EUI
285 285  
286 286  [[image:1675144117571-832.png]]
287 287  
288 288  
289 -(% style="color:blue" %)**Add APP EUI in the application**
336 +Add APP EUI in the application
290 290  
291 291  
292 292  [[image:1675144143021-195.png]]
293 293  
294 294  
295 -(% style="color:blue" %)**Add APP KEY**
342 +Add APP KEY
296 296  
297 297  [[image:1675144157838-392.png]]
298 298  
299 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
346 +Step 2: Activate on PS-LB/LS
300 300  
301 301  
302 -Press the button for 5 seconds to activate the PS-LB.
349 +Press the button for 5 seconds to activate the PS-LB/LS.
303 303  
304 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
351 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network.
305 305  
306 306  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
307 307  
... ... @@ -311,26 +311,25 @@
311 311  === 2.3.1 Device Status, FPORT~=5 ===
312 312  
313 313  
314 -Include device configure status. Once PS-LB Joined the network, it will uplink this message to the server.
361 +Include device configure status. Once PS-LB/LS Joined the network, it will uplink this message to the server.
315 315  
316 -Users can also use the downlink command(0x26 01) to ask PS-LB to resend this uplink.
363 +Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
317 317  
365 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
366 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)Device Status (FPORT=5)
367 +|(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2
368 +|(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
318 318  
319 -(% border="1" cellspacing="4" style="width:510px;background-color:#F2F2F2" %)
320 -|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
321 -|(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
322 -|(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
323 -
324 324  Example parse in TTNv3
325 325  
326 326  [[image:1675144504430-490.png]]
327 327  
328 328  
329 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
375 +Sensor Model: For PS-LB/LS, this value is 0x16
330 330  
331 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
377 +Firmware Version: 0x0100, Means: v1.0.0 version
332 332  
333 -(% style="color:#037691" %)**Frequency Band**:
379 +Frequency Band:
334 334  
335 335  *0x01: EU868
336 336  
... ... @@ -361,7 +361,7 @@
361 361  *0x0e: MA869
362 362  
363 363  
364 -(% style="color:#037691" %)**Sub-Band**:
410 +Sub-Band:
365 365  
366 366  AU915 and US915:value 0x00 ~~ 0x08
367 367  
... ... @@ -370,7 +370,7 @@
370 370  Other Bands: Always 0x00
371 371  
372 372  
373 -(% style="color:#037691" %)**Battery Info**:
419 +Battery Info:
374 374  
375 375  Check the battery voltage.
376 376  
... ... @@ -385,12 +385,14 @@
385 385  Uplink payload includes in total 9 bytes.
386 386  
387 387  
388 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
389 -|(% style="width:97px;background-color:#D9E2F3" %)(((
390 -**Size(bytes)**
391 -)))|(% style="width:48px;background-color:#D9E2F3" %)**2**|(% style="width:71px;background-color:#D9E2F3" %)**2**|(% style="width:98px;background-color:#D9E2F3" %)**2**|(% style="width:73px;background-color:#D9E2F3" %)**2**|(% style="width:122px;background-color:#D9E2F3" %)**1**
392 -|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
434 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
435 +|(% style="background-color:#4f81bd; color:white; width:97px" %)(((
436 +
393 393  
438 +Size(bytes)
439 +)))|(% style="background-color:#4f81bd; color:white; width:50px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
440 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
441 +
394 394  [[image:1675144608950-310.png]]
395 395  
396 396  
... ... @@ -397,7 +397,7 @@
397 397  === 2.3.3 Battery Info ===
398 398  
399 399  
400 -Check the battery voltage for PS-LB.
448 +Check the battery voltage for PS-LB/LS.
401 401  
402 402  Ex1: 0x0B45 = 2885mV
403 403  
... ... @@ -407,16 +407,16 @@
407 407  === 2.3.4 Probe Model ===
408 408  
409 409  
410 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
458 +PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
411 411  
412 412  
413 -**For example.**
461 +For example.
414 414  
415 -(% border="1" cellspacing="4" style="width:510px;background-color:#F2F2F2" %)
416 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Part Number**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Probe Used**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4~~20mA scale**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Example: 12mA meaning**
417 -|(% style="background-color:#f2f2f2" %)PS-LB-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
418 -|(% style="background-color:#f2f2f2" %)PS-LB-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
419 -|(% style="background-color:#f2f2f2" %)PS-LB-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
463 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
464 +|(% style="background-color:#4f81bd; color:white" %)Part Number|(% style="background-color:#4f81bd; color:white" %)Probe Used|(% style="background-color:#4f81bd; color:white" %)4~~20mA scale|(% style="background-color:#4f81bd; color:white" %)Example: 12mA meaning
465 +|(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
466 +|(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
467 +|(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
420 420  
421 421  The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
422 422  
... ... @@ -424,9 +424,9 @@
424 424  === 2.3.5 0~~20mA value (IDC_IN) ===
425 425  
426 426  
427 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
475 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
428 428  
429 -(% style="color:#037691" %)**Example**:
477 +Example:
430 430  
431 431  27AE(H) = 10158 (D)/1000 = 10.158mA.
432 432  
... ... @@ -436,12 +436,12 @@
436 436  [[image:image-20230225154759-1.png||height="408" width="741"]]
437 437  
438 438  
439 -=== 2.3.6 0~~30V value ( pin VDC_IN) ===
487 +=== 2.3.6 0~~30V value (pin VDC_IN) ===
440 440  
441 441  
442 442  Measure the voltage value. The range is 0 to 30V.
443 443  
444 -(% style="color:#037691" %)**Example**:
492 +Example:
445 445  
446 446  138E(H) = 5006(D)/1000= 5.006V
447 447  
... ... @@ -451,7 +451,7 @@
451 451  
452 452  IN1 and IN2 are used as digital input pins.
453 453  
454 -(% style="color:#037691" %)**Example**:
502 +Example:
455 455  
456 456  09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
457 457  
... ... @@ -458,9 +458,9 @@
458 458  09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
459 459  
460 460  
461 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
509 +This data field shows if this packet is generated by Interrupt Pin or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
462 462  
463 -(% style="color:#037691" %)**Example:**
511 +Example:
464 464  
465 465  09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
466 466  
... ... @@ -469,14 +469,18 @@
469 469  0x01: Interrupt Uplink Packet.
470 470  
471 471  
472 -=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 ===
520 +=== 2.3.8 Sensor value, FPORT~=7 ===
473 473  
474 474  
475 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:508.222px" %)
476 -|(% style="width:94px;background-color:#D9E2F3" %)(((
477 -**Size(bytes)**
478 -)))|(% style="width:43px;background-color:#D9E2F3" %)2|(% style="width:367px;background-color:#D9E2F3" %)n
479 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
523 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
524 +|(% style="background-color:#4f81bd; color:white; width:65px" %)(((
525 +
526 +
527 +Size(bytes)
528 +)))|(% style="background-color:#4f81bd; color:white; width:35px" %)2|(% style="background-color:#4f81bd; color:white; width:400px" %)n
529 +|(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
530 +
531 +
480 480  Voltage value, each 2 bytes is a set of voltage values.
481 481  )))
482 482  
... ... @@ -492,17 +492,16 @@
492 492  
493 493  While using TTN network, you can add the payload format to decode the payload.
494 494  
495 -
496 496  [[image:1675144839454-913.png]]
497 497  
498 498  
499 -PS-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
550 +PS-LB/LS TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
500 500  
501 501  
502 502  == 2.4 Uplink Interval ==
503 503  
504 504  
505 -The PS-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
556 +The PS-LB/LS by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
506 506  
507 507  
508 508  == 2.5 Show Data in DataCake IoT Server ==
... ... @@ -510,12 +510,10 @@
510 510  
511 511  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
512 512  
564 +Step 1: Be sure that your device is programmed and properly connected to the network at this time.
513 513  
514 -(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
566 +Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
515 515  
516 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
517 -
518 -
519 519  [[image:1675144951092-237.png]]
520 520  
521 521  
... ... @@ -522,9 +522,9 @@
522 522  [[image:1675144960452-126.png]]
523 523  
524 524  
525 -(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
574 +Step 3: Create an account or log in Datacake.
526 526  
527 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
576 +Step 4: Create PS-LB/LS product.
528 528  
529 529  [[image:1675145004465-869.png]]
530 530  
... ... @@ -532,12 +532,10 @@
532 532  [[image:1675145018212-853.png]]
533 533  
534 534  
535 -
536 -
537 537  [[image:1675145029119-717.png]]
538 538  
539 539  
540 -(% style="color:blue" %)**Step 5: **(%%)add payload decode
587 +Step 5: add payload decode
541 541  
542 542  [[image:1675145051360-659.png]]
543 543  
... ... @@ -547,38 +547,464 @@
547 547  
548 548  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
549 549  
550 -
551 551  [[image:1675145081239-376.png]]
552 552  
553 553  
554 -== 2.6 Frequency Plans ==
600 +== 2.6 Datalog Feature (Since V1.1) ==
555 555  
556 556  
557 -The PS-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
603 +When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot.
558 558  
559 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
560 560  
606 +=== 2.6.1 Unix TimeStamp ===
561 561  
562 -== 2.7 ​Firmware Change Log ==
563 563  
609 +PS-LB uses Unix TimeStamp format based on
564 564  
565 -**Firmware download link:**
611 +[[image:image-20250401163826-3.jpeg]]
566 566  
613 +Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
614 +
615 +Below is the converter example:
616 +
617 +[[image:image-20250401163906-4.jpeg]]
618 +
619 +
620 +=== 2.6.2 Set Device Time ===
621 +
622 +
623 +There are two ways to set the device's time:
624 +
625 +
626 +~1. Through LoRaWAN MAC Command (Default settings)
627 +
628 +Users need to set SYNCMOD=1 to enable sync time via the MAC command.
629 +
630 +Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
631 +
632 +Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.
633 +
634 +
635 + 2. Manually Set Time
636 +
637 +Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
638 +
639 +
640 +=== 2.6.3 Poll sensor value ===
641 +
642 +Users can poll sensor values based on timestamps. Below is the downlink command.
643 +
644 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
645 +|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31)
646 +|(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte
647 +|(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)(((
648 +
649 +
650 +Timestamp end
651 +)))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval
652 +
653 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
654 +
655 +For example, downlink command[[image:image-20250117104812-1.png]]
656 +
657 +Is to check 2024/12/20 09:34:59 to 2024/12/20 14:34:59's data
658 +
659 +Uplink Internal =5s,means PS-LB will send one packet every 5s. range 5~~255s.
660 +
661 +
662 +=== 2.6.4 Datalog Uplink payload (FPORT~=3) ===
663 +
664 +
665 +The Datalog uplinks will use below payload format.
666 +
667 +Retrieval data payload:
668 +
669 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
670 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
671 +Size(bytes)
672 +)))|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)2|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)4
673 +|(% style="width:103px" %)Value|(% style="width:68px" %)(((
674 +
675 +
676 +Probe_mod
677 +)))|(% style="width:104px" %)(((
678 +
679 +
680 +VDC_intput_V
681 +)))|(% style="width:83px" %)(((
682 +
683 +
684 +IDC_intput_mA
685 +)))|(% style="width:201px" %)(((
686 +
687 +
688 +IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status
689 +)))|(% style="width:86px" %)Unix Time Stamp
690 +
691 +IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:
692 +
693 +[[image:image-20250117104847-4.png]]
694 +
695 +
696 +No ACK Message:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
697 +
698 +Poll Message Flag: 1: This message is a poll message reply.
699 +
700 +* Poll Message Flag is set to 1.
701 +
702 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
703 +
704 +For example, in US915 band, the max payload for different DR is:
705 +
706 +a) DR0: max is 11 bytes so one entry of data
707 +
708 +b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
709 +
710 +c) DR2: total payload includes 11 entries of data
711 +
712 +d) DR3: total payload includes 22 entries of data.
713 +
714 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
715 +
716 +Example:
717 +
718 +If PS-LB-NA has below data inside Flash:
719 +
720 +[[image:image-20250117104837-3.png]]
721 +
722 +
723 +If user sends below downlink command: 316788D9BF6788DB6305
724 +
725 +Where : Start time: 6788D9BF = time 25/1/16 10:04:47
726 +
727 + Stop time: 6788DB63 = time 25/1/16 10:11:47
728 +
729 +
730 +PA-LB-NA will uplink this payload.
731 +
732 +[[image:image-20250117104827-2.png]]
733 +
734 +
735 +00001B620000406788D9BF  00000D130000406788D9FB  00000D120000406788DA37  00000D110000406788DA73  00000D100000406788DAAF  00000D100000406788DAEB  00000D0F0000406788DB27  00000D100000406788DB63
736 +
737 +
738 +Where the first 11 bytes is for the first entry :
739 +
740 +
741 +0000  0D10  0000  40  6788DB63
742 +
743 +
744 +Probe_mod = 0x0000 = 0000
745 +
746 +
747 +VDC_intput_V = 0x0D10/1000=3.344V
748 +
749 +IDC_intput_mA = 0x0000/1000=0mA
750 +
751 +
752 +IN1_pin_level = (0x40& 0x08)? "High":"Low" = 0(Low)
753 +
754 +IN2_pin_level = (0x40& 0x04)? "High":"Low" = 0(Low)
755 +
756 +Exti_pin_level = (0x40& 0x02)? "High":"Low" = 0(Low)
757 +
758 +Exti_status = (0x40& 0x01)? "True":"False" = 0(False)
759 +
760 +
761 +Unix time is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
762 +
763 +Its data format is:
764 +
765 +[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
766 +
767 +Note: water_deep in the data needs to be converted using decoding to get it.
768 +
769 +
770 +=== 2.6.5 Decoder in TTN V3 ===
771 +
772 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
773 +
774 +Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
775 +
776 +
777 +== 2.7 Frequency Plans ==
778 +
779 +
780 +The PS-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
781 +
782 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/a>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
783 +
784 +
785 +== 2.8 Report on Change Feature (Since firmware V1.2) ==
786 +
787 +=== 2.8.1 Uplink payload(Enable ROC) ===
788 +
789 +
790 +Used to Monitor the IDC and VDC increments, and send ROC uplink when the IDC or VDC changes exceed.
791 +
792 +With ROC enabled, the payload is as follows:
793 +
794 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
795 +|(% style="background-color:#4f81bd; color:white; width:97px" %)(((
796 +
797 +
798 +Size(bytes)
799 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
800 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
801 +
802 +
803 +[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag
804 +)))
805 +
806 +IN1 &IN2 , Interrupt  flag , ROC_flag:
807 +
808 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
809 +|(% style="background-color:#4f81bd; color:white; width:50px" %)Size(bit)|(% style="background-color:#4f81bd; color:white; width:60px" %)bit7|(% style="background-color:#4f81bd; color:white; width:62px" %)bit6|(% style="background-color:#4f81bd; color:white; width:62px" %)bit5|(% style="background-color:#4f81bd; color:white; width:65px" %)bit4|(% style="background-color:#4f81bd; color:white; width:56px" %)bit3|(% style="background-color:#4f81bd; color:white; width:55px" %)bit2|(% style="background-color:#4f81bd; color:white; width:55px" %)bit1|(% style="background-color:#4f81bd; color:white; width:50px" %)bit0
810 +|(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status
811 +
812 +* IDC_Roc_flagL
813 +
814 +80 (H): (0x80&0x80)=80(H)=1000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
815 +
816 +60 (H): (0x60&0x80)=0  bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
817 +
818 +
819 +* IDC_Roc_flagH
820 +
821 +60 (H): (0x60&0x40)=60(H)=01000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
822 +
823 +80 (H): (0x80&0x40)=0  bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
824 +
825 +
826 +* VDC_Roc_flagL
827 +
828 +20 (H): (0x20&0x20)=20(H)=0010 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
829 +
830 +90 (H): (0x90&0x20)=0  bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
831 +
832 +
833 +* VDC_Roc_flagH
834 +
835 +90 (H): (0x90&0x10)=10(H)=0001 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
836 +
837 +20 (H): (0x20&0x10)=0  bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
838 +
839 +
840 +* IN1_pin_level & IN2_pin_level
841 +
842 +IN1 and IN2 are used as digital input pins.
843 +
844 +80 (H): (0x80&0x08)=0  IN1 pin is low level.
845 +
846 +80 (H): (0x09&0x04)=0    IN2 pin is low level.
847 +
848 +
849 +* Exti_pin_level &Exti_status
850 +
851 +This data field shows whether the packet is generated by an interrupt pin.
852 +
853 +Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the GPIO_EXTI pin.
854 +
855 +Exti_pin_level:  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
856 +
857 +Exti_status: 80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
858 +
859 +
860 +=== 2.8.2 Set the Report on Change ===
861 +
862 +
863 +Feature: Get or Set the Report on Change.
864 +
865 +
866 +==== 2.8.2.1 Wave alarm mode ====
867 +
868 +Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed.
869 +
870 +* Change value: The amount by which the next detection value increases/decreases relative to the previous detection value.
871 +* Comparison value: A parameter to compare with the latest ROC test.
872 +
873 +AT Command: AT+ROC
874 +
875 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
876 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
877 +|(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
878 +
879 +
880 +0,0,0,0(default)
881 +OK
882 +)))
883 +|(% colspan="1" rowspan="4" style="width:143px" %)(((
884 +
885 +
886 +
887 +
888 +
889 +AT+ROC=a,b,c,d
890 +)))|(% style="width:154px" %)(((
891 +
892 +
893 +
894 +
895 +
896 +
897 +
898 +a: Enable or disable the ROC
899 +)))|(% style="width:197px" %)(((
900 +
901 +
902 +0: off
903 +1: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
904 +
905 +2: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
906 +)))
907 +|(% style="width:154px" %)b: Set the detection interval|(% style="width:197px" %)(((
908 +
909 +
910 +Range:  0~~65535s
911 +)))
912 +|(% style="width:154px" %)c: Setting the IDC change value|(% style="width:197px" %)Unit: uA
913 +|(% style="width:154px" %)d: Setting the VDC change value|(% style="width:197px" %)Unit: mV
914 +
915 +Example:
916 +
917 +* AT+ROC=0,0,0,0  ~/~/The ROC function is not used.
918 +* AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed.
919 +* AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage.
920 +* AT+ROC=2,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed.
921 +
922 +Downlink Command: 0x09 aa bb cc dd
923 +
924 +Format: Function code (0x09) followed by 4 bytes.
925 +
926 +aa: 1 byte; Set the wave alarm mode.
927 +
928 +bb: 2 bytes; Set the detection interval. (second)
929 +
930 +cc: 2 bytes; Setting the IDC change threshold. (uA)
931 +
932 +dd: 2 bytes; Setting the VDC change threshold. (mV)
933 +
934 +Example:
935 +
936 +* Downlink Payload: 09 01 00 3C 0B B8 01 F4  ~/~/Equal to AT+ROC=1,60,3000, 500
937 +* Downlink Payload: 09 01 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=1,60,3000,0
938 +* Downlink Payload: 09 02 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=2,60,3000,0
939 +
940 +Screenshot of parsing example in TTN:
941 +
942 +* AT+ROC=1,60,3000, 500.
943 +
944 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB-NA--LoRaWAN_Analog_Sensor_User_Manual/WebHome/image-20241019170902-1.png?width=1454&height=450&rev=1.1||alt="image-20241019170902-1.png"]]
945 +
946 +
947 +==== 2.8.2.2 Over-threshold alarm mode ====
948 +
949 +Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded.
950 +
951 +AT Command: AT+ROC=3,a,b,c,d,e
952 +
953 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
954 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
955 +|(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
956 +
957 +
958 +0,0,0,0(default)
959 +OK
960 +)))
961 +|(% colspan="1" rowspan="5" style="width:143px" %)(((
962 +
963 +
964 +
965 +
966 +
967 +AT+ROC=3,a,b,c,d,e
968 +)))|(% style="width:160px" %)(((
969 +
970 +
971 +a: Set the detection interval
972 +)))|(% style="width:185px" %)(((
973 +
974 +
975 +Range:  0~~65535s
976 +)))
977 +|(% style="width:160px" %)b: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
978 +
979 +
980 +0: Less than the set IDC threshold, Alarm
981 +
982 +1: Greater than the set IDC threshold, Alarm
983 +)))
984 +|(% style="width:160px" %)(((
985 +
986 +
987 +c:  IDC alarm threshold
988 +)))|(% style="width:185px" %)(((
989 +
990 +
991 +Unit: uA
992 +)))
993 +|(% style="width:160px" %)d: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
994 +
995 +
996 +0: Less than the set VDC threshold, Alarm
997 +
998 +1: Greater than the set VDC threshold, Alarm
999 +)))
1000 +|(% style="width:160px" %)e: VDC alarm threshold|(% style="width:185px" %)Unit: mV
1001 +
1002 +Example:
1003 +
1004 +* AT+ROC=3,60,0,3000,0,5000  ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
1005 +* AT+ROC=3,180,1,3000,1,5000  ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
1006 +* AT+ROC=3,300,0,3000,1,5000  ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
1007 +
1008 +Downlink Command: 0x09 03 aa bb cc dd ee
1009 +
1010 +Format: Function code (0x09) followed by 03 and the remaining 5 bytes.
1011 +
1012 +aa: 2 bytes; Set the detection interval.(second)
1013 +
1014 +bb: 1 byte; Set the IDC alarm trigger condition.
1015 +
1016 +cc: 2 bytes; IDC alarm threshold.(uA)
1017 +
1018 +
1019 +dd: 1 byte; Set the VDC alarm trigger condition.
1020 +
1021 +ee: 2 bytes; VDC alarm threshold.(mV)
1022 +
1023 +Example:
1024 +
1025 +* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
1026 +* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
1027 +* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
1028 +
1029 +Screenshot of parsing example in TTN:
1030 +
1031 +* AT+ROC=3,60,0,3000,0,5000
1032 +
1033 +[[image:image-20250116180030-2.png]]
1034 +
1035 +
1036 +== 2.9 ​Firmware Change Log ==
1037 +
1038 +
1039 +Firmware download link:
1040 +
567 567  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
568 568  
569 569  
570 -= 3. Configure PS-LB =
1044 += 3. Configure PS-LB/LS =
571 571  
572 572  == 3.1 Configure Methods ==
573 573  
574 574  
575 -PS-LB-NA supports below configure method:
1049 +PS-LB/LS supports below configure method:
576 576  
577 -* AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1051 +* AT Command via Bluetooth Connection (Recommand Way): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
578 578  * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
579 579  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
580 580  
581 -
582 582  == 3.2 General Commands ==
583 583  
584 584  
... ... @@ -592,10 +592,10 @@
592 592  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
593 593  
594 594  
595 -== 3.3 Commands special design for PS-LB ==
1068 +== 3.3 Commands special design for PS-LB/LS ==
596 596  
597 597  
598 -These commands only valid for PS-LB, as below:
1071 +These commands only valid for PS-LB/LS, as below:
599 599  
600 600  
601 601  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -603,21 +603,25 @@
603 603  
604 604  Feature: Change LoRaWAN End Node Transmit Interval.
605 605  
606 -(% style="color:blue" %)**AT Command: AT+TDC**
1079 +AT Command: AT+TDC
607 607  
608 -(% border="1" cellspacing="4" style="width:510px;background-color:#F2F2F2" %)
609 -|=(% style="width: 160px; background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 160px; background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1081 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1082 +|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response
610 610  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
1084 +
1085 +
611 611  30000
612 612  OK
613 613  the interval is 30000ms = 30s
614 614  )))
615 615  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
1091 +
1092 +
616 616  OK
617 617  Set transmit interval to 60000ms = 60 seconds
618 618  )))
619 619  
620 -(% style="color:blue" %)**Downlink Command: 0x01**
1097 +Downlink Command: 0x01
621 621  
622 622  Format: Command Code (0x01) followed by 3 bytes time value.
623 623  
... ... @@ -626,22 +626,25 @@
626 626  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
627 627  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
628 628  
629 -
630 630  === 3.3.2 Set Interrupt Mode ===
631 631  
632 632  
633 633  Feature, Set Interrupt mode for GPIO_EXIT.
634 634  
635 -(% style="color:blue" %)**AT Command: AT+INTMOD**
1111 +AT Command: AT+INTMOD
636 636  
637 -(% border="1" cellspacing="4" style="width:510px;background-color:#f2f2f2" %)
638 -|=(% style="width: 154px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1113 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1114 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response
639 639  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
1116 +
1117 +
640 640  0
641 641  OK
642 642  the mode is 0 =Disable Interrupt
643 643  )))
644 644  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
1123 +
1124 +
645 645  Set Transmit Interval
646 646  0. (Disable Interrupt),
647 647  ~1. (Trigger by rising and falling edge)
... ... @@ -649,7 +649,7 @@
649 649  3. (Trigger by rising edge)
650 650  )))|(% style="background-color:#f2f2f2; width:157px" %)OK
651 651  
652 -(% style="color:blue" %)**Downlink Command: 0x06**
1132 +Downlink Command: 0x06
653 653  
654 654  Format: Command Code (0x06) followed by 3 bytes.
655 655  
... ... @@ -658,83 +658,111 @@
658 658  * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
659 659  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
660 660  
661 -
662 662  === 3.3.3 Set the output time ===
663 663  
664 664  
665 665  Feature, Control the output 3V3 , 5V or 12V.
666 666  
667 -(% style="color:blue" %)**AT Command: AT+3V3T**
1146 +AT Command: AT+3V3T
668 668  
669 -(% border="1" cellspacing="4" style="width:474px" %)
670 -|=(% style="width: 154px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 201px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 116px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1148 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
1149 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
671 671  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
1151 +
1152 +
672 672  0
673 673  OK
674 674  )))
675 675  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1157 +
1158 +
676 676  OK
677 677  default setting
678 678  )))
679 679  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
1163 +
1164 +
680 680  OK
681 681  )))
682 682  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1168 +
1169 +
683 683  OK
684 684  )))
685 685  
686 -(% style="color:blue" %)**AT Command: AT+5VT**
1173 +AT Command: AT+5VT
687 687  
688 -(% border="1" cellspacing="4" style="width:470px" %)
689 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 114px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1175 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
1176 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
690 690  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1178 +
1179 +
691 691  0
692 692  OK
693 693  )))
694 694  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1184 +
1185 +
695 695  OK
696 696  default setting
697 697  )))
698 698  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
1190 +
1191 +
699 699  OK
700 700  )))
701 701  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1195 +
1196 +
702 702  OK
703 703  )))
704 704  
705 -(% style="color:blue" %)**AT Command: AT+12VT**
1200 +AT Command: AT+12VT
706 706  
707 -(% border="1" cellspacing="4" style="width:443px" %)
708 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 199px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 83px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1202 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
1203 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response
709 709  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1205 +
1206 +
710 710  0
711 711  OK
712 712  )))
713 713  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
714 714  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
1212 +
1213 +
715 715  OK
716 716  )))
717 717  
718 -(% style="color:blue" %)**Downlink Command: 0x07**
1217 +Downlink Command: 0x07
719 719  
720 720  Format: Command Code (0x07) followed by 3 bytes.
721 721  
722 722  The first byte is which power, the second and third bytes are the time to turn on.
723 723  
724 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
725 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
726 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
727 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
728 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
729 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
1223 +* Example 1: Downlink Payload: 070101F4  ~-~-->  AT+3V3T=500
1224 +* Example 2: Downlink Payload: 0701FFFF   ~-~-->  AT+3V3T=65535
1225 +* Example 3: Downlink Payload: 070203E8  ~-~-->  AT+5VT=1000
1226 +* Example 4: Downlink Payload: 07020000  ~-~-->  AT+5VT=0
1227 +* Example 5: Downlink Payload: 070301F4  ~-~-->  AT+12VT=500
1228 +* Example 6: Downlink Payload: 07030000  ~-~-->  AT+12VT=0
730 730  
1230 +Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.
731 731  
1232 +Therefore, the corresponding downlink command is increased by one byte to five bytes.
1233 +
1234 +Example:
1235 +
1236 +* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 01 01 D4 C0  ~-~-->  AT+3V3T=120000
1237 +* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 02 01 86 A0  ~-~-->  AT+5VT=100000
1238 +* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 03 01 38 80  ~-~-->  AT+12VT=80000
1239 +
732 732  === 3.3.4 Set the Probe Model ===
733 733  
734 734  
735 735  Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
736 736  
737 -**AT Command: AT** **+PROBE**
1245 +AT Command: AT +PROBE
738 738  
739 739  AT+PROBE=aabb
740 740  
... ... @@ -746,74 +746,86 @@
746 746  
747 747  (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
748 748  
749 -(% border="1" cellspacing="4" style="width:510px" %)
750 -|(% style="background-color:#d9e2f3; color:#0070c0; width:154px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:269px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Response**
751 -|(% style="background-color:#f2f2f2; width:154px" %)AT +PROBE =?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
1257 +When aa=02, it is the Differential Pressure Sensor , which converts the current into a pressure value;
1258 +
1259 +bb represents which type of pressure sensor it is.
1260 +
1261 +(0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C)
1262 +
1263 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1264 +|(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1265 +|(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
752 752  OK
753 -|(% style="background-color:#f2f2f2; width:154px" %)AT +PROBE =0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
1267 +|(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
754 754  |(% style="background-color:#f2f2f2; width:154px" %)(((
755 -AT +PROBE =000A
756 -
757 757  
1270 +
1271 +AT+PROBE=000A
758 758  )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
759 -|(% style="background-color:#f2f2f2; width:154px" %)AT +PROBE =0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
760 -|(% style="background-color:#f2f2f2; width:154px" %)AT +PROBE =0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
1273 +|(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
1274 +|(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
1275 +|(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
761 761  
762 -**Downlink Command: 0x08**
1277 +Downlink Command: 0x08
763 763  
764 764  Format: Command Code (0x08) followed by 2 bytes.
765 765  
766 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
767 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
1281 +* Example 1: Downlink Payload: 080003  ~-~-->  AT+PROBE=0003
1282 +* Example 2: Downlink Payload: 080101  ~-~-->  AT+PROBE=0101
768 768  
1284 +=== 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
769 769  
770 -=== 3.3.5 Multiple collections are one uplink(Since firmware V1.1) ===
771 771  
1287 +Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time.
772 772  
773 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
1289 +AT Command: AT +STDC
774 774  
775 -(% style="color:blue" %)**AT Command: AT** **+STDC**
776 -
777 777  AT+STDC=aa,bb,bb
778 778  
779 -(% style="color:#037691" %)**aa:**(%%)
780 -**0:** means disable this function and use TDC to send packets.
781 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
782 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
783 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
1293 +aa:
1294 +0: means disable this function and use TDC to send packets.
1295 +1: means that the function is enabled to send packets by collecting VDC data for multiple times.
1296 +2: means that the function is enabled to send packets by collecting IDC data for multiple times.
1297 +bb: Each collection interval (s), the value is 1~~65535
1298 +cc: the number of collection times, the value is 1~~120
784 784  
785 -(% border="1" cellspacing="4" style="width:510px" %)
786 -|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:215px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Response**
1300 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1301 +|(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
787 787  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
788 788  OK
789 789  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1305 +
1306 +
790 790  Attention:Take effect after ATZ
791 791  
792 792  OK
793 793  )))
794 794  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
1312 +
1313 +
795 795  Use the TDC interval to send packets.(default)
796 796  
797 797  
798 798  )))|(% style="background-color:#f2f2f2" %)(((
1318 +
1319 +
799 799  Attention:Take effect after ATZ
800 800  
801 801  OK
802 802  )))
803 803  
804 -(% style="color:blue" %)**Downlink Command: 0xAE**
1325 +Downlink Command: 0xAE
805 805  
806 -Format: Command Code (0x08) followed by 5 bytes.
1327 +Format: Command Code (0xAE) followed by 4 bytes.
807 807  
808 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
1329 +* Example 1: Downlink Payload: AE 01 02 58 12 ~-~-->  AT+STDC=1,600,18
809 809  
810 -
811 811  = 4. Battery & Power Consumption =
812 812  
813 813  
814 -PS-LB-NA uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1334 +PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
815 815  
816 -[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1336 +[[Battery Info & Power Consumption Analyze>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
817 817  
818 818  
819 819  = 5. OTA firmware update =
... ... @@ -843,32 +843,71 @@
843 843  When downloading the images, choose the required image file for download. ​
844 844  
845 845  
846 -= 7. Order Info =
1366 +== 6.4 How to measure the depth of other liquids other than water? ==
847 847  
848 848  
849 -[[image:image-20230131153105-4.png]]
1369 +Test the current values at the depth of different liquids and convert them to a linear scale.
1370 +Replace its ratio with the ratio of water to current in the decoder.
850 850  
1372 +Example:
851 851  
852 -= 8. ​Packing Info =
1374 +Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
853 853  
1376 +Calculate scale factor:
1377 +Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
854 854  
855 -(% style="color:#037691" %)**Package Includes**:
1379 +Calculation formula:
856 856  
857 -* PS-LB LoRaWAN Pressure Sensor
1381 +Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
858 858  
859 -(% style="color:#037691" %)**Dimension and weight**:
1383 +Actual calculations:
860 860  
1385 +Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
1386 +
1387 +Error:
1388 +
1389 +0.009810726
1390 +
1391 +
1392 +[[image:image-20240329175044-1.png]]
1393 +
1394 += 7. Troubleshooting =
1395 +
1396 +== 7.1 Water Depth Always shows 0 in payload ==
1397 +
1398 +
1399 +If your device's IDC_intput_mA is normal, but your reading always shows 0, please refer to the following points:
1400 +
1401 +~1. Please set it to mod1
1402 +
1403 +2. Please set the command [[AT+PROBE>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB%20--%20LoRaWAN%20Pressure%20Sensor/#H3.3.4SettheProbeModel]] according to the model of your sensor
1404 +
1405 +3. Check the connection status of the sensor
1406 +
1407 +
1408 += 8. Order Info =
1409 +
1410 +
1411 +
1412 +[[image:image-20241021093209-1.png]]
1413 +
1414 += 9. ​Packing Info =
1415 +
1416 +
1417 +Package Includes:
1418 +
1419 +* PS-LB or PS-LS LoRaWAN Pressure Sensor
1420 +
1421 +Dimension and weight:
1422 +
861 861  * Device Size: cm
862 862  * Device Weight: g
863 863  * Package Size / pcs : cm
864 864  * Weight / pcs : g
865 865  
1428 += 10. Support =
866 866  
867 -= 9. Support =
868 868  
869 -
870 870  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
871 871  
872 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
873 -
874 -
1433 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].
image-20230426085320-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +190.0 KB
Content
image-20231120110833-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +255.7 KB
Content
image-20231120110949-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +217.3 KB
Content
image-20231120111036-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +273.4 KB
Content
image-20231120111226-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +340.3 KB
Content
image-20240109154009-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +297.0 KB
Content
image-20240109154121-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +414.4 KB
Content
image-20240109154227-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +342.4 KB
Content
image-20240109154731-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +511.6 KB
Content
image-20240109160445-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.8 KB
Content
image-20240109160800-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +60.1 KB
Content
image-20240109172423-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +62.3 KB
Content
image-20240329175044-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +55.2 KB
Content
image-20240511174954-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +65.9 KB
Content
image-20240513093957-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +320.4 KB
Content
image-20240513094047-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +62.7 KB
Content
image-20240513094054-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +201.1 KB
Content
image-20240513095921-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +130.4 KB
Content
image-20240513095927-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +98.0 KB
Content
image-20240513100129-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +130.4 KB
Content
image-20240513100135-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +98.0 KB
Content
image-20240817150702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +38.4 KB
Content
image-20241021093209-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +52.1 KB
Content
image-20250116175954-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +68.6 KB
Content
image-20250116180030-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +69.2 KB
Content
image-20250117104812-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +1.7 KB
Content
image-20250117104827-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +74.6 KB
Content
image-20250117104837-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +38.7 KB
Content
image-20250117104847-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 KB
Content
image-20250401102131-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +64.7 KB
Content
image-20250401163530-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +44.9 KB
Content
image-20250401163539-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +31.1 KB
Content
image-20250401163826-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +18.9 KB
Content
image-20250401163906-4.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +181.6 KB
Content