<
From version < 52.2 >
edited by Xiaoling
on 2023/03/24 13:55
To version < 42.16 >
edited by Xiaoling
on 2023/01/31 16:11
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -16,33 +16,22 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 -(((
20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 -)))
19 +The Dragino PS-LB series sensors are **(% style="color:blue" %)LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
22 22  
23 -(((
24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 -)))
21 +The PS-LB series sensors include **(% style="color:blue" %)Thread Installation Type**(%%) and **(% style="color:blue" %)Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
26 26  
27 -(((
28 28  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 32  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 -)))
34 34  
35 -(((
36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 -)))
27 +PS-LB is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
38 38  
39 -(((
40 40  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 -)))
42 42  
43 43  [[image:1675071321348-194.png]]
44 44  
45 45  
34 +
46 46  == 1.2 ​Features ==
47 47  
48 48  
... ... @@ -58,25 +58,23 @@
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * 8500mAh Battery for long term use
61 -* Controllable 3.3v,5v and 12v output to power external sensor
62 62  
63 63  
64 -
65 65  == 1.3 Specification ==
66 66  
67 67  
68 -(% style="color:#037691" %)**Micro Controller:**
55 +**(% style="color:#037691" %)Micro Controller:**
69 69  
70 70  * MCU: 48Mhz ARM
71 71  * Flash: 256KB
72 72  * RAM: 64KB
73 73  
74 -(% style="color:#037691" %)**Common DC Characteristics:**
61 +**(% style="color:#037691" %)Common DC Characteristics:**
75 75  
76 76  * Supply Voltage: 2.5v ~~ 3.6v
77 77  * Operating Temperature: -40 ~~ 85°C
78 78  
79 -(% style="color:#037691" %)**LoRa Spec:**
66 +**(% style="color:#037691" %)LoRa Spec:**
80 80  
81 81  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
82 82  * Max +22 dBm constant RF output vs.
... ... @@ -83,19 +83,19 @@
83 83  * RX sensitivity: down to -139 dBm.
84 84  * Excellent blocking immunity
85 85  
86 -(% style="color:#037691" %)**Current Input Measuring :**
73 +**(% style="color:#037691" %)Current Input Measuring :**
87 87  
88 88  * Range: 0 ~~ 20mA
89 89  * Accuracy: 0.02mA
90 90  * Resolution: 0.001mA
91 91  
92 -(% style="color:#037691" %)**Voltage Input Measuring:**
79 +**(% style="color:#037691" %)Voltage Input Measuring:**
93 93  
94 94  * Range: 0 ~~ 30v
95 95  * Accuracy: 0.02v
96 96  * Resolution: 0.001v
97 97  
98 -(% style="color:#037691" %)**Battery:**
85 +**(% style="color:#037691" %)Battery:**
99 99  
100 100  * Li/SOCI2 un-chargeable battery
101 101  * Capacity: 8500mAh
... ... @@ -103,13 +103,12 @@
103 103  * Max continuously current: 130mA
104 104  * Max boost current: 2A, 1 second
105 105  
106 -(% style="color:#037691" %)**Power Consumption**
93 +**(% style="color:#037691" %)Power Consumption**
107 107  
108 108  * Sleep Mode: 5uA @ 3.3v
109 109  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
110 110  
111 111  
112 -
113 113  == 1.4 Probe Types ==
114 114  
115 115  === 1.4.1 Thread Installation Type ===
... ... @@ -129,7 +129,6 @@
129 129  * Connector Type: Various Types, see order info
130 130  
131 131  
132 -
133 133  === 1.4.2 Immersion Type ===
134 134  
135 135  
... ... @@ -139,22 +139,25 @@
139 139  * Measuring Range: Measure range can be customized, up to 100m.
140 140  * Accuracy: 0.2% F.S
141 141  * Long-Term Stability: ±0.2% F.S / Year
127 +* Overload 200% F.S
128 +* Zero Temperature Drift: ±2% F.S)
129 +* FS Temperature Drift: ±2% F.S
142 142  * Storage temperature: -30℃~~80℃
143 -* Operating temperature: 0℃~~50
131 +* Operating temperature: -40℃~~85℃
144 144  * Material: 316 stainless steels
145 145  
146 146  
147 -
148 148  == 1.5 Probe Dimension ==
149 149  
150 150  
151 151  
139 +
152 152  == 1.6 Application and Installation ==
153 153  
154 154  === 1.6.1 Thread Installation Type ===
155 155  
156 156  
157 -(% style="color:blue" %)**Application:**
145 +**(% style="color:blue" %)Application:**
158 158  
159 159  * Hydraulic Pressure
160 160  * Petrochemical Industry
... ... @@ -172,7 +172,7 @@
172 172  === 1.6.2 Immersion Type ===
173 173  
174 174  
175 -(% style="color:blue" %)**Application:**
163 +**(% style="color:blue" %)Application:**
176 176  
177 177  Liquid & Water Pressure / Level detect.
178 178  
... ... @@ -191,9 +191,9 @@
191 191  == 1.7 Sleep mode and working mode ==
192 192  
193 193  
194 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
182 +**(% style="color:blue" %)Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
195 195  
196 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
184 +**(% style="color:blue" %)Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
197 197  
198 198  
199 199  == 1.8 Button & LEDs ==
... ... @@ -203,17 +203,20 @@
203 203  
204 204  
205 205  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
206 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
207 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
208 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
194 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action**
195 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
196 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **(% style="color:blue" %)blue led** (%%)will blink once.
197 +
209 209  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
210 210  )))
211 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
212 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
213 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
200 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
201 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:#037691" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
202 +
203 +**(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
204 +
214 214  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
215 215  )))
216 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
207 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
217 217  
218 218  
219 219  
... ... @@ -241,6 +241,8 @@
241 241  == 1.11 Mechanical ==
242 242  
243 243  
235 +
236 +
244 244  [[image:1675143884058-338.png]]
245 245  
246 246  
... ... @@ -255,9 +255,10 @@
255 255  == 2.1 How it works ==
256 256  
257 257  
258 -The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
251 +The PS-LB is configured as **(% style="color:#037691" %)LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
259 259  
260 260  
254 +
261 261  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
262 262  
263 263  
... ... @@ -270,7 +270,7 @@
270 270  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
271 271  
272 272  
273 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
267 +**(% style="color:blue" %)Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
274 274  
275 275  Each PS-LB is shipped with a sticker with the default device EUI as below:
276 276  
... ... @@ -281,38 +281,48 @@
281 281  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
282 282  
283 283  
284 -(% style="color:blue" %)**Register the device**
278 +**(% style="color:blue" %)Register the device**
285 285  
286 286  [[image:1675144099263-405.png]]
287 287  
288 288  
289 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
283 +**(% style="color:blue" %)Add APP EUI and DEV EUI**
290 290  
291 291  [[image:1675144117571-832.png]]
292 292  
293 293  
294 -(% style="color:blue" %)**Add APP EUI in the application**
288 +**(% style="color:blue" %)Add APP EUI in the application**
295 295  
296 296  
297 297  [[image:1675144143021-195.png]]
298 298  
299 299  
300 -(% style="color:blue" %)**Add APP KEY**
294 +**(% style="color:blue" %)Add APP KEY**
301 301  
302 302  [[image:1675144157838-392.png]]
303 303  
304 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
298 +**(% style="color:blue" %)Step 2:**(%%) Activate on PS-LB
305 305  
306 306  
307 307  Press the button for 5 seconds to activate the PS-LB.
308 308  
309 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
303 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:blue" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. **(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
310 310  
311 311  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
312 312  
313 313  
308 +
314 314  == 2.3 ​Uplink Payload ==
315 315  
311 +
312 +Uplink payloads have two types:
313 +
314 +* Distance Value: Use FPORT=2
315 +* Other control commands: Use other FPORT fields.
316 +
317 +The application server should parse the correct value based on FPORT settings.
318 +
319 +
316 316  === 2.3.1 Device Status, FPORT~=5 ===
317 317  
318 318  
... ... @@ -323,8 +323,8 @@
323 323  
324 324  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
325 325  |(% colspan="6" %)**Device Status (FPORT=5)**
326 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
327 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
330 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
331 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
328 328  
329 329  Example parse in TTNv3
330 330  
... ... @@ -331,11 +331,11 @@
331 331  [[image:1675144504430-490.png]]
332 332  
333 333  
334 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
338 +**(% style="color:#037691" %)Sensor Model**(%%): For PS-LB, this value is 0x16
335 335  
336 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
340 +**(% style="color:#037691" %)Firmware Version**(%%): 0x0100, Means: v1.0.0 version
337 337  
338 -(% style="color:#037691" %)**Frequency Band**:
342 +**(% style="color:#037691" %)Frequency Band**:
339 339  
340 340  *0x01: EU868
341 341  
... ... @@ -366,7 +366,7 @@
366 366  *0x0e: MA869
367 367  
368 368  
369 -(% style="color:#037691" %)**Sub-Band**:
373 +**(% style="color:#037691" %)Sub-Band**:
370 370  
371 371  AU915 and US915:value 0x00 ~~ 0x08
372 372  
... ... @@ -375,7 +375,7 @@
375 375  Other Bands: Always 0x00
376 376  
377 377  
378 -(% style="color:#037691" %)**Battery Info**:
382 +**(% style="color:#037691" %)Battery Info**:
379 379  
380 380  Check the battery voltage.
381 381  
... ... @@ -393,12 +393,13 @@
393 393  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
394 394  |(% style="width:97px" %)(((
395 395  **Size(bytes)**
396 -)))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
397 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
400 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1**
401 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
398 398  
399 399  [[image:1675144608950-310.png]]
400 400  
401 401  
406 +
402 402  === 2.3.3 Battery Info ===
403 403  
404 404  
... ... @@ -412,41 +412,35 @@
412 412  === 2.3.4 Probe Model ===
413 413  
414 414  
415 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
420 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
416 416  
417 417  
418 418  For example.
419 419  
420 420  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
421 -|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning**
422 -|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
423 -|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
424 -|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure
426 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
427 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
428 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
425 425  
426 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
430 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
427 427  
428 428  
429 429  === 2.3.5 0~~20mA value (IDC_IN) ===
430 430  
431 431  
432 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
436 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
433 433  
434 -(% style="color:#037691" %)**Example**:
438 +**(% style="color:#037691" %)Example**:
435 435  
436 436  27AE(H) = 10158 (D)/1000 = 10.158mA.
437 437  
438 438  
439 -Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
440 -
441 -[[image:image-20230225154759-1.png||height="408" width="741"]]
442 -
443 -
444 444  === 2.3.6 0~~30V value ( pin VDC_IN) ===
445 445  
446 446  
447 447  Measure the voltage value. The range is 0 to 30V.
448 448  
449 -(% style="color:#037691" %)**Example**:
448 +**(% style="color:#037691" %)Example**:
450 450  
451 451  138E(H) = 5006(D)/1000= 5.006V
452 452  
... ... @@ -456,45 +456,27 @@
456 456  
457 457  IN1 and IN2 are used as digital input pins.
458 458  
459 -(% style="color:#037691" %)**Example**:
458 +**(% style="color:#037691" %)Example**:
460 460  
461 -09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
460 +09 (H):(0x09&0x08)>>3=1    IN1 pin is high level.
462 462  
463 -09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
462 +09 (H):(0x09&0x04)>>2=0    IN2 pin is low level.
464 464  
465 465  
466 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
465 +This data field shows if this packet is generated by **(% style="color:blue" %)Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
467 467  
468 -(% style="color:#037691" %)**Example:**
467 +**(% style="color:#037691" %)Example:**
469 469  
470 -09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
469 +09 (H):(0x09&0x02)>>1=1    The level of the interrupt pin.
471 471  
472 -09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
471 +09 (H):0x09&0x01=1              0x00: Normal uplink packet.
473 473  
474 474  0x01: Interrupt Uplink Packet.
475 475  
476 476  
477 -=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 ===
476 +=== 2.3.8 ​Decode payload in The Things Network ===
478 478  
479 479  
480 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
481 -|(% style="width:94px" %)(((
482 -**Size(bytes)**
483 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n
484 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
485 -Voltage value, each 2 bytes is a set of voltage values.
486 -)))
487 -
488 -[[image:image-20230220171300-1.png||height="207" width="863"]]
489 -
490 -Multiple sets of data collected are displayed in this form:
491 -
492 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
493 -
494 -
495 -=== 2.3.9 ​Decode payload in The Things Network ===
496 -
497 -
498 498  While using TTN network, you can add the payload format to decode the payload.
499 499  
500 500  
... ... @@ -516,9 +516,9 @@
516 516  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
517 517  
518 518  
519 -(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
500 +**(% style="color:blue" %)Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
520 520  
521 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
502 +**(% style="color:blue" %)Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
522 522  
523 523  
524 524  [[image:1675144951092-237.png]]
... ... @@ -527,9 +527,9 @@
527 527  [[image:1675144960452-126.png]]
528 528  
529 529  
530 -(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
511 +**(% style="color:blue" %)Step 3:**(%%) Create an account or log in Datacake.
531 531  
532 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
513 +**(% style="color:#blue" %)Step 4:** (%%)Create PS-LB product.
533 533  
534 534  [[image:1675145004465-869.png]]
535 535  
... ... @@ -542,7 +542,7 @@
542 542  [[image:1675145029119-717.png]]
543 543  
544 544  
545 -(% style="color:blue" %)**Step 5: **(%%)add payload decode
526 +**(% style="color:blue" %)Step 5: **(%%)add payload decode
546 546  
547 547  [[image:1675145051360-659.png]]
548 548  
... ... @@ -550,6 +550,7 @@
550 550  [[image:1675145060812-420.png]]
551 551  
552 552  
534 +
553 553  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
554 554  
555 555  
... ... @@ -572,17 +572,19 @@
572 572  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
573 573  
574 574  
557 +
575 575  = 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
576 576  
577 577  
578 578  Use can configure PS-LB via AT Command or LoRaWAN Downlink.
579 579  
580 -* AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
563 +* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
581 581  * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
582 582  
566 +
583 583  There are two kinds of commands to configure PS-LB, they are:
584 584  
585 -* (% style="color:#037691" %)**General Commands**
569 +* **General Commands**.
586 586  
587 587  These commands are to configure:
588 588  
... ... @@ -594,7 +594,7 @@
594 594  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
595 595  
596 596  
597 -* (% style="color:#037691" %)**Commands special design for PS-LB**
581 +* **Commands special design for PS-LB**
598 598  
599 599  These commands only valid for PS-LB, as below:
600 600  
... ... @@ -604,61 +604,69 @@
604 604  
605 605  Feature: Change LoRaWAN End Node Transmit Interval.
606 606  
607 -(% style="color:blue" %)**AT Command: AT+TDC**
591 +**AT Command: AT+TDC**
608 608  
609 609  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
610 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
611 -|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
594 +|**Command Example**|**Function**|**Response**
595 +|AT+TDC=?|Show current transmit Interval|(((
612 612  30000
597 +
613 613  OK
599 +
614 614  the interval is 30000ms = 30s
615 615  )))
616 -|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
602 +|AT+TDC=60000|Set Transmit Interval|(((
617 617  OK
604 +
618 618  Set transmit interval to 60000ms = 60 seconds
619 619  )))
620 620  
621 -(% style="color:blue" %)**Downlink Command: 0x01**
608 +**Downlink Command: 0x01**
622 622  
623 623  Format: Command Code (0x01) followed by 3 bytes time value.
624 624  
625 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
612 +If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
626 626  
627 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
628 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
614 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
615 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
629 629  
630 630  
631 -
632 632  == 3.2 Set Interrupt Mode ==
633 633  
634 634  
635 635  Feature, Set Interrupt mode for GPIO_EXIT.
636 636  
637 -(% style="color:blue" %)**AT Command: AT+INTMOD**
623 +**AT Command: AT+INTMOD**
638 638  
639 639  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
640 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
641 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
626 +|**Command Example**|**Function**|**Response**
627 +|AT+INTMOD=?|Show current interrupt mode|(((
642 642  0
629 +
643 643  OK
644 -the mode is 0 =Disable Interrupt
631 +
632 +the mode is 0 = No interruption
645 645  )))
646 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
634 +|AT+INTMOD=2|(((
647 647  Set Transmit Interval
648 -0. (Disable Interrupt),
649 -~1. (Trigger by rising and falling edge)
650 -2. (Trigger by falling edge)
651 -3. (Trigger by rising edge)
652 -)))|(% style="width:157px" %)OK
653 653  
654 -(% style="color:blue" %)**Downlink Command: 0x06**
637 +~1. (Disable Interrupt),
655 655  
639 +2. (Trigger by rising and falling edge),
640 +
641 +3. (Trigger by falling edge)
642 +
643 +4. (Trigger by rising edge)
644 +)))|OK
645 +
646 +**Downlink Command: 0x06**
647 +
656 656  Format: Command Code (0x06) followed by 3 bytes.
657 657  
658 658  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
659 659  
660 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
661 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
652 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
653 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
662 662  
663 663  
664 664  
... ... @@ -667,69 +667,87 @@
667 667  
668 668  Feature, Control the output 3V3 , 5V or 12V.
669 669  
670 -(% style="color:blue" %)**AT Command: AT+3V3T**
662 +**AT Command: AT+3V3T**
671 671  
672 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
673 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
674 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
664 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
665 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**
666 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
675 675  0
668 +
676 676  OK
677 677  )))
678 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
671 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
679 679  OK
673 +
680 680  default setting
681 681  )))
682 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
676 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
683 683  OK
678 +
679 +
684 684  )))
685 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
681 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
686 686  OK
683 +
684 +
687 687  )))
688 688  
689 -(% style="color:blue" %)**AT Command: AT+5VT**
690 690  
691 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
692 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
693 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
688 +**AT Command: AT+5VT**
689 +
690 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
691 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**
692 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
694 694  0
694 +
695 695  OK
696 696  )))
697 -|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
697 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
698 698  OK
699 +
699 699  default setting
700 700  )))
701 -|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
702 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
702 702  OK
704 +
705 +
703 703  )))
704 -|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
707 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
705 705  OK
709 +
710 +
706 706  )))
707 707  
708 -(% style="color:blue" %)**AT Command: AT+12VT**
709 709  
710 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
711 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
712 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
714 +**AT Command: AT+12VT**
715 +
716 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
717 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response**
718 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
713 713  0
720 +
714 714  OK
715 715  )))
716 -|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
717 -|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
723 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
724 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
718 718  OK
726 +
727 +
719 719  )))
720 720  
721 -(% style="color:blue" %)**Downlink Command: 0x07**
722 722  
731 +**Downlink Command: 0x07**
732 +
723 723  Format: Command Code (0x07) followed by 3 bytes.
724 724  
725 725  The first byte is which power, the second and third bytes are the time to turn on.
726 726  
727 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
728 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
729 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
730 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
731 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
732 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
737 +* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
738 +* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
739 +* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
740 +* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
741 +* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
742 +* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
733 733  
734 734  
735 735  
... ... @@ -736,81 +736,33 @@
736 736  == 3.4 Set the Probe Model ==
737 737  
738 738  
739 -Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
749 +**AT Command: AT** **+PROBE**
740 740  
741 -**AT Command: AT** **+PROBE**
742 -
743 -AT+PROBE=aabb
744 -
745 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
746 -
747 -When aa=01, it is the pressure mode, which converts the current into a pressure value;
748 -
749 -bb represents which type of pressure sensor it is.
750 -
751 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
752 -
753 753  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
754 -|**Command Example**|**Function**|**Response**
755 -|AT +PROBE =?|Get or Set the probe model.|0
756 -OK
757 -|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK
758 -|(((
759 -AT +PROBE =000A
752 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response**
753 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
754 +0
760 760  
761 -
762 -)))|Set water depth sensor mode, 10m type.|OK
763 -|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK
764 -|AT +PROBE =0000|Initial state, no settings.|OK
765 -
766 -**Downlink Command: 0x08**
767 -
768 -Format: Command Code (0x08) followed by 2 bytes.
769 -
770 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
771 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
772 -
773 -
774 -
775 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
776 -
777 -
778 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
779 -
780 -(% style="color:blue" %)**AT Command: AT** **+STDC**
781 -
782 -AT+STDC=aa,bb,bb
783 -
784 -(% style="color:#037691" %)**aa:**(%%)
785 -**0:** means disable this function and use TDC to send packets.
786 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
787 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
788 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
789 -
790 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
791 -|**Command Example**|**Function**|**Response**
792 -|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18
793 793  OK
794 -|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(((
795 -Attention:Take effect after ATZ
796 -
797 -OK
798 798  )))
799 -|AT+STDC=0, 0,0|(((
800 -Use the TDC interval to send packets.(default)
758 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
759 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
760 +OK
801 801  
802 802  
803 -)))|(((
804 -Attention:Take effect after ATZ
805 -
763 +)))
764 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
806 806  OK
766 +
767 +
807 807  )))
808 808  
809 -(% style="color:blue" %)**Downlink Command: 0xAE**
770 +**Downlink Command: 0x08**
810 810  
811 -Format: Command Code (0x08) followed by 5 bytes.
772 +Format: Command Code (0x08) followed by 2 bytes.
812 812  
813 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
774 +* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
775 +* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
814 814  
815 815  
816 816  
... ... @@ -821,6 +821,7 @@
821 821  
822 822  PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
823 823  
786 +
824 824  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
825 825  
826 826  [[image:1675146710956-626.png]]
... ... @@ -844,12 +844,17 @@
844 844  
845 845  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
846 846  
810 +
847 847  Instruction to use as below:
848 848  
849 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
850 850  
851 -(% style="color:blue" %)**Step 2:**(%%) Open it and choose
814 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
852 852  
816 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
817 +
818 +
819 +**Step 2:** Open it and choose
820 +
853 853  * Product Model
854 854  * Uplink Interval
855 855  * Working Mode
... ... @@ -902,7 +902,7 @@
902 902  
903 903  = 7. FAQ =
904 904  
905 -== 7.1 How to use AT Command via UART to access device? ==
873 +== 7.1 How to use AT Command to access device? ==
906 906  
907 907  
908 908  See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
... ... @@ -930,11 +930,11 @@
930 930  = 9. ​Packing Info =
931 931  
932 932  
933 -(% style="color:#037691" %)**Package Includes**:
901 +**Package Includes**:
934 934  
935 935  * PS-LB LoRaWAN Pressure Sensor
936 936  
937 -(% style="color:#037691" %)**Dimension and weight**:
905 +**Dimension and weight**:
938 938  
939 939  * Device Size: cm
940 940  * Device Weight: g
... ... @@ -947,7 +947,6 @@
947 947  
948 948  
949 949  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
950 -
951 951  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
952 952  
953 953  
image-20230201090514-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
image-20230222174559-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -19.4 KB
Content
image-20230225154759-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -468.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0