<
From version < 53.1 >
edited by Edwin Chen
on 2023/04/01 21:15
To version < 42.15 >
edited by Xiaoling
on 2023/01/31 16:10
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.Xiaoling
Content
... ... @@ -16,33 +16,22 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 -(((
20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 -)))
19 +The Dragino PS-LB series sensors are **(% style="color:blue" %)LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
22 22  
23 -(((
24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 -)))
21 +The PS-LB series sensors include **(% style="color:blue" %)Thread Installation Type**(%%) and **(% style="color:blue" %)Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
26 26  
27 -(((
28 28  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 32  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 -)))
34 34  
35 -(((
36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 -)))
27 +PS-LB is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
38 38  
39 -(((
40 40  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 -)))
42 42  
43 43  [[image:1675071321348-194.png]]
44 44  
45 45  
34 +
46 46  == 1.2 ​Features ==
47 47  
48 48  
... ... @@ -58,24 +58,23 @@
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * 8500mAh Battery for long term use
61 -* Controllable 3.3v,5v and 12v output to power external sensor
62 62  
63 63  
64 64  == 1.3 Specification ==
65 65  
66 66  
67 -(% style="color:#037691" %)**Micro Controller:**
55 +**(% style="color:#037691" %)Micro Controller:**
68 68  
69 69  * MCU: 48Mhz ARM
70 70  * Flash: 256KB
71 71  * RAM: 64KB
72 72  
73 -(% style="color:#037691" %)**Common DC Characteristics:**
61 +**(% style="color:#037691" %)Common DC Characteristics:**
74 74  
75 75  * Supply Voltage: 2.5v ~~ 3.6v
76 76  * Operating Temperature: -40 ~~ 85°C
77 77  
78 -(% style="color:#037691" %)**LoRa Spec:**
66 +**(% style="color:#037691" %)LoRa Spec:**
79 79  
80 80  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
81 81  * Max +22 dBm constant RF output vs.
... ... @@ -82,19 +82,19 @@
82 82  * RX sensitivity: down to -139 dBm.
83 83  * Excellent blocking immunity
84 84  
85 -(% style="color:#037691" %)**Current Input Measuring :**
73 +**(% style="color:#037691" %)Current Input Measuring :**
86 86  
87 87  * Range: 0 ~~ 20mA
88 88  * Accuracy: 0.02mA
89 89  * Resolution: 0.001mA
90 90  
91 -(% style="color:#037691" %)**Voltage Input Measuring:**
79 +**(% style="color:#037691" %)Voltage Input Measuring:**
92 92  
93 93  * Range: 0 ~~ 30v
94 94  * Accuracy: 0.02v
95 95  * Resolution: 0.001v
96 96  
97 -(% style="color:#037691" %)**Battery:**
85 +**(% style="color:#037691" %)Battery:**
98 98  
99 99  * Li/SOCI2 un-chargeable battery
100 100  * Capacity: 8500mAh
... ... @@ -102,7 +102,7 @@
102 102  * Max continuously current: 130mA
103 103  * Max boost current: 2A, 1 second
104 104  
105 -(% style="color:#037691" %)**Power Consumption**
93 +**(% style="color:#037691" %)Power Consumption**
106 106  
107 107  * Sleep Mode: 5uA @ 3.3v
108 108  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
... ... @@ -136,8 +136,11 @@
136 136  * Measuring Range: Measure range can be customized, up to 100m.
137 137  * Accuracy: 0.2% F.S
138 138  * Long-Term Stability: ±0.2% F.S / Year
127 +* Overload 200% F.S
128 +* Zero Temperature Drift: ±2% F.S)
129 +* FS Temperature Drift: ±2% F.S
139 139  * Storage temperature: -30℃~~80℃
140 -* Operating temperature: 0℃~~50
131 +* Operating temperature: -40℃~~85℃
141 141  * Material: 316 stainless steels
142 142  
143 143  
... ... @@ -145,12 +145,13 @@
145 145  
146 146  
147 147  
139 +
148 148  == 1.6 Application and Installation ==
149 149  
150 150  === 1.6.1 Thread Installation Type ===
151 151  
152 152  
153 -(% style="color:blue" %)**Application:**
145 +**(% style="color:blue" %)Application:**
154 154  
155 155  * Hydraulic Pressure
156 156  * Petrochemical Industry
... ... @@ -168,7 +168,7 @@
168 168  === 1.6.2 Immersion Type ===
169 169  
170 170  
171 -(% style="color:blue" %)**Application:**
163 +**(% style="color:blue" %)Application:**
172 172  
173 173  Liquid & Water Pressure / Level detect.
174 174  
... ... @@ -187,9 +187,9 @@
187 187  == 1.7 Sleep mode and working mode ==
188 188  
189 189  
190 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
182 +**(% style="color:blue" %)Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
191 191  
192 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
184 +**(% style="color:blue" %)Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
193 193  
194 194  
195 195  == 1.8 Button & LEDs ==
... ... @@ -199,19 +199,23 @@
199 199  
200 200  
201 201  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
202 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
203 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
204 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
194 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action**
195 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
196 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **(% style="color:blue" %)blue led** (%%)will blink once.
197 +
205 205  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
206 206  )))
207 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
208 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
209 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
200 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
201 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:#037691" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
202 +
203 +**(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
204 +
210 210  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
211 211  )))
212 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
207 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
213 213  
214 214  
210 +
215 215  == 1.9 Pin Mapping ==
216 216  
217 217  
... ... @@ -236,6 +236,8 @@
236 236  == 1.11 Mechanical ==
237 237  
238 238  
235 +
236 +
239 239  [[image:1675143884058-338.png]]
240 240  
241 241  
... ... @@ -250,9 +250,10 @@
250 250  == 2.1 How it works ==
251 251  
252 252  
253 -The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
251 +The PS-LB is configured as **(% style="color:#037691" %)LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
254 254  
255 255  
254 +
256 256  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
257 257  
258 258  
... ... @@ -265,7 +265,7 @@
265 265  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
266 266  
267 267  
268 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
267 +**(% style="color:blue" %)Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
269 269  
270 270  Each PS-LB is shipped with a sticker with the default device EUI as below:
271 271  
... ... @@ -276,38 +276,48 @@
276 276  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
277 277  
278 278  
279 -(% style="color:blue" %)**Register the device**
278 +**(% style="color:blue" %)Register the device**
280 280  
281 281  [[image:1675144099263-405.png]]
282 282  
283 283  
284 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
283 +**(% style="color:blue" %)Add APP EUI and DEV EUI**
285 285  
286 286  [[image:1675144117571-832.png]]
287 287  
288 288  
289 -(% style="color:blue" %)**Add APP EUI in the application**
288 +**(% style="color:blue" %)Add APP EUI in the application**
290 290  
291 291  
292 292  [[image:1675144143021-195.png]]
293 293  
294 294  
295 -(% style="color:blue" %)**Add APP KEY**
294 +**(% style="color:blue" %)Add APP KEY**
296 296  
297 297  [[image:1675144157838-392.png]]
298 298  
299 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
298 +**(% style="color:blue" %)Step 2:**(%%) Activate on PS-LB
300 300  
301 301  
302 302  Press the button for 5 seconds to activate the PS-LB.
303 303  
304 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
303 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:blue" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. **(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
305 305  
306 306  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
307 307  
308 308  
308 +
309 309  == 2.3 ​Uplink Payload ==
310 310  
311 +
312 +Uplink payloads have two types:
313 +
314 +* Distance Value: Use FPORT=2
315 +* Other control commands: Use other FPORT fields.
316 +
317 +The application server should parse the correct value based on FPORT settings.
318 +
319 +
311 311  === 2.3.1 Device Status, FPORT~=5 ===
312 312  
313 313  
... ... @@ -318,8 +318,8 @@
318 318  
319 319  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
320 320  |(% colspan="6" %)**Device Status (FPORT=5)**
321 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
322 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
330 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
331 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
323 323  
324 324  Example parse in TTNv3
325 325  
... ... @@ -326,11 +326,11 @@
326 326  [[image:1675144504430-490.png]]
327 327  
328 328  
329 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
338 +**(% style="color:#037691" %)Sensor Model**(%%): For PS-LB, this value is 0x16
330 330  
331 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
340 +**(% style="color:#037691" %)Firmware Version**(%%): 0x0100, Means: v1.0.0 version
332 332  
333 -(% style="color:#037691" %)**Frequency Band**:
342 +**(% style="color:#037691" %)Frequency Band**:
334 334  
335 335  *0x01: EU868
336 336  
... ... @@ -361,7 +361,7 @@
361 361  *0x0e: MA869
362 362  
363 363  
364 -(% style="color:#037691" %)**Sub-Band**:
373 +**(% style="color:#037691" %)Sub-Band**:
365 365  
366 366  AU915 and US915:value 0x00 ~~ 0x08
367 367  
... ... @@ -370,7 +370,7 @@
370 370  Other Bands: Always 0x00
371 371  
372 372  
373 -(% style="color:#037691" %)**Battery Info**:
382 +**(% style="color:#037691" %)Battery Info**:
374 374  
375 375  Check the battery voltage.
376 376  
... ... @@ -388,12 +388,13 @@
388 388  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
389 389  |(% style="width:97px" %)(((
390 390  **Size(bytes)**
391 -)))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
392 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
400 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1**
401 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
393 393  
394 394  [[image:1675144608950-310.png]]
395 395  
396 396  
406 +
397 397  === 2.3.3 Battery Info ===
398 398  
399 399  
... ... @@ -407,41 +407,35 @@
407 407  === 2.3.4 Probe Model ===
408 408  
409 409  
410 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
420 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
411 411  
412 412  
413 413  For example.
414 414  
415 415  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
416 -|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning**
417 -|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
418 -|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
419 -|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure
426 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
427 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
428 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
420 420  
421 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
430 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
422 422  
423 423  
424 424  === 2.3.5 0~~20mA value (IDC_IN) ===
425 425  
426 426  
427 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
436 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
428 428  
429 -(% style="color:#037691" %)**Example**:
438 +**(% style="color:#037691" %)Example**:
430 430  
431 431  27AE(H) = 10158 (D)/1000 = 10.158mA.
432 432  
433 433  
434 -Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
435 -
436 -[[image:image-20230225154759-1.png||height="408" width="741"]]
437 -
438 -
439 439  === 2.3.6 0~~30V value ( pin VDC_IN) ===
440 440  
441 441  
442 442  Measure the voltage value. The range is 0 to 30V.
443 443  
444 -(% style="color:#037691" %)**Example**:
448 +**(% style="color:#037691" %)Example**:
445 445  
446 446  138E(H) = 5006(D)/1000= 5.006V
447 447  
... ... @@ -451,45 +451,27 @@
451 451  
452 452  IN1 and IN2 are used as digital input pins.
453 453  
454 -(% style="color:#037691" %)**Example**:
458 +**(% style="color:#037691" %)Example**:
455 455  
456 -09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
460 +09 (H) :(0x09&0x08)>>3=1    IN1 pin is high level.
457 457  
458 -09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
462 +09 (H) :(0x09&0x04)>>2=0    IN2 pin is low level.
459 459  
460 460  
461 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
465 +This data field shows if this packet is generated by **(% style="color:blue" %)Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
462 462  
463 -(% style="color:#037691" %)**Example:**
467 +**(% style="color:#037691" %)Example:**
464 464  
465 -09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
469 +09 (H) :(0x09&0x02)>>1=1    The level of the interrupt pin.
466 466  
467 -09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
471 +09 (H) :0x09&0x01=1              0x00: Normal uplink packet.
468 468  
469 469  0x01: Interrupt Uplink Packet.
470 470  
471 471  
472 -=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 ===
476 +=== 2.3.8 ​Decode payload in The Things Network ===
473 473  
474 474  
475 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
476 -|(% style="width:94px" %)(((
477 -**Size(bytes)**
478 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n
479 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
480 -Voltage value, each 2 bytes is a set of voltage values.
481 -)))
482 -
483 -[[image:image-20230220171300-1.png||height="207" width="863"]]
484 -
485 -Multiple sets of data collected are displayed in this form:
486 -
487 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
488 -
489 -
490 -=== 2.3.9 ​Decode payload in The Things Network ===
491 -
492 -
493 493  While using TTN network, you can add the payload format to decode the payload.
494 494  
495 495  
... ... @@ -511,9 +511,9 @@
511 511  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
512 512  
513 513  
514 -(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
500 +**(% style="color:blue" %)Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
515 515  
516 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
502 +**(% style="color:blue" %)Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
517 517  
518 518  
519 519  [[image:1675144951092-237.png]]
... ... @@ -522,9 +522,9 @@
522 522  [[image:1675144960452-126.png]]
523 523  
524 524  
525 -(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
511 +**(% style="color:blue" %)Step 3:**(%%) Create an account or log in Datacake.
526 526  
527 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
513 +**(% style="color:#blue" %)Step 4:** (%%)Create PS-LB product.
528 528  
529 529  [[image:1675145004465-869.png]]
530 530  
... ... @@ -537,7 +537,7 @@
537 537  [[image:1675145029119-717.png]]
538 538  
539 539  
540 -(% style="color:blue" %)**Step 5: **(%%)add payload decode
526 +**(% style="color:blue" %)Step 5: **(%%)add payload decode
541 541  
542 542  [[image:1675145051360-659.png]]
543 543  
... ... @@ -545,6 +545,7 @@
545 545  [[image:1675145060812-420.png]]
546 546  
547 547  
534 +
548 548  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
549 549  
550 550  
... ... @@ -567,273 +567,335 @@
567 567  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
568 568  
569 569  
570 -= 3. Configure PS-LB =
571 571  
572 -== 3.1 Configure Methods ==
558 += 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
573 573  
574 -PS-LB-NA supports below configure method:
575 575  
576 -* AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
577 -* AT Command via UART Connection : See [[FAQ>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual/#H7.FAQ]].
578 -* LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
561 +Use can configure PS-LB via AT Command or LoRaWAN Downlink.
579 579  
563 +* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
564 +* LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
580 580  
581 -== 3.2 General Commands ==
582 582  
567 +There are two kinds of commands to configure PS-LB, they are:
568 +
569 +* **General Commands**.
570 +
583 583  These commands are to configure:
584 584  
585 585  * General system settings like: uplink interval.
586 586  * LoRaWAN protocol & radio related command.
587 587  
588 -They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
576 +They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
589 589  
590 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
578 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
591 591  
592 592  
581 +* **Commands special design for PS-LB**
593 593  
594 -== 3.3 Commands special design for PS-LB ==
595 -
596 596  These commands only valid for PS-LB, as below:
597 597  
598 598  
599 -=== 3.3.1 Set Transmit Interval Time ===
586 +== 3.1 Set Transmit Interval Time ==
600 600  
601 601  
602 602  Feature: Change LoRaWAN End Node Transmit Interval.
603 603  
604 -(% style="color:blue" %)**AT Command: AT+TDC**
591 +**AT Command: AT+TDC**
605 605  
606 606  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
607 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
608 -|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
594 +|**Command Example**|**Function**|**Response**
595 +|AT+TDC=?|Show current transmit Interval|(((
609 609  30000
597 +
610 610  OK
599 +
611 611  the interval is 30000ms = 30s
612 612  )))
613 -|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
602 +|AT+TDC=60000|Set Transmit Interval|(((
614 614  OK
604 +
615 615  Set transmit interval to 60000ms = 60 seconds
616 616  )))
617 617  
618 -(% style="color:blue" %)**Downlink Command: 0x01**
608 +**Downlink Command: 0x01**
619 619  
620 620  Format: Command Code (0x01) followed by 3 bytes time value.
621 621  
622 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
612 +If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
623 623  
624 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
625 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
614 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
615 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
626 626  
627 627  
628 -=== 3.3.2 Set Interrupt Mode ===
618 +== 3.2 Set Interrupt Mode ==
629 629  
630 630  
631 631  Feature, Set Interrupt mode for GPIO_EXIT.
632 632  
633 -(% style="color:blue" %)**AT Command: AT+INTMOD**
623 +**AT Command: AT+INTMOD**
634 634  
635 635  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
636 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
637 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
626 +|**Command Example**|**Function**|**Response**
627 +|AT+INTMOD=?|Show current interrupt mode|(((
638 638  0
629 +
639 639  OK
640 -the mode is 0 =Disable Interrupt
631 +
632 +the mode is 0 = No interruption
641 641  )))
642 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
634 +|AT+INTMOD=2|(((
643 643  Set Transmit Interval
644 -0. (Disable Interrupt),
645 -~1. (Trigger by rising and falling edge)
646 -2. (Trigger by falling edge)
647 -3. (Trigger by rising edge)
648 -)))|(% style="width:157px" %)OK
649 649  
650 -(% style="color:blue" %)**Downlink Command: 0x06**
637 +~1. (Disable Interrupt),
651 651  
639 +2. (Trigger by rising and falling edge),
640 +
641 +3. (Trigger by falling edge)
642 +
643 +4. (Trigger by rising edge)
644 +)))|OK
645 +
646 +**Downlink Command: 0x06**
647 +
652 652  Format: Command Code (0x06) followed by 3 bytes.
653 653  
654 654  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
655 655  
656 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
657 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
652 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
653 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
658 658  
659 659  
660 -=== 3.3.3 Set the output time ===
661 661  
657 +== 3.3 Set the output time ==
662 662  
659 +
663 663  Feature, Control the output 3V3 , 5V or 12V.
664 664  
665 -(% style="color:blue" %)**AT Command: AT+3V3T**
662 +**AT Command: AT+3V3T**
666 666  
667 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
668 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
669 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
664 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
665 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**
666 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
670 670  0
668 +
671 671  OK
672 672  )))
673 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
671 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
674 674  OK
673 +
675 675  default setting
676 676  )))
677 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
676 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
678 678  OK
678 +
679 +
679 679  )))
680 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
681 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
681 681  OK
683 +
684 +
682 682  )))
683 683  
684 -(% style="color:blue" %)**AT Command: AT+5VT**
685 685  
686 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
687 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
688 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
688 +**AT Command: AT+5VT**
689 +
690 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
691 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**
692 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
689 689  0
694 +
690 690  OK
691 691  )))
692 -|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
697 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
693 693  OK
699 +
694 694  default setting
695 695  )))
696 -|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
702 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
697 697  OK
704 +
705 +
698 698  )))
699 -|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
707 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
700 700  OK
709 +
710 +
701 701  )))
702 702  
703 -(% style="color:blue" %)**AT Command: AT+12VT**
704 704  
705 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
706 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
707 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
714 +**AT Command: AT+12VT**
715 +
716 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
717 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response**
718 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
708 708  0
720 +
709 709  OK
710 710  )))
711 -|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
712 -|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
723 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
724 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
713 713  OK
726 +
727 +
714 714  )))
715 715  
716 -(% style="color:blue" %)**Downlink Command: 0x07**
717 717  
731 +**Downlink Command: 0x07**
732 +
718 718  Format: Command Code (0x07) followed by 3 bytes.
719 719  
720 720  The first byte is which power, the second and third bytes are the time to turn on.
721 721  
722 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
723 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
724 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
725 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
726 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
727 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
737 +* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
738 +* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
739 +* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
740 +* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
741 +* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
742 +* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
728 728  
729 729  
730 -=== 3.3.4 Set the Probe Model ===
731 731  
746 +== 3.4 Set the Probe Model ==
732 732  
733 -Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
734 734  
735 -**AT Command: AT** **+PROBE**
749 +**AT Command: AT** **+PROBE**
736 736  
737 -AT+PROBE=aabb
751 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
752 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response**
753 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
754 +0
738 738  
739 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
756 +OK
757 +)))
758 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
759 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
760 +OK
740 740  
741 -When aa=01, it is the pressure mode, which converts the current into a pressure value;
742 -
743 -bb represents which type of pressure sensor it is.
744 -
745 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
746 -
747 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
748 -|**Command Example**|**Function**|**Response**
749 -|AT +PROBE =?|Get or Set the probe model.|0
762 +
763 +)))
764 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
750 750  OK
751 -|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK
752 -|(((
753 -AT +PROBE =000A
754 754  
755 755  
756 -)))|Set water depth sensor mode, 10m type.|OK
757 -|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK
758 -|AT +PROBE =0000|Initial state, no settings.|OK
768 +)))
759 759  
760 760  **Downlink Command: 0x08**
761 761  
762 762  Format: Command Code (0x08) followed by 2 bytes.
763 763  
764 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
765 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
774 +* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
775 +* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
766 766  
767 767  
768 -=== 3.3.5 Multiple collections are one uplink(Since firmware V1.1) ===
769 769  
779 += 4. Battery & how to replace =
770 770  
771 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
781 +== 4.1 Battery Type ==
772 772  
773 -(% style="color:blue" %)**AT Command: AT** **+STDC**
774 774  
775 -AT+STDC=aa,bb,bb
784 +PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
776 776  
777 -(% style="color:#037691" %)**aa:**(%%)
778 -**0:** means disable this function and use TDC to send packets.
779 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
780 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
781 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
782 782  
783 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
784 -|**Command Example**|**Function**|**Response**
785 -|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18
786 -OK
787 -|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(((
788 -Attention:Take effect after ATZ
787 +The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
789 789  
790 -OK
791 -)))
792 -|AT+STDC=0, 0,0|(((
793 -Use the TDC interval to send packets.(default)
789 +[[image:1675146710956-626.png]]
794 794  
795 -
796 -)))|(((
797 -Attention:Take effect after ATZ
798 798  
799 -OK
800 -)))
792 +Minimum Working Voltage for the PS-LB:
801 801  
802 -(% style="color:blue" %)**Downlink Command: 0xAE**
794 +PS-LB:  2.45v ~~ 3.6v
803 803  
804 -Format: Command Code (0x08) followed by 5 bytes.
805 805  
806 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
797 +== 4.2 Replace Battery ==
807 807  
808 808  
809 -= 4. Battery & Power Consumption =
800 +Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
810 810  
811 -PS-LB-NA uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
802 +And make sure the positive and negative pins match.
812 812  
813 - [[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
814 814  
805 +== 4.3 Power Consumption Analyze ==
815 815  
816 -= 5. OTA firmware update =
817 817  
808 +Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
818 818  
810 +
811 +Instruction to use as below:
812 +
813 +
814 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
815 +
816 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
817 +
818 +
819 +**Step 2:** Open it and choose
820 +
821 +* Product Model
822 +* Uplink Interval
823 +* Working Mode
824 +
825 +And the Life expectation in difference case will be shown on the right.
826 +
827 +[[image:1675146895108-304.png]]
828 +
829 +
830 +The battery related documents as below:
831 +
832 +* [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
833 +* [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
834 +* [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
835 +
836 +[[image:image-20230131145708-3.png]]
837 +
838 +
839 +=== 4.3.1 ​Battery Note ===
840 +
841 +
842 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
843 +
844 +
845 +=== 4.3.2 Replace the battery ===
846 +
847 +
848 +You can change the battery in the PS-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
849 +
850 +The default battery pack of PS-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
851 +
852 +
853 += 5. Remote Configure device =
854 +
855 +== 5.1 Connect via BLE ==
856 +
857 +
858 +Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
859 +
860 +
861 +== 5.2 AT Command Set ==
862 +
863 +
864 +
865 += 6. OTA firmware update =
866 +
867 +
819 819  Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
820 820  
821 821  
822 -= 6. FAQ =
871 += 7. FAQ =
823 823  
824 -== 6.1 How to use AT Command via UART to access device? ==
873 +== 7.1 How to use AT Command to access device? ==
825 825  
826 826  
827 827  See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
828 828  
829 829  
830 -== 6.2 How to update firmware via UART port? ==
879 +== 7.2 How to update firmware via UART port? ==
831 831  
832 832  
833 833  See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
834 834  
835 835  
836 -== 6.3 How to change the LoRa Frequency Bands/Region? ==
885 +== 7.3 How to change the LoRa Frequency Bands/Region? ==
837 837  
838 838  
839 839  You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
... ... @@ -840,20 +840,20 @@
840 840  When downloading the images, choose the required image file for download. ​
841 841  
842 842  
843 -= 7. Order Info =
892 += 8. Order Info =
844 844  
845 845  
846 846  [[image:image-20230131153105-4.png]]
847 847  
848 848  
849 -= 8. ​Packing Info =
898 += 9. ​Packing Info =
850 850  
851 851  
852 -(% style="color:#037691" %)**Package Includes**:
901 +**Package Includes**:
853 853  
854 854  * PS-LB LoRaWAN Pressure Sensor
855 855  
856 -(% style="color:#037691" %)**Dimension and weight**:
905 +**Dimension and weight**:
857 857  
858 858  * Device Size: cm
859 859  * Device Weight: g
... ... @@ -861,11 +861,11 @@
861 861  * Weight / pcs : g
862 862  
863 863  
864 -= 9. Support =
865 865  
914 += 10. Support =
866 866  
867 -* Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
868 868  
917 +* Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
869 869  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
870 870  
871 871  
image-20230201090514-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
image-20230222174559-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -19.4 KB
Content
image-20230225154759-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -468.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0