<
From version < 53.2 >
edited by Xiaoling
on 2023/04/03 10:59
To version < 42.14 >
edited by Xiaoling
on 2023/01/31 16:07
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -16,33 +16,22 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 -(((
20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 -)))
19 +The Dragino PS-LB series sensors are **(% style="color:blue" %)LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
22 22  
23 -(((
24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 -)))
21 +The PS-LB series sensors include **(% style="color:blue" %)Thread Installation Type**(%%) and **(% style="color:blue" %)Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
26 26  
27 -(((
28 28  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 32  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 -)))
34 34  
35 -(((
36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 -)))
27 +PS-LB is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
38 38  
39 -(((
40 40  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 -)))
42 42  
43 43  [[image:1675071321348-194.png]]
44 44  
45 45  
34 +
46 46  == 1.2 ​Features ==
47 47  
48 48  
... ... @@ -58,23 +58,23 @@
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * 8500mAh Battery for long term use
61 -* Controllable 3.3v,5v and 12v output to power external sensor
62 62  
51 +
63 63  == 1.3 Specification ==
64 64  
65 65  
66 -(% style="color:#037691" %)**Micro Controller:**
55 +**(% style="color:#037691" %)Micro Controller:**
67 67  
68 68  * MCU: 48Mhz ARM
69 69  * Flash: 256KB
70 70  * RAM: 64KB
71 71  
72 -(% style="color:#037691" %)**Common DC Characteristics:**
61 +**(% style="color:#037691" %)Common DC Characteristics:**
73 73  
74 74  * Supply Voltage: 2.5v ~~ 3.6v
75 75  * Operating Temperature: -40 ~~ 85°C
76 76  
77 -(% style="color:#037691" %)**LoRa Spec:**
66 +**(% style="color:#037691" %)LoRa Spec:**
78 78  
79 79  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
80 80  * Max +22 dBm constant RF output vs.
... ... @@ -81,19 +81,19 @@
81 81  * RX sensitivity: down to -139 dBm.
82 82  * Excellent blocking immunity
83 83  
84 -(% style="color:#037691" %)**Current Input Measuring :**
73 +**(% style="color:#037691" %)Current Input Measuring :**
85 85  
86 86  * Range: 0 ~~ 20mA
87 87  * Accuracy: 0.02mA
88 88  * Resolution: 0.001mA
89 89  
90 -(% style="color:#037691" %)**Voltage Input Measuring:**
79 +**(% style="color:#037691" %)Voltage Input Measuring:**
91 91  
92 92  * Range: 0 ~~ 30v
93 93  * Accuracy: 0.02v
94 94  * Resolution: 0.001v
95 95  
96 -(% style="color:#037691" %)**Battery:**
85 +**(% style="color:#037691" %)Battery:**
97 97  
98 98  * Li/SOCI2 un-chargeable battery
99 99  * Capacity: 8500mAh
... ... @@ -101,11 +101,12 @@
101 101  * Max continuously current: 130mA
102 102  * Max boost current: 2A, 1 second
103 103  
104 -(% style="color:#037691" %)**Power Consumption**
93 +**(% style="color:#037691" %)Power Consumption**
105 105  
106 106  * Sleep Mode: 5uA @ 3.3v
107 107  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
108 108  
98 +
109 109  == 1.4 Probe Types ==
110 110  
111 111  === 1.4.1 Thread Installation Type ===
... ... @@ -124,6 +124,7 @@
124 124  * Operating temperature: -20℃~~60℃
125 125  * Connector Type: Various Types, see order info
126 126  
117 +
127 127  === 1.4.2 Immersion Type ===
128 128  
129 129  
... ... @@ -133,20 +133,25 @@
133 133  * Measuring Range: Measure range can be customized, up to 100m.
134 134  * Accuracy: 0.2% F.S
135 135  * Long-Term Stability: ±0.2% F.S / Year
127 +* Overload 200% F.S
128 +* Zero Temperature Drift: ±2% F.S)
129 +* FS Temperature Drift: ±2% F.S
136 136  * Storage temperature: -30℃~~80℃
137 -* Operating temperature: 0℃~~50
131 +* Operating temperature: -40℃~~85℃
138 138  * Material: 316 stainless steels
139 139  
134 +
140 140  == 1.5 Probe Dimension ==
141 141  
142 142  
143 143  
139 +
144 144  == 1.6 Application and Installation ==
145 145  
146 146  === 1.6.1 Thread Installation Type ===
147 147  
148 148  
149 -(% style="color:blue" %)**Application:**
145 +**(% style="color:blue" %)Application:**
150 150  
151 151  * Hydraulic Pressure
152 152  * Petrochemical Industry
... ... @@ -164,7 +164,7 @@
164 164  === 1.6.2 Immersion Type ===
165 165  
166 166  
167 -(% style="color:blue" %)**Application:**
163 +**(% style="color:blue" %)Application:**
168 168  
169 169  Liquid & Water Pressure / Level detect.
170 170  
... ... @@ -183,9 +183,9 @@
183 183  == 1.7 Sleep mode and working mode ==
184 184  
185 185  
186 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
182 +**(% style="color:blue" %)Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
187 187  
188 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
184 +**(% style="color:blue" %)Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
189 189  
190 190  
191 191  == 1.8 Button & LEDs ==
... ... @@ -194,20 +194,24 @@
194 194  [[image:1675071855856-879.png]]
195 195  
196 196  
197 -(% border="1" cellspacing="4" style="width:510px" %)
198 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
199 -|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
200 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
193 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
194 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action**
195 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
196 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **(% style="color:blue" %)blue led** (%%)will blink once.
197 +
201 201  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
202 202  )))
203 -|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
204 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
205 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
200 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
201 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:#037691" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
202 +
203 +**(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
204 +
206 206  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
207 207  )))
208 -|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB-NA is in Deep Sleep Mode.
207 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
209 209  
210 210  
210 +
211 211  == 1.9 Pin Mapping ==
212 212  
213 213  
... ... @@ -232,6 +232,8 @@
232 232  == 1.11 Mechanical ==
233 233  
234 234  
235 +
236 +
235 235  [[image:1675143884058-338.png]]
236 236  
237 237  
... ... @@ -246,9 +246,10 @@
246 246  == 2.1 How it works ==
247 247  
248 248  
249 -The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
251 +The PS-LB is configured as **(% style="color:#037691" %)LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
250 250  
251 251  
254 +
252 252  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
253 253  
254 254  
... ... @@ -261,7 +261,7 @@
261 261  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
262 262  
263 263  
264 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
267 +**(% style="color:blue" %)Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
265 265  
266 266  Each PS-LB is shipped with a sticker with the default device EUI as below:
267 267  
... ... @@ -272,38 +272,48 @@
272 272  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
273 273  
274 274  
275 -(% style="color:blue" %)**Register the device**
278 +**(% style="color:blue" %)Register the device**
276 276  
277 277  [[image:1675144099263-405.png]]
278 278  
279 279  
280 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
283 +**(% style="color:blue" %)Add APP EUI and DEV EUI**
281 281  
282 282  [[image:1675144117571-832.png]]
283 283  
284 284  
285 -(% style="color:blue" %)**Add APP EUI in the application**
288 +**(% style="color:blue" %)Add APP EUI in the application**
286 286  
287 287  
288 288  [[image:1675144143021-195.png]]
289 289  
290 290  
291 -(% style="color:blue" %)**Add APP KEY**
294 +**(% style="color:blue" %)Add APP KEY**
292 292  
293 293  [[image:1675144157838-392.png]]
294 294  
295 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
298 +**(% style="color:blue" %)Step 2:**(%%) Activate on PS-LB
296 296  
297 297  
298 298  Press the button for 5 seconds to activate the PS-LB.
299 299  
300 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
303 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:blue" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. **(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
301 301  
302 302  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
303 303  
304 304  
308 +
305 305  == 2.3 ​Uplink Payload ==
306 306  
311 +
312 +Uplink payloads have two types:
313 +
314 +* Distance Value: Use FPORT=2
315 +* Other control commands: Use other FPORT fields.
316 +
317 +The application server should parse the correct value based on FPORT settings.
318 +
319 +
307 307  === 2.3.1 Device Status, FPORT~=5 ===
308 308  
309 309  
... ... @@ -314,8 +314,8 @@
314 314  
315 315  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
316 316  |(% colspan="6" %)**Device Status (FPORT=5)**
317 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
318 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
330 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
331 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
319 319  
320 320  Example parse in TTNv3
321 321  
... ... @@ -322,11 +322,11 @@
322 322  [[image:1675144504430-490.png]]
323 323  
324 324  
325 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
338 +**(% style="color:#037691" %)Sensor Model**(%%): For PS-LB, this value is 0x16
326 326  
327 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
340 +**(% style="color:#037691" %)Firmware Version**(%%): 0x0100, Means: v1.0.0 version
328 328  
329 -(% style="color:#037691" %)**Frequency Band**:
342 +**(% style="color:#037691" %)Frequency Band**:
330 330  
331 331  *0x01: EU868
332 332  
... ... @@ -357,7 +357,7 @@
357 357  *0x0e: MA869
358 358  
359 359  
360 -(% style="color:#037691" %)**Sub-Band**:
373 +**(% style="color:#037691" %)Sub-Band**:
361 361  
362 362  AU915 and US915:value 0x00 ~~ 0x08
363 363  
... ... @@ -366,7 +366,7 @@
366 366  Other Bands: Always 0x00
367 367  
368 368  
369 -(% style="color:#037691" %)**Battery Info**:
382 +**(% style="color:#037691" %)Battery Info**:
370 370  
371 371  Check the battery voltage.
372 372  
... ... @@ -384,12 +384,13 @@
384 384  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
385 385  |(% style="width:97px" %)(((
386 386  **Size(bytes)**
387 -)))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
388 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
400 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1**
401 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
389 389  
390 390  [[image:1675144608950-310.png]]
391 391  
392 392  
406 +
393 393  === 2.3.3 Battery Info ===
394 394  
395 395  
... ... @@ -403,41 +403,35 @@
403 403  === 2.3.4 Probe Model ===
404 404  
405 405  
406 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
420 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
407 407  
408 408  
409 409  For example.
410 410  
411 411  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
412 -|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning**
413 -|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
414 -|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
415 -|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure
426 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
427 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
428 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
416 416  
417 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
430 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
418 418  
419 419  
420 420  === 2.3.5 0~~20mA value (IDC_IN) ===
421 421  
422 422  
423 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
436 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
424 424  
425 -(% style="color:#037691" %)**Example**:
438 +**(% style="color:#037691" %)Example**:
426 426  
427 427  27AE(H) = 10158 (D)/1000 = 10.158mA.
428 428  
429 429  
430 -Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
431 -
432 -[[image:image-20230225154759-1.png||height="408" width="741"]]
433 -
434 -
435 435  === 2.3.6 0~~30V value ( pin VDC_IN) ===
436 436  
437 437  
438 438  Measure the voltage value. The range is 0 to 30V.
439 439  
440 -(% style="color:#037691" %)**Example**:
448 +**(% style="color:#037691" %)Example**:
441 441  
442 442  138E(H) = 5006(D)/1000= 5.006V
443 443  
... ... @@ -447,45 +447,27 @@
447 447  
448 448  IN1 and IN2 are used as digital input pins.
449 449  
450 -(% style="color:#037691" %)**Example**:
458 +**(% style="color:#037691" %)Example**:
451 451  
452 -09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
460 +09 (H) :(0x09&0x08)>>3=1    IN1 pin is high level.
453 453  
454 -09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
462 +09 (H) :(0x09&0x04)>>2=0    IN2 pin is low level.
455 455  
456 456  
457 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
465 +This data field shows if this packet is generated by **Interrupt Pin** or not. [[Click here>>path:#Int_mod]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
458 458  
459 -(% style="color:#037691" %)**Example:**
467 +**(% style="color:#037691" %)Example:**
460 460  
461 -09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
469 +09 (H) : (0x09&0x02)>>1=1    The level of the interrupt pin.
462 462  
463 -09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
471 +09 (H) : 0x09&0x01=1              0x00: Normal uplink packet.
464 464  
465 465  0x01: Interrupt Uplink Packet.
466 466  
467 467  
468 -=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 ===
476 +=== 2.3.8 ​Decode payload in The Things Network ===
469 469  
470 470  
471 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
472 -|(% style="width:94px" %)(((
473 -**Size(bytes)**
474 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n
475 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
476 -Voltage value, each 2 bytes is a set of voltage values.
477 -)))
478 -
479 -[[image:image-20230220171300-1.png||height="207" width="863"]]
480 -
481 -Multiple sets of data collected are displayed in this form:
482 -
483 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
484 -
485 -
486 -=== 2.3.9 ​Decode payload in The Things Network ===
487 -
488 -
489 489  While using TTN network, you can add the payload format to decode the payload.
490 490  
491 491  
... ... @@ -507,9 +507,9 @@
507 507  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
508 508  
509 509  
510 -(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
500 +**(% style="color:blue" %)Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
511 511  
512 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
502 +**(% style="color:blue" %)Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
513 513  
514 514  
515 515  [[image:1675144951092-237.png]]
... ... @@ -518,9 +518,9 @@
518 518  [[image:1675144960452-126.png]]
519 519  
520 520  
521 -(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
511 +**(% style="color:blue" %)Step 3:**(%%) Create an account or log in Datacake.
522 522  
523 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
513 +**(% style="color:#blue" %)Step 4:** (%%)Create PS-LB product.
524 524  
525 525  [[image:1675145004465-869.png]]
526 526  
... ... @@ -533,7 +533,7 @@
533 533  [[image:1675145029119-717.png]]
534 534  
535 535  
536 -(% style="color:blue" %)**Step 5: **(%%)add payload decode
526 +**(% style="color:blue" %)Step 5: **(%%)add payload decode
537 537  
538 538  [[image:1675145051360-659.png]]
539 539  
... ... @@ -541,6 +541,7 @@
541 541  [[image:1675145060812-420.png]]
542 542  
543 543  
534 +
544 544  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
545 545  
546 546  
... ... @@ -563,267 +563,335 @@
563 563  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
564 564  
565 565  
566 -= 3. Configure PS-LB =
567 567  
568 -== 3.1 Configure Methods ==
558 += 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
569 569  
570 -PS-LB-NA supports below configure method:
571 571  
572 -* AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
573 -* AT Command via UART Connection : See [[FAQ>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual/#H7.FAQ]].
574 -* LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
561 +Use can configure PS-LB via AT Command or LoRaWAN Downlink.
575 575  
576 -== 3.2 General Commands ==
563 +* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
564 +* LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
577 577  
566 +
567 +There are two kinds of commands to configure PS-LB, they are:
568 +
569 +* **General Commands**.
570 +
578 578  These commands are to configure:
579 579  
580 580  * General system settings like: uplink interval.
581 581  * LoRaWAN protocol & radio related command.
582 582  
583 -They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
576 +They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
584 584  
585 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
578 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
586 586  
587 587  
581 +* **Commands special design for PS-LB**
588 588  
589 -== 3.3 Commands special design for PS-LB ==
590 -
591 591  These commands only valid for PS-LB, as below:
592 592  
593 593  
594 -=== 3.3.1 Set Transmit Interval Time ===
586 +== 3.1 Set Transmit Interval Time ==
595 595  
596 596  
597 597  Feature: Change LoRaWAN End Node Transmit Interval.
598 598  
599 -(% style="color:blue" %)**AT Command: AT+TDC**
591 +**AT Command: AT+TDC**
600 600  
601 601  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
602 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
603 -|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
594 +|**Command Example**|**Function**|**Response**
595 +|AT+TDC=?|Show current transmit Interval|(((
604 604  30000
597 +
605 605  OK
599 +
606 606  the interval is 30000ms = 30s
607 607  )))
608 -|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
602 +|AT+TDC=60000|Set Transmit Interval|(((
609 609  OK
604 +
610 610  Set transmit interval to 60000ms = 60 seconds
611 611  )))
612 612  
613 -(% style="color:blue" %)**Downlink Command: 0x01**
608 +**Downlink Command: 0x01**
614 614  
615 615  Format: Command Code (0x01) followed by 3 bytes time value.
616 616  
617 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
612 +If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
618 618  
619 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
620 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
614 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
615 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
621 621  
622 -=== 3.3.2 Set Interrupt Mode ===
623 623  
618 +== 3.2 Set Interrupt Mode ==
624 624  
620 +
625 625  Feature, Set Interrupt mode for GPIO_EXIT.
626 626  
627 -(% style="color:blue" %)**AT Command: AT+INTMOD**
623 +**AT Command: AT+INTMOD**
628 628  
629 629  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
630 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
631 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
626 +|**Command Example**|**Function**|**Response**
627 +|AT+INTMOD=?|Show current interrupt mode|(((
632 632  0
629 +
633 633  OK
634 -the mode is 0 =Disable Interrupt
631 +
632 +the mode is 0 = No interruption
635 635  )))
636 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
634 +|AT+INTMOD=2|(((
637 637  Set Transmit Interval
638 -0. (Disable Interrupt),
639 -~1. (Trigger by rising and falling edge)
640 -2. (Trigger by falling edge)
641 -3. (Trigger by rising edge)
642 -)))|(% style="width:157px" %)OK
643 643  
644 -(% style="color:blue" %)**Downlink Command: 0x06**
637 +~1. (Disable Interrupt),
645 645  
639 +2. (Trigger by rising and falling edge),
640 +
641 +3. (Trigger by falling edge)
642 +
643 +4. (Trigger by rising edge)
644 +)))|OK
645 +
646 +**Downlink Command: 0x06**
647 +
646 646  Format: Command Code (0x06) followed by 3 bytes.
647 647  
648 648  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
649 649  
650 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
651 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
652 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
653 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
652 652  
653 -=== 3.3.3 Set the output time ===
654 654  
655 655  
657 +== 3.3 Set the output time ==
658 +
659 +
656 656  Feature, Control the output 3V3 , 5V or 12V.
657 657  
658 -(% style="color:blue" %)**AT Command: AT+3V3T**
662 +**AT Command: AT+3V3T**
659 659  
660 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
661 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
662 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
664 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
665 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**
666 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
663 663  0
668 +
664 664  OK
665 665  )))
666 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
671 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
667 667  OK
673 +
668 668  default setting
669 669  )))
670 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
676 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
671 671  OK
678 +
679 +
672 672  )))
673 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
681 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
674 674  OK
683 +
684 +
675 675  )))
676 676  
677 -(% style="color:blue" %)**AT Command: AT+5VT**
678 678  
679 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
680 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
681 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
688 +**AT Command: AT+5VT**
689 +
690 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
691 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**
692 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
682 682  0
694 +
683 683  OK
684 684  )))
685 -|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
697 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
686 686  OK
699 +
687 687  default setting
688 688  )))
689 -|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
702 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
690 690  OK
704 +
705 +
691 691  )))
692 -|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
707 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
693 693  OK
709 +
710 +
694 694  )))
695 695  
696 -(% style="color:blue" %)**AT Command: AT+12VT**
697 697  
698 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
699 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
700 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
714 +**AT Command: AT+12VT**
715 +
716 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
717 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response**
718 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
701 701  0
720 +
702 702  OK
703 703  )))
704 -|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
705 -|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
723 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
724 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
706 706  OK
726 +
727 +
707 707  )))
708 708  
709 -(% style="color:blue" %)**Downlink Command: 0x07**
710 710  
731 +**Downlink Command: 0x07**
732 +
711 711  Format: Command Code (0x07) followed by 3 bytes.
712 712  
713 713  The first byte is which power, the second and third bytes are the time to turn on.
714 714  
715 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
716 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
717 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
718 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
719 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
720 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
737 +* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
738 +* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
739 +* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
740 +* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
741 +* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
742 +* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
721 721  
722 -=== 3.3.4 Set the Probe Model ===
723 723  
724 724  
725 -Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
746 +== 3.4 Set the Probe Model ==
726 726  
727 -**AT Command: AT** **+PROBE**
728 728  
729 -AT+PROBE=aabb
749 +**AT Command: AT** **+PROBE**
730 730  
731 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
751 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
752 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response**
753 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
754 +0
732 732  
733 -When aa=01, it is the pressure mode, which converts the current into a pressure value;
756 +OK
757 +)))
758 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
759 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
760 +OK
734 734  
735 -bb represents which type of pressure sensor it is.
736 -
737 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
738 -
739 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
740 -|**Command Example**|**Function**|**Response**
741 -|AT +PROBE =?|Get or Set the probe model.|0
762 +
763 +)))
764 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
742 742  OK
743 -|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK
744 -|(((
745 -AT +PROBE =000A
746 746  
747 747  
748 -)))|Set water depth sensor mode, 10m type.|OK
749 -|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK
750 -|AT +PROBE =0000|Initial state, no settings.|OK
768 +)))
751 751  
752 752  **Downlink Command: 0x08**
753 753  
754 754  Format: Command Code (0x08) followed by 2 bytes.
755 755  
756 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
757 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
774 +* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
775 +* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
758 758  
759 -=== 3.3.5 Multiple collections are one uplink(Since firmware V1.1) ===
760 760  
761 761  
762 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
779 += 4. Battery & how to replace =
763 763  
764 -(% style="color:blue" %)**AT Command: AT** **+STDC**
781 +== 4.1 Battery Type ==
765 765  
766 -AT+STDC=aa,bb,bb
767 767  
768 -(% style="color:#037691" %)**aa:**(%%)
769 -**0:** means disable this function and use TDC to send packets.
770 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
771 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
772 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
784 +PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
773 773  
774 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
775 -|**Command Example**|**Function**|**Response**
776 -|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18
777 -OK
778 -|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(((
779 -Attention:Take effect after ATZ
780 780  
781 -OK
782 -)))
783 -|AT+STDC=0, 0,0|(((
784 -Use the TDC interval to send packets.(default)
787 +The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
785 785  
786 -
787 -)))|(((
788 -Attention:Take effect after ATZ
789 +[[image:1675146710956-626.png]]
789 789  
790 -OK
791 -)))
792 792  
793 -(% style="color:blue" %)**Downlink Command: 0xAE**
792 +Minimum Working Voltage for the PS-LB:
794 794  
795 -Format: Command Code (0x08) followed by 5 bytes.
794 +PS-LB:  2.45v ~~ 3.6v
796 796  
797 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
798 798  
799 -= 4. Battery & Power Consumption =
797 +== 4.2 Replace Battery ==
800 800  
801 -PS-LB-NA uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
802 802  
803 - [[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
800 +Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
804 804  
802 +And make sure the positive and negative pins match.
805 805  
806 -= 5. OTA firmware update =
807 807  
805 +== 4.3 Power Consumption Analyze ==
808 808  
807 +
808 +Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
809 +
810 +
811 +Instruction to use as below:
812 +
813 +
814 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
815 +
816 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
817 +
818 +
819 +**Step 2:** Open it and choose
820 +
821 +* Product Model
822 +* Uplink Interval
823 +* Working Mode
824 +
825 +And the Life expectation in difference case will be shown on the right.
826 +
827 +[[image:1675146895108-304.png]]
828 +
829 +
830 +The battery related documents as below:
831 +
832 +* [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
833 +* [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
834 +* [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
835 +
836 +[[image:image-20230131145708-3.png]]
837 +
838 +
839 +=== 4.3.1 ​Battery Note ===
840 +
841 +
842 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
843 +
844 +
845 +=== 4.3.2 Replace the battery ===
846 +
847 +
848 +You can change the battery in the PS-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
849 +
850 +The default battery pack of PS-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
851 +
852 +
853 += 5. Remote Configure device =
854 +
855 +== 5.1 Connect via BLE ==
856 +
857 +
858 +Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
859 +
860 +
861 +== 5.2 AT Command Set ==
862 +
863 +
864 +
865 += 6. OTA firmware update =
866 +
867 +
809 809  Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
810 810  
811 811  
812 -= 6. FAQ =
871 += 7. FAQ =
813 813  
814 -== 6.1 How to use AT Command via UART to access device? ==
873 +== 7.1 How to use AT Command to access device? ==
815 815  
816 816  
817 817  See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
818 818  
819 819  
820 -== 6.2 How to update firmware via UART port? ==
879 +== 7.2 How to update firmware via UART port? ==
821 821  
822 822  
823 823  See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
824 824  
825 825  
826 -== 6.3 How to change the LoRa Frequency Bands/Region? ==
885 +== 7.3 How to change the LoRa Frequency Bands/Region? ==
827 827  
828 828  
829 829  You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
... ... @@ -830,20 +830,20 @@
830 830  When downloading the images, choose the required image file for download. ​
831 831  
832 832  
833 -= 7. Order Info =
892 += 8. Order Info =
834 834  
835 835  
836 836  [[image:image-20230131153105-4.png]]
837 837  
838 838  
839 -= 8. ​Packing Info =
898 += 9. ​Packing Info =
840 840  
841 841  
842 -(% style="color:#037691" %)**Package Includes**:
901 +**Package Includes**:
843 843  
844 844  * PS-LB LoRaWAN Pressure Sensor
845 845  
846 -(% style="color:#037691" %)**Dimension and weight**:
905 +**Dimension and weight**:
847 847  
848 848  * Device Size: cm
849 849  * Device Weight: g
... ... @@ -850,11 +850,12 @@
850 850  * Package Size / pcs : cm
851 851  * Weight / pcs : g
852 852  
853 -= 9. Support =
854 854  
855 855  
856 -* Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
914 += 10. Support =
857 857  
916 +
917 +* Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
858 858  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
859 859  
860 860  
image-20230201090514-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
image-20230222174559-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -19.4 KB
Content
image-20230225154759-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -468.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0