<
From version < 52.2 >
edited by Xiaoling
on 2023/03/24 13:55
To version < 42.25 >
edited by Xiaoling
on 2023/01/31 16:42
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -16,33 +16,22 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 -(((
20 20  The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 -)))
22 22  
23 -(((
24 24  The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 -)))
26 26  
27 -(((
28 28  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 32  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 -)))
34 34  
35 -(((
36 36  PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 -)))
38 38  
39 -(((
40 40  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 -)))
42 42  
43 43  [[image:1675071321348-194.png]]
44 44  
45 45  
34 +
46 46  == 1.2 ​Features ==
47 47  
48 48  
... ... @@ -58,10 +58,7 @@
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * 8500mAh Battery for long term use
61 -* Controllable 3.3v,5v and 12v output to power external sensor
62 62  
63 -
64 -
65 65  == 1.3 Specification ==
66 66  
67 67  
... ... @@ -108,8 +108,6 @@
108 108  * Sleep Mode: 5uA @ 3.3v
109 109  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
110 110  
111 -
112 -
113 113  == 1.4 Probe Types ==
114 114  
115 115  === 1.4.1 Thread Installation Type ===
... ... @@ -128,8 +128,6 @@
128 128  * Operating temperature: -20℃~~60℃
129 129  * Connector Type: Various Types, see order info
130 130  
131 -
132 -
133 133  === 1.4.2 Immersion Type ===
134 134  
135 135  
... ... @@ -139,16 +139,18 @@
139 139  * Measuring Range: Measure range can be customized, up to 100m.
140 140  * Accuracy: 0.2% F.S
141 141  * Long-Term Stability: ±0.2% F.S / Year
124 +* Overload 200% F.S
125 +* Zero Temperature Drift: ±2% F.S)
126 +* FS Temperature Drift: ±2% F.S
142 142  * Storage temperature: -30℃~~80℃
143 -* Operating temperature: 0℃~~50
128 +* Operating temperature: -40℃~~85℃
144 144  * Material: 316 stainless steels
145 145  
146 -
147 -
148 148  == 1.5 Probe Dimension ==
149 149  
150 150  
151 151  
135 +
152 152  == 1.6 Application and Installation ==
153 153  
154 154  === 1.6.1 Thread Installation Type ===
... ... @@ -203,20 +203,18 @@
203 203  
204 204  
205 205  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
206 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
207 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
190 +|=(% style="width: 150px;" %)**Behavior on ACT**|=(% style="width: 90px;" %)**Function**|=**Action**
191 +|(% style="width:260px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
208 208  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
209 209  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
210 210  )))
211 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
195 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
212 212  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
213 213  (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
214 214  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
215 215  )))
216 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
200 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
217 217  
218 -
219 -
220 220  == 1.9 Pin Mapping ==
221 221  
222 222  
... ... @@ -241,6 +241,8 @@
241 241  == 1.11 Mechanical ==
242 242  
243 243  
226 +
227 +
244 244  [[image:1675143884058-338.png]]
245 245  
246 246  
... ... @@ -258,6 +258,7 @@
258 258  The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
259 259  
260 260  
245 +
261 261  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
262 262  
263 263  
... ... @@ -311,8 +311,18 @@
311 311  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
312 312  
313 313  
299 +
314 314  == 2.3 ​Uplink Payload ==
315 315  
302 +
303 +Uplink payloads have two types:
304 +
305 +* Distance Value: Use FPORT=2
306 +* Other control commands: Use other FPORT fields.
307 +
308 +The application server should parse the correct value based on FPORT settings.
309 +
310 +
316 316  === 2.3.1 Device Status, FPORT~=5 ===
317 317  
318 318  
... ... @@ -323,8 +323,8 @@
323 323  
324 324  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
325 325  |(% colspan="6" %)**Device Status (FPORT=5)**
326 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
327 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
321 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
322 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
328 328  
329 329  Example parse in TTNv3
330 330  
... ... @@ -394,11 +394,12 @@
394 394  |(% style="width:97px" %)(((
395 395  **Size(bytes)**
396 396  )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
397 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
392 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
398 398  
399 399  [[image:1675144608950-310.png]]
400 400  
401 401  
397 +
402 402  === 2.3.3 Battery Info ===
403 403  
404 404  
... ... @@ -412,24 +412,23 @@
412 412  === 2.3.4 Probe Model ===
413 413  
414 414  
415 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
411 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
416 416  
417 417  
418 418  For example.
419 419  
420 420  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
421 -|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning**
422 -|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
423 -|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
424 -|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure
417 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
418 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
419 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
425 425  
426 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
421 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
427 427  
428 428  
429 429  === 2.3.5 0~~20mA value (IDC_IN) ===
430 430  
431 431  
432 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
427 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
433 433  
434 434  (% style="color:#037691" %)**Example**:
435 435  
... ... @@ -436,11 +436,6 @@
436 436  27AE(H) = 10158 (D)/1000 = 10.158mA.
437 437  
438 438  
439 -Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
440 -
441 -[[image:image-20230225154759-1.png||height="408" width="741"]]
442 -
443 -
444 444  === 2.3.6 0~~30V value ( pin VDC_IN) ===
445 445  
446 446  
... ... @@ -474,27 +474,9 @@
474 474  0x01: Interrupt Uplink Packet.
475 475  
476 476  
477 -=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 ===
467 +=== 2.3.8 ​Decode payload in The Things Network ===
478 478  
479 479  
480 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
481 -|(% style="width:94px" %)(((
482 -**Size(bytes)**
483 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n
484 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
485 -Voltage value, each 2 bytes is a set of voltage values.
486 -)))
487 -
488 -[[image:image-20230220171300-1.png||height="207" width="863"]]
489 -
490 -Multiple sets of data collected are displayed in this form:
491 -
492 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
493 -
494 -
495 -=== 2.3.9 ​Decode payload in The Things Network ===
496 -
497 -
498 498  While using TTN network, you can add the payload format to decode the payload.
499 499  
500 500  
... ... @@ -550,6 +550,7 @@
550 550  [[image:1675145060812-420.png]]
551 551  
552 552  
525 +
553 553  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
554 554  
555 555  
... ... @@ -572,6 +572,7 @@
572 572  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
573 573  
574 574  
548 +
575 575  = 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
576 576  
577 577  
... ... @@ -582,7 +582,7 @@
582 582  
583 583  There are two kinds of commands to configure PS-LB, they are:
584 584  
585 -* (% style="color:#037691" %)**General Commands**
559 +* (% style="color:#037691" %)**General Commands**.
586 586  
587 587  These commands are to configure:
588 588  
... ... @@ -610,11 +610,14 @@
610 610  |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
611 611  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
612 612  30000
587 +
613 613  OK
589 +
614 614  the interval is 30000ms = 30s
615 615  )))
616 616  |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
617 617  OK
594 +
618 618  Set transmit interval to 60000ms = 60 seconds
619 619  )))
620 620  
... ... @@ -622,13 +622,11 @@
622 622  
623 623  Format: Command Code (0x01) followed by 3 bytes time value.
624 624  
625 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
602 +If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
626 626  
627 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
628 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
604 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
605 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
629 629  
630 -
631 -
632 632  == 3.2 Set Interrupt Mode ==
633 633  
634 634  
... ... @@ -637,20 +637,26 @@
637 637  (% style="color:blue" %)**AT Command: AT+INTMOD**
638 638  
639 639  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
640 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
641 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
615 +|=**Command Example**|=**Function**|=**Response**
616 +|AT+INTMOD=?|Show current interrupt mode|(((
642 642  0
618 +
643 643  OK
644 -the mode is 0 =Disable Interrupt
620 +
621 +the mode is 0 = No interruption
645 645  )))
646 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
623 +|AT+INTMOD=2|(((
647 647  Set Transmit Interval
648 -0. (Disable Interrupt),
649 -~1. (Trigger by rising and falling edge)
650 -2. (Trigger by falling edge)
651 -3. (Trigger by rising edge)
652 -)))|(% style="width:157px" %)OK
653 653  
626 +~1. (Disable Interrupt),
627 +
628 +2. (Trigger by rising and falling edge),
629 +
630 +3. (Trigger by falling edge)
631 +
632 +4. (Trigger by rising edge)
633 +)))|OK
634 +
654 654  (% style="color:blue" %)**Downlink Command: 0x06**
655 655  
656 656  Format: Command Code (0x06) followed by 3 bytes.
... ... @@ -657,11 +657,9 @@
657 657  
658 658  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
659 659  
660 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
661 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
641 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
642 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
662 662  
663 -
664 -
665 665  == 3.3 Set the output time ==
666 666  
667 667  
... ... @@ -669,53 +669,68 @@
669 669  
670 670  (% style="color:blue" %)**AT Command: AT+3V3T**
671 671  
672 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
673 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
674 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
651 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
652 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 236px;" %)**Function**|=(% style="width: 117px;" %)**Response**
653 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
675 675  0
655 +
676 676  OK
677 677  )))
678 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
658 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
679 679  OK
660 +
680 680  default setting
681 681  )))
682 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
663 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
683 683  OK
665 +
666 +
684 684  )))
685 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
668 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
686 686  OK
670 +
671 +
687 687  )))
688 688  
689 689  (% style="color:blue" %)**AT Command: AT+5VT**
690 690  
691 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
692 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
693 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
676 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
677 +|=(% style="width: 158px;" %)**Command Example**|=(% style="width: 232px;" %)**Function**|=(% style="width: 119px;" %)**Response**
678 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
694 694  0
680 +
695 695  OK
696 696  )))
697 -|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
683 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
698 698  OK
685 +
699 699  default setting
700 700  )))
701 -|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
688 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
702 702  OK
690 +
691 +
703 703  )))
704 -|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
693 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
705 705  OK
695 +
696 +
706 706  )))
707 707  
708 708  (% style="color:blue" %)**AT Command: AT+12VT**
709 709  
710 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
711 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
712 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
701 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
702 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 268px;" %)**Function**|=**Response**
703 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
713 713  0
705 +
714 714  OK
715 715  )))
716 -|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
717 -|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
708 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
709 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
718 718  OK
711 +
712 +
719 719  )))
720 720  
721 721  (% style="color:blue" %)**Downlink Command: 0x07**
... ... @@ -724,96 +724,44 @@
724 724  
725 725  The first byte is which power, the second and third bytes are the time to turn on.
726 726  
727 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
728 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
729 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
730 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
731 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
732 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
721 +* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
722 +* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
723 +* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
724 +* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
725 +* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
726 +* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
733 733  
734 -
735 -
736 736  == 3.4 Set the Probe Model ==
737 737  
738 738  
739 -Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
731 +(% style="color:blue" %)**AT Command: AT** **+PROBE**
740 740  
741 -**AT Command: AT** **+PROBE**
742 -
743 -AT+PROBE=aabb
744 -
745 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
746 -
747 -When aa=01, it is the pressure mode, which converts the current into a pressure value;
748 -
749 -bb represents which type of pressure sensor it is.
750 -
751 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
752 -
753 753  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
754 -|**Command Example**|**Function**|**Response**
755 -|AT +PROBE =?|Get or Set the probe model.|0
756 -OK
757 -|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK
758 -|(((
759 -AT +PROBE =000A
734 +|=(% style="width: 157px;" %)**Command Example**|=(% style="width: 267px;" %)**Function**|=**Response**
735 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
736 +0
760 760  
761 -
762 -)))|Set water depth sensor mode, 10m type.|OK
763 -|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK
764 -|AT +PROBE =0000|Initial state, no settings.|OK
765 -
766 -**Downlink Command: 0x08**
767 -
768 -Format: Command Code (0x08) followed by 2 bytes.
769 -
770 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
771 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
772 -
773 -
774 -
775 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
776 -
777 -
778 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
779 -
780 -(% style="color:blue" %)**AT Command: AT** **+STDC**
781 -
782 -AT+STDC=aa,bb,bb
783 -
784 -(% style="color:#037691" %)**aa:**(%%)
785 -**0:** means disable this function and use TDC to send packets.
786 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
787 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
788 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
789 -
790 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
791 -|**Command Example**|**Function**|**Response**
792 -|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18
793 793  OK
794 -|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(((
795 -Attention:Take effect after ATZ
796 -
797 -OK
798 798  )))
799 -|AT+STDC=0, 0,0|(((
800 -Use the TDC interval to send packets.(default)
740 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
741 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
742 +OK
801 801  
802 802  
803 -)))|(((
804 -Attention:Take effect after ATZ
805 -
745 +)))
746 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
806 806  OK
748 +
749 +
807 807  )))
808 808  
809 -(% style="color:blue" %)**Downlink Command: 0xAE**
752 +(% style="color:blue" %)**Downlink Command: 0x08**
810 810  
811 -Format: Command Code (0x08) followed by 5 bytes.
754 +Format: Command Code (0x08) followed by 2 bytes.
812 812  
813 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
756 +* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
757 +* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
814 814  
815 -
816 -
817 817  = 4. Battery & how to replace =
818 818  
819 819  == 4.1 Battery Type ==
... ... @@ -821,6 +821,7 @@
821 821  
822 822  PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
823 823  
766 +
824 824  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
825 825  
826 826  [[image:1675146710956-626.png]]
... ... @@ -844,10 +844,15 @@
844 844  
845 845  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
846 846  
790 +
847 847  Instruction to use as below:
848 848  
849 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
850 850  
794 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
795 +
796 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
797 +
798 +
851 851  (% style="color:blue" %)**Step 2:**(%%) Open it and choose
852 852  
853 853  * Product Model
... ... @@ -902,7 +902,7 @@
902 902  
903 903  = 7. FAQ =
904 904  
905 -== 7.1 How to use AT Command via UART to access device? ==
853 +== 7.1 How to use AT Command to access device? ==
906 906  
907 907  
908 908  See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
... ... @@ -941,8 +941,6 @@
941 941  * Package Size / pcs : cm
942 942  * Weight / pcs : g
943 943  
944 -
945 -
946 946  = 10. Support =
947 947  
948 948  
image-20230201090514-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
image-20230222174559-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -19.4 KB
Content
image-20230225154759-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -468.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0