Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/04/27 10:31
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 4 removed)
Details
- Page properties
-
- Content
-
... ... @@ -16,33 +16,22 @@ 16 16 == 1.1 What is LoRaWAN Pressure Sensor == 17 17 18 18 19 -((( 20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 21 -))) 19 +The Dragino PS-LB series sensors are **(% style="color:blue" %)LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 22 22 23 -((( 24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 25 -))) 21 +The PS-LB series sensors include **(% style="color:blue" %)Thread Installation Type**(%%) and **(% style="color:blue" %)Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 26 26 27 -((( 28 28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 32 PS-LB supports BLE configure and wireless OTA update which make user easy to use. 33 -))) 34 34 35 -((( 36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 -))) 27 +PS-LB is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 38 38 39 -((( 40 40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 41 -))) 42 42 43 43 [[image:1675071321348-194.png]] 44 44 45 45 34 + 46 46 == 1.2 Features == 47 47 48 48 ... ... @@ -58,23 +58,23 @@ 58 58 * Uplink on periodically 59 59 * Downlink to change configure 60 60 * 8500mAh Battery for long term use 61 -* Controllable 3.3v,5v and 12v output to power external sensor 62 62 51 + 63 63 == 1.3 Specification == 64 64 65 65 66 -(% style="color:#037691" %) **Micro Controller:**55 +**(% style="color:#037691" %)Micro Controller:** 67 67 68 68 * MCU: 48Mhz ARM 69 69 * Flash: 256KB 70 70 * RAM: 64KB 71 71 72 -(% style="color:#037691" %) **Common DC Characteristics:**61 +**(% style="color:#037691" %)Common DC Characteristics:** 73 73 74 74 * Supply Voltage: 2.5v ~~ 3.6v 75 75 * Operating Temperature: -40 ~~ 85°C 76 76 77 -(% style="color:#037691" %) **LoRa Spec:**66 +**(% style="color:#037691" %)LoRa Spec:** 78 78 79 79 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 80 80 * Max +22 dBm constant RF output vs. ... ... @@ -81,19 +81,19 @@ 81 81 * RX sensitivity: down to -139 dBm. 82 82 * Excellent blocking immunity 83 83 84 -(% style="color:#037691" %) **Current Input Measuring :**73 +**(% style="color:#037691" %)Current Input Measuring :** 85 85 86 86 * Range: 0 ~~ 20mA 87 87 * Accuracy: 0.02mA 88 88 * Resolution: 0.001mA 89 89 90 -(% style="color:#037691" %) **Voltage Input Measuring:**79 +**(% style="color:#037691" %)Voltage Input Measuring:** 91 91 92 92 * Range: 0 ~~ 30v 93 93 * Accuracy: 0.02v 94 94 * Resolution: 0.001v 95 95 96 -(% style="color:#037691" %) **Battery:**85 +**(% style="color:#037691" %)Battery:** 97 97 98 98 * Li/SOCI2 un-chargeable battery 99 99 * Capacity: 8500mAh ... ... @@ -101,11 +101,12 @@ 101 101 * Max continuously current: 130mA 102 102 * Max boost current: 2A, 1 second 103 103 104 -(% style="color:#037691" %) **Power Consumption**93 +**(% style="color:#037691" %)Power Consumption** 105 105 106 106 * Sleep Mode: 5uA @ 3.3v 107 107 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 108 108 98 + 109 109 == 1.4 Probe Types == 110 110 111 111 === 1.4.1 Thread Installation Type === ... ... @@ -124,6 +124,7 @@ 124 124 * Operating temperature: -20℃~~60℃ 125 125 * Connector Type: Various Types, see order info 126 126 117 + 127 127 === 1.4.2 Immersion Type === 128 128 129 129 ... ... @@ -133,20 +133,25 @@ 133 133 * Measuring Range: Measure range can be customized, up to 100m. 134 134 * Accuracy: 0.2% F.S 135 135 * Long-Term Stability: ±0.2% F.S / Year 127 +* Overload 200% F.S 128 +* Zero Temperature Drift: ±2% F.S) 129 +* FS Temperature Drift: ±2% F.S 136 136 * Storage temperature: -30℃~~80℃ 137 -* Operating temperature: 0℃~~5 0℃131 +* Operating temperature: -40℃~~85℃ 138 138 * Material: 316 stainless steels 139 139 134 + 140 140 == 1.5 Probe Dimension == 141 141 142 142 143 143 139 + 144 144 == 1.6 Application and Installation == 145 145 146 146 === 1.6.1 Thread Installation Type === 147 147 148 148 149 -(% style="color:blue" %) **Application:**145 +**(% style="color:blue" %)Application:** 150 150 151 151 * Hydraulic Pressure 152 152 * Petrochemical Industry ... ... @@ -164,7 +164,7 @@ 164 164 === 1.6.2 Immersion Type === 165 165 166 166 167 -(% style="color:blue" %) **Application:**163 +**(% style="color:blue" %)Application:** 168 168 169 169 Liquid & Water Pressure / Level detect. 170 170 ... ... @@ -183,9 +183,9 @@ 183 183 == 1.7 Sleep mode and working mode == 184 184 185 185 186 -(% style="color:blue" %) **Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.182 +**(% style="color:blue" %)Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 187 187 188 -(% style="color:blue" %) **Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.184 +**(% style="color:blue" %)Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 189 189 190 190 191 191 == 1.8 Button & LEDs == ... ... @@ -194,20 +194,24 @@ 194 194 [[image:1675071855856-879.png]] 195 195 196 196 197 -(% border="1" cellspacing="4" style="width:510px" %) 198 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 199 -|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)((( 200 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 193 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 194 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action** 195 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|((( 196 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **(% style="color:blue" %)blue led** (%%)will blink once. 197 + 201 201 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 202 202 ))) 203 -|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)((( 204 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 205 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 200 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|((( 201 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:#037691" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 202 + 203 +**(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network. 204 + 206 206 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 207 207 ))) 208 -|(% style=" background-color:#f2f2f2;width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2;width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red"%)**Redled**(%%)will solid on for 5 seconds. Means PS-LB-NAis in Deep Sleep Mode.207 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 209 209 210 210 210 + 211 211 == 1.9 Pin Mapping == 212 212 213 213 ... ... @@ -232,6 +232,8 @@ 232 232 == 1.11 Mechanical == 233 233 234 234 235 + 236 + 235 235 [[image:1675143884058-338.png]] 236 236 237 237 ... ... @@ -246,9 +246,10 @@ 246 246 == 2.1 How it works == 247 247 248 248 249 -The PS-LB is configured as (% style="color:#037691" %) **LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.251 +The PS-LB is configured as **(% style="color:#037691" %)LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 250 250 251 251 254 + 252 252 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 253 253 254 254 ... ... @@ -261,7 +261,7 @@ 261 261 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 262 262 263 263 264 -(% style="color:blue" %) **Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.267 +**(% style="color:blue" %)Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB. 265 265 266 266 Each PS-LB is shipped with a sticker with the default device EUI as below: 267 267 ... ... @@ -272,38 +272,48 @@ 272 272 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 273 273 274 274 275 -(% style="color:blue" %) **Register the device**278 +**(% style="color:blue" %)Register the device** 276 276 277 277 [[image:1675144099263-405.png]] 278 278 279 279 280 -(% style="color:blue" %) **Add APP EUI and DEV EUI**283 +**(% style="color:blue" %)Add APP EUI and DEV EUI** 281 281 282 282 [[image:1675144117571-832.png]] 283 283 284 284 285 -(% style="color:blue" %) **Add APP EUI in the application**288 +**(% style="color:blue" %)Add APP EUI in the application** 286 286 287 287 288 288 [[image:1675144143021-195.png]] 289 289 290 290 291 -(% style="color:blue" %) **Add APP KEY**294 +**(% style="color:blue" %)Add APP KEY** 292 292 293 293 [[image:1675144157838-392.png]] 294 294 295 -(% style="color:blue" %) **Step 2:**(%%) Activate on PS-LB298 +**(% style="color:blue" %)Step 2:**(%%) Activate on PS-LB 296 296 297 297 298 298 Press the button for 5 seconds to activate the PS-LB. 299 299 300 -(% style="color:green" %) **Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.303 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:blue" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. **(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network. 301 301 302 302 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 303 303 304 304 308 + 305 305 == 2.3 Uplink Payload == 306 306 311 + 312 +Uplink payloads have two types: 313 + 314 +* Distance Value: Use FPORT=2 315 +* Other control commands: Use other FPORT fields. 316 + 317 +The application server should parse the correct value based on FPORT settings. 318 + 319 + 307 307 === 2.3.1 Device Status, FPORT~=5 === 308 308 309 309 ... ... @@ -314,8 +314,8 @@ 314 314 315 315 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 316 316 |(% colspan="6" %)**Device Status (FPORT=5)** 317 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**| (% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**318 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version| (% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT330 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2** 331 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT 319 319 320 320 Example parse in TTNv3 321 321 ... ... @@ -322,11 +322,11 @@ 322 322 [[image:1675144504430-490.png]] 323 323 324 324 325 -(% style="color:#037691" %) **Sensor Model**(%%): For PS-LB, this value is 0x16338 +**(% style="color:#037691" %)Sensor Model**(%%): For PS-LB, this value is 0x16 326 326 327 -(% style="color:#037691" %) **Firmware Version**(%%): 0x0100, Means: v1.0.0 version340 +**(% style="color:#037691" %)Firmware Version**(%%): 0x0100, Means: v1.0.0 version 328 328 329 -(% style="color:#037691" %) **Frequency Band**:342 +**(% style="color:#037691" %)Frequency Band**: 330 330 331 331 *0x01: EU868 332 332 ... ... @@ -357,7 +357,7 @@ 357 357 *0x0e: MA869 358 358 359 359 360 -(% style="color:#037691" %) **Sub-Band**:373 +**(% style="color:#037691" %)Sub-Band**: 361 361 362 362 AU915 and US915:value 0x00 ~~ 0x08 363 363 ... ... @@ -366,7 +366,7 @@ 366 366 Other Bands: Always 0x00 367 367 368 368 369 -(% style="color:#037691" %) **Battery Info**:382 +**(% style="color:#037691" %)Battery Info**: 370 370 371 371 Check the battery voltage. 372 372 ... ... @@ -384,12 +384,13 @@ 384 384 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 385 385 |(% style="width:97px" %)((( 386 386 **Size(bytes)** 387 -)))|(% style="width:48px" %)**2**|(% style="width: 71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**388 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3. 4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.8IN126IN226INTpin"]]400 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1** 401 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] 389 389 390 390 [[image:1675144608950-310.png]] 391 391 392 392 406 + 393 393 === 2.3.3 Battery Info === 394 394 395 395 ... ... @@ -403,41 +403,35 @@ 403 403 === 2.3.4 Probe Model === 404 404 405 405 406 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe.420 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 407 407 408 408 409 409 For example. 410 410 411 411 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 412 -|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning** 413 -|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 414 -|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 415 -|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure 426 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning** 427 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 428 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 416 416 417 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.430 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value. 418 418 419 419 420 420 === 2.3.5 0~~20mA value (IDC_IN) === 421 421 422 422 423 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.436 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level. 424 424 425 -(% style="color:#037691" %) **Example**:438 +**(% style="color:#037691" %)Example**: 426 426 427 427 27AE(H) = 10158 (D)/1000 = 10.158mA. 428 428 429 429 430 -Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example: 431 - 432 -[[image:image-20230225154759-1.png||height="408" width="741"]] 433 - 434 - 435 435 === 2.3.6 0~~30V value ( pin VDC_IN) === 436 436 437 437 438 438 Measure the voltage value. The range is 0 to 30V. 439 439 440 -(% style="color:#037691" %) **Example**:448 +**(% style="color:#037691" %)Example**: 441 441 442 442 138E(H) = 5006(D)/1000= 5.006V 443 443 ... ... @@ -447,45 +447,27 @@ 447 447 448 448 IN1 and IN2 are used as digital input pins. 449 449 450 -(% style="color:#037691" %) **Example**:458 +**(% style="color:#037691" %)Example**: 451 451 452 -09 (H) :(0x09&0x08)>>3=1 IN1 pin is high level.460 +09 (H) :(0x09&0x08)>>3=1 IN1 pin is high level. 453 453 454 -09 (H) :(0x09&0x04)>>2=0 IN2 pin is low level.462 +09 (H) :(0x09&0x04)>>2=0 IN2 pin is low level. 455 455 456 456 457 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin**(%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.465 +This data field shows if this packet is generated by **Interrupt Pin** or not. [[Click here>>path:#Int_mod]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal. 458 458 459 -(% style="color:#037691" %) **Example:**467 +**(% style="color:#037691" %)Example:** 460 460 461 -09 (H): (0x09&0x02)>>1=1 The level of the interrupt pin. 469 +09 (H) : (0x09&0x02)>>1=1 The level of the interrupt pin. 462 462 463 -09 (H): 0x09&0x01=1 0x00: Normal uplink packet. 471 +09 (H) : 0x09&0x01=1 0x00: Normal uplink packet. 464 464 465 465 0x01: Interrupt Uplink Packet. 466 466 467 467 468 -=== (%id="cke_bm_109176S"style="display:none"%) (%%)2.3.8 Sensorvalue, FPORT~=7===476 +=== 2.3.8 Decode payload in The Things Network === 469 469 470 470 471 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %) 472 -|(% style="width:94px" %)((( 473 -**Size(bytes)** 474 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n 475 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)((( 476 -Voltage value, each 2 bytes is a set of voltage values. 477 -))) 478 - 479 -[[image:image-20230220171300-1.png||height="207" width="863"]] 480 - 481 -Multiple sets of data collected are displayed in this form: 482 - 483 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2] 484 - 485 - 486 -=== 2.3.9 Decode payload in The Things Network === 487 - 488 - 489 489 While using TTN network, you can add the payload format to decode the payload. 490 490 491 491 ... ... @@ -507,9 +507,9 @@ 507 507 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 508 508 509 509 510 -(% style="color:blue" %) **Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.500 +**(% style="color:blue" %)Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time. 511 511 512 -(% style="color:blue" %) **Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:502 +**(% style="color:blue" %)Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 513 513 514 514 515 515 [[image:1675144951092-237.png]] ... ... @@ -518,9 +518,9 @@ 518 518 [[image:1675144960452-126.png]] 519 519 520 520 521 -(% style="color:blue" %) **Step 3:**(%%) Create an account or log in Datacake.511 +**(% style="color:blue" %)Step 3:**(%%) Create an account or log in Datacake. 522 522 523 -(% style="color:blue" %) **Step 4:** (%%)Create PS-LB product.513 +**(% style="color:#blue" %)Step 4:** (%%)Create PS-LB product. 524 524 525 525 [[image:1675145004465-869.png]] 526 526 ... ... @@ -533,7 +533,7 @@ 533 533 [[image:1675145029119-717.png]] 534 534 535 535 536 -(% style="color:blue" %) **Step 5: **(%%)add payload decode526 +**(% style="color:blue" %)Step 5: **(%%)add payload decode 537 537 538 538 [[image:1675145051360-659.png]] 539 539 ... ... @@ -541,6 +541,7 @@ 541 541 [[image:1675145060812-420.png]] 542 542 543 543 534 + 544 544 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 545 545 546 546 ... ... @@ -563,267 +563,335 @@ 563 563 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]] 564 564 565 565 566 -= 3. Configure PS-LB = 567 567 568 -= =3.1ConfigureMethods==558 += 3. Configure PS-LB via AT Command or LoRaWAN Downlink = 569 569 570 -PS-LB-NA supports below configure method: 571 571 572 -* AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 573 -* AT Command via UART Connection : See [[FAQ>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual/#H7.FAQ]]. 574 -* LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 561 +Use can configure PS-LB via AT Command or LoRaWAN Downlink. 575 575 576 -== 3.2 General Commands == 563 +* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]]. 564 +* LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 577 577 566 + 567 +There are two kinds of commands to configure PS-LB, they are: 568 + 569 +* **General Commands**. 570 + 578 578 These commands are to configure: 579 579 580 580 * General system settings like: uplink interval. 581 581 * LoRaWAN protocol & radio related command. 582 582 583 -They are same for all Dragino Device swhich support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:576 +They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: 584 584 585 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>> url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]578 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 586 586 587 587 581 +* **Commands special design for PS-LB** 588 588 589 -== 3.3 Commands special design for PS-LB == 590 - 591 591 These commands only valid for PS-LB, as below: 592 592 593 593 594 -== =3.3.1 Set Transmit Interval Time ===586 +== 3.1 Set Transmit Interval Time == 595 595 596 596 597 597 Feature: Change LoRaWAN End Node Transmit Interval. 598 598 599 - (% style="color:blue" %)**AT Command: AT+TDC**591 +**AT Command: AT+TDC** 600 600 601 601 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 602 -| =(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**603 -| (% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((594 +|**Command Example**|**Function**|**Response** 595 +|AT+TDC=?|Show current transmit Interval|((( 604 604 30000 597 + 605 605 OK 599 + 606 606 the interval is 30000ms = 30s 607 607 ))) 608 -| (% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((602 +|AT+TDC=60000|Set Transmit Interval|((( 609 609 OK 604 + 610 610 Set transmit interval to 60000ms = 60 seconds 611 611 ))) 612 612 613 - (% style="color:blue" %)**Downlink Command: 0x01**608 +**Downlink Command: 0x01** 614 614 615 615 Format: Command Code (0x01) followed by 3 bytes time value. 616 616 617 -If the downlink payload=0100003C, it means set the END Node 's Transmit Interval to 0x00003C=60(S), while type code is 01.612 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 618 618 619 -* Example 1: Downlink Payload: 0100001E 620 -* Example 2: Downlink Payload: 0100003C 614 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 615 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 621 621 622 -=== 3.3.2 Set Interrupt Mode === 623 623 618 +== 3.2 Set Interrupt Mode == 624 624 620 + 625 625 Feature, Set Interrupt mode for GPIO_EXIT. 626 626 627 - (% style="color:blue" %)**AT Command: AT+INTMOD**623 +**AT Command: AT+INTMOD** 628 628 629 629 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 630 -| =(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**631 -| (% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((626 +|**Command Example**|**Function**|**Response** 627 +|AT+INTMOD=?|Show current interrupt mode|((( 632 632 0 629 + 633 633 OK 634 -the mode is 0 =Disable Interrupt 631 + 632 +the mode is 0 = No interruption 635 635 ))) 636 -| (% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((634 +|AT+INTMOD=2|((( 637 637 Set Transmit Interval 638 -0. (Disable Interrupt), 639 -~1. (Trigger by rising and falling edge) 640 -2. (Trigger by falling edge) 641 -3. (Trigger by rising edge) 642 -)))|(% style="width:157px" %)OK 643 643 644 - (%style="color:blue"%)**Downlink Command: 0x06**637 +~1. (Disable Interrupt), 645 645 639 +2. (Trigger by rising and falling edge), 640 + 641 +3. (Trigger by falling edge) 642 + 643 +4. (Trigger by rising edge) 644 +)))|OK 645 + 646 +**Downlink Command: 0x06** 647 + 646 646 Format: Command Code (0x06) followed by 3 bytes. 647 647 648 648 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 649 649 650 -* Example 1: Downlink Payload: 06000000 651 -* Example 2: Downlink Payload: 06000003 652 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 653 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 652 652 653 -=== 3.3.3 Set the output time === 654 654 655 655 657 +== 3.3 Set the output time == 658 + 659 + 656 656 Feature, Control the output 3V3 , 5V or 12V. 657 657 658 - (% style="color:blue" %)**AT Command: AT+3V3T**662 +**AT Command: AT+3V3T** 659 659 660 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 474px" %)661 -| =(% style="width:4px;" %)**Command Example**|=(% style="width:01px;" %)**Function**|=(% style="width:6px;" %)**Response**662 -|(% style="width:15 4px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((664 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 665 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response** 666 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)((( 663 663 0 668 + 664 664 OK 665 665 ))) 666 -|(% style="width:15 4px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((671 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)((( 667 667 OK 673 + 668 668 default setting 669 669 ))) 670 -|(% style="width:15 4px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((676 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)((( 671 671 OK 678 + 679 + 672 672 ))) 673 -|(% style="width:15 4px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((681 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)((( 674 674 OK 683 + 684 + 675 675 ))) 676 676 677 -(% style="color:blue" %)**AT Command: AT+5VT** 678 678 679 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %) 680 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response** 681 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)((( 688 +**AT Command: AT+5VT** 689 + 690 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 691 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response** 692 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)((( 682 682 0 694 + 683 683 OK 684 684 ))) 685 -|(% style="width:15 5px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((697 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)((( 686 686 OK 699 + 687 687 default setting 688 688 ))) 689 -|(% style="width:15 5px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((702 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)((( 690 690 OK 704 + 705 + 691 691 ))) 692 -|(% style="width:15 5px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((707 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)((( 693 693 OK 709 + 710 + 694 694 ))) 695 695 696 -(% style="color:blue" %)**AT Command: AT+12VT** 697 697 698 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %) 699 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response** 700 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)((( 714 +**AT Command: AT+12VT** 715 + 716 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 717 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response** 718 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|((( 701 701 0 720 + 702 702 OK 703 703 ))) 704 -|(% style="width:156px" %)AT+12VT=0|(% style="width: 199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK705 -|(% style="width:156px" %)AT+12VT=500|(% style="width: 199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((723 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK 724 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|((( 706 706 OK 726 + 727 + 707 707 ))) 708 708 709 -(% style="color:blue" %)**Downlink Command: 0x07** 710 710 731 +**Downlink Command: 0x07** 732 + 711 711 Format: Command Code (0x07) followed by 3 bytes. 712 712 713 713 The first byte is which power, the second and third bytes are the time to turn on. 714 714 715 -* Example 1: Downlink Payload: 070101F4 **~-~-->**716 -* Example 2: Downlink Payload: 0701FFFF **~-~-->**AT+3V3T=65535717 -* Example 3: Downlink Payload: 070203E8 **~-~-->**AT+5VT=1000718 -* Example 4: Downlink Payload: 07020000 **~-~-->**AT+5VT=0719 -* Example 5: Downlink Payload: 070301F4 **~-~-->**AT+12VT=500720 -* Example 6: Downlink Payload: 07030000 **~-~-->**AT+12VT=0737 +* Example 1: Downlink Payload: 070101F4 -> AT+3V3T=500 738 +* Example 2: Downlink Payload: 0701FFFF -> AT+3V3T=65535 739 +* Example 3: Downlink Payload: 070203E8 -> AT+5VT=1000 740 +* Example 4: Downlink Payload: 07020000 -> AT+5VT=0 741 +* Example 5: Downlink Payload: 070301F4 -> AT+12VT=500 742 +* Example 6: Downlink Payload: 07030000 -> AT+12VT=0 721 721 722 -=== 3.3.4 Set the Probe Model === 723 723 724 724 725 - Usersneed to configure this parameter according to the type of external probe.In this way, theserver can decode accordingtothis value,and convert the current valueoutputby thesensor into waterdepth or pressure value.746 +== 3.4 Set the Probe Model == 726 726 727 -**AT Command: AT** **+PROBE** 728 728 729 -AT+PROBE =aabb749 +**AT Command: AT** **+PROBE** 730 730 731 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters. 751 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 752 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response** 753 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|((( 754 +0 732 732 733 -When aa=01, it is the pressure mode, which converts the current into a pressure value; 756 +OK 757 +))) 758 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK 759 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|((( 760 +OK 734 734 735 -bb represents which type of pressure sensor it is. 736 - 737 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C) 738 - 739 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 740 -|**Command Example**|**Function**|**Response** 741 -|AT +PROBE =?|Get or Set the probe model.|0 762 + 763 +))) 764 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|((( 742 742 OK 743 -|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK 744 -|((( 745 -AT +PROBE =000A 746 746 747 747 748 -)))|Set water depth sensor mode, 10m type.|OK 749 -|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK 750 -|AT +PROBE =0000|Initial state, no settings.|OK 768 +))) 751 751 752 752 **Downlink Command: 0x08** 753 753 754 754 Format: Command Code (0x08) followed by 2 bytes. 755 755 756 -* Example 1: Downlink Payload: 080003 **~-~-->**757 -* Example 2: Downlink Payload: 080101 **~-~-->**774 +* Example 1: Downlink Payload: 080003 -> AT+PROBE=0003 775 +* Example 2: Downlink Payload: 080101 -> AT+PROBE=0101 758 758 759 -=== 3.3.5 Multiple collections are one uplink(Since firmware V1.1) === 760 760 761 761 762 - AddedAT+STDCcommandto collectthevoltageofVDC_INPUT multipletimes and upload it at onetime.779 += 4. Battery & how to replace = 763 763 764 - (%style="color:blue"%)**ATCommand: AT** **+STDC**781 +== 4.1 Battery Type == 765 765 766 -AT+STDC=aa,bb,bb 767 767 768 -(% style="color:#037691" %)**aa:**(%%) 769 -**0:** means disable this function and use TDC to send packets. 770 -**1:** means enable this function, use the method of multiple acquisitions to send packets. 771 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535 772 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120 784 +PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 773 773 774 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 775 -|**Command Example**|**Function**|**Response** 776 -|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18 777 -OK 778 -|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|((( 779 -Attention:Take effect after ATZ 780 780 781 -OK 782 -))) 783 -|AT+STDC=0, 0,0|((( 784 -Use the TDC interval to send packets.(default) 787 +The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 785 785 786 - 787 -)))|((( 788 -Attention:Take effect after ATZ 789 +[[image:1675146710956-626.png]] 789 789 790 -OK 791 -))) 792 792 793 - (% style="color:blue"%)**DownlinkCommand:0xAE**792 +Minimum Working Voltage for the PS-LB: 794 794 795 - Format:Command Code (0x08) followed by5bytes.794 +PS-LB: 2.45v ~~ 3.6v 796 796 797 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->** AT+STDC=1,600,18 798 798 799 -= 4. Battery & Power Consumption=797 +== 4.2 Replace Battery == 800 800 801 -PS-LB-NA uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 802 802 803 - [[**BatteryInfo&PowerConsumptionAnalyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]].800 +Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery. 804 804 802 +And make sure the positive and negative pins match. 805 805 806 -= 5. OTA firmware update = 807 807 805 +== 4.3 Power Consumption Analyze == 808 808 807 + 808 +Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 809 + 810 + 811 +Instruction to use as below: 812 + 813 + 814 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 815 + 816 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 817 + 818 + 819 +**Step 2:** Open it and choose 820 + 821 +* Product Model 822 +* Uplink Interval 823 +* Working Mode 824 + 825 +And the Life expectation in difference case will be shown on the right. 826 + 827 +[[image:1675146895108-304.png]] 828 + 829 + 830 +The battery related documents as below: 831 + 832 +* [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]], 833 +* [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]] 834 +* [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]] 835 + 836 +[[image:image-20230131145708-3.png]] 837 + 838 + 839 +=== 4.3.1 Battery Note === 840 + 841 + 842 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 843 + 844 + 845 +=== 4.3.2 Replace the battery === 846 + 847 + 848 +You can change the battery in the PS-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board. 849 + 850 +The default battery pack of PS-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 851 + 852 + 853 += 5. Remote Configure device = 854 + 855 +== 5.1 Connect via BLE == 856 + 857 + 858 +Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]] 859 + 860 + 861 +== 5.2 AT Command Set == 862 + 863 + 864 + 865 += 6. OTA firmware update = 866 + 867 + 809 809 Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 810 810 811 811 812 -= 6. FAQ =871 += 7. FAQ = 813 813 814 -== 6.1 How to use AT Commandvia UARTto access device? ==873 +== 7.1 How to use AT Command to access device? == 815 815 816 816 817 817 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]] 818 818 819 819 820 -== 6.2 How to update firmware via UART port? ==879 +== 7.2 How to update firmware via UART port? == 821 821 822 822 823 823 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]] 824 824 825 825 826 -== 6.3 How to change the LoRa Frequency Bands/Region? ==885 +== 7.3 How to change the LoRa Frequency Bands/Region? == 827 827 828 828 829 829 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]. ... ... @@ -830,20 +830,20 @@ 830 830 When downloading the images, choose the required image file for download. 831 831 832 832 833 -= 7. Order Info =892 += 8. Order Info = 834 834 835 835 836 836 [[image:image-20230131153105-4.png]] 837 837 838 838 839 -= 8. Packing Info =898 += 9. Packing Info = 840 840 841 841 842 - (% style="color:#037691" %)**Package Includes**:901 +**Package Includes**: 843 843 844 844 * PS-LB LoRaWAN Pressure Sensor 845 845 846 - (% style="color:#037691" %)**Dimension and weight**:905 +**Dimension and weight**: 847 847 848 848 * Device Size: cm 849 849 * Device Weight: g ... ... @@ -850,11 +850,12 @@ 850 850 * Package Size / pcs : cm 851 851 * Weight / pcs : g 852 852 853 -= 9. Support = 854 854 855 855 856 - *Support is provided Monday to Friday, from 09:00 to18:00 GMT+8.Due to different timezones we cannot offer live support.However, your questions will be answered as soon as possible in the before-mentioned schedule.914 += 10. Support = 857 857 916 + 917 +* Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 858 858 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 859 859 860 860
- image-20230201090514-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -560.9 KB - Content
- image-20230220171300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.0 KB - Content
- image-20230222174559-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -19.4 KB - Content
- image-20230225154759-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -468.9 KB - Content