Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/04/27 10:31
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 4 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Bei1 +XWiki.Xiaoling - Content
-
... ... @@ -16,33 +16,22 @@ 16 16 == 1.1 What is LoRaWAN Pressure Sensor == 17 17 18 18 19 -((( 20 20 The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 21 -))) 22 22 23 -((( 24 24 The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 25 -))) 26 26 27 -((( 28 28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 32 PS-LB supports BLE configure and wireless OTA update which make user easy to use. 33 -))) 34 34 35 -((( 36 36 PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 -))) 38 38 39 -((( 40 40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 41 -))) 42 42 43 43 [[image:1675071321348-194.png]] 44 44 45 45 34 + 46 46 == 1.2 Features == 47 47 48 48 ... ... @@ -58,9 +58,7 @@ 58 58 * Uplink on periodically 59 59 * Downlink to change configure 60 60 * 8500mAh Battery for long term use 61 -* Controllable 3.3v,5v and 12v output to power external sensor 62 62 63 - 64 64 == 1.3 Specification == 65 65 66 66 ... ... @@ -107,7 +107,6 @@ 107 107 * Sleep Mode: 5uA @ 3.3v 108 108 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 109 109 110 - 111 111 == 1.4 Probe Types == 112 112 113 113 === 1.4.1 Thread Installation Type === ... ... @@ -126,7 +126,6 @@ 126 126 * Operating temperature: -20℃~~60℃ 127 127 * Connector Type: Various Types, see order info 128 128 129 - 130 130 === 1.4.2 Immersion Type === 131 131 132 132 ... ... @@ -136,15 +136,18 @@ 136 136 * Measuring Range: Measure range can be customized, up to 100m. 137 137 * Accuracy: 0.2% F.S 138 138 * Long-Term Stability: ±0.2% F.S / Year 124 +* Overload 200% F.S 125 +* Zero Temperature Drift: ±2% F.S) 126 +* FS Temperature Drift: ±2% F.S 139 139 * Storage temperature: -30℃~~80℃ 140 -* Operating temperature: 0℃~~5 0℃128 +* Operating temperature: -40℃~~85℃ 141 141 * Material: 316 stainless steels 142 142 143 - 144 144 == 1.5 Probe Dimension == 145 145 146 146 147 147 135 + 148 148 == 1.6 Application and Installation == 149 149 150 150 === 1.6.1 Thread Installation Type === ... ... @@ -199,19 +199,18 @@ 199 199 200 200 201 201 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 202 -|=(% style="width: 1 67px;" %)**Behavior on ACT**|=(% style="width:117px;" %)**Function**|=(% style="width: 225px;" %)**Action**203 -|(% style="width: 167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((190 +|=(% style="width: 150px;" %)**Behavior on ACT**|=(% style="width: 90px;" %)**Function**|=**Action** 191 +|(% style="width:260px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|((( 204 204 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 205 205 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 206 206 ))) 207 -|(% style="width:1 67px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((195 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|((( 208 208 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 209 209 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 210 210 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 211 211 ))) 212 -|(% style="width:1 67px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red"%)**Redled**(%%)will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.200 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 213 213 214 - 215 215 == 1.9 Pin Mapping == 216 216 217 217 ... ... @@ -236,6 +236,8 @@ 236 236 == 1.11 Mechanical == 237 237 238 238 226 + 227 + 239 239 [[image:1675143884058-338.png]] 240 240 241 241 ... ... @@ -253,6 +253,7 @@ 253 253 The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 254 254 255 255 245 + 256 256 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 257 257 258 258 ... ... @@ -306,8 +306,18 @@ 306 306 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 307 307 308 308 299 + 309 309 == 2.3 Uplink Payload == 310 310 302 + 303 +Uplink payloads have two types: 304 + 305 +* Distance Value: Use FPORT=2 306 +* Other control commands: Use other FPORT fields. 307 + 308 +The application server should parse the correct value based on FPORT settings. 309 + 310 + 311 311 === 2.3.1 Device Status, FPORT~=5 === 312 312 313 313 ... ... @@ -318,8 +318,8 @@ 318 318 319 319 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 320 320 |(% colspan="6" %)**Device Status (FPORT=5)** 321 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**| (% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**322 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version| (% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT321 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2** 322 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT 323 323 324 324 Example parse in TTNv3 325 325 ... ... @@ -389,11 +389,12 @@ 389 389 |(% style="width:97px" %)((( 390 390 **Size(bytes)** 391 391 )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1** 392 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3. 4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.8IN126IN226INTpin"]]392 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] 393 393 394 394 [[image:1675144608950-310.png]] 395 395 396 396 397 + 397 397 === 2.3.3 Battery Info === 398 398 399 399 ... ... @@ -407,24 +407,23 @@ 407 407 === 2.3.4 Probe Model === 408 408 409 409 410 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe.411 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 411 411 412 412 413 413 For example. 414 414 415 415 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 416 -|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning** 417 -|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 418 -|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 419 -|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure 417 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning** 418 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 419 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 420 420 421 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.421 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value. 422 422 423 423 424 424 === 2.3.5 0~~20mA value (IDC_IN) === 425 425 426 426 427 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.427 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level. 428 428 429 429 (% style="color:#037691" %)**Example**: 430 430 ... ... @@ -431,11 +431,6 @@ 431 431 27AE(H) = 10158 (D)/1000 = 10.158mA. 432 432 433 433 434 -Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example: 435 - 436 -[[image:image-20230225154759-1.png||height="408" width="741"]] 437 - 438 - 439 439 === 2.3.6 0~~30V value ( pin VDC_IN) === 440 440 441 441 ... ... @@ -469,27 +469,9 @@ 469 469 0x01: Interrupt Uplink Packet. 470 470 471 471 472 -=== (%id="cke_bm_109176S"style="display:none"%) (%%)2.3.8 Sensorvalue, FPORT~=7===467 +=== 2.3.8 Decode payload in The Things Network === 473 473 474 474 475 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %) 476 -|(% style="width:94px" %)((( 477 -**Size(bytes)** 478 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n 479 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)((( 480 -Voltage value, each 2 bytes is a set of voltage values. 481 -))) 482 - 483 -[[image:image-20230220171300-1.png||height="207" width="863"]] 484 - 485 -Multiple sets of data collected are displayed in this form: 486 - 487 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2] 488 - 489 - 490 -=== 2.3.9 Decode payload in The Things Network === 491 - 492 - 493 493 While using TTN network, you can add the payload format to decode the payload. 494 494 495 495 ... ... @@ -545,6 +545,7 @@ 545 545 [[image:1675145060812-420.png]] 546 546 547 547 525 + 548 548 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 549 549 550 550 ... ... @@ -567,6 +567,7 @@ 567 567 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]] 568 568 569 569 548 + 570 570 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink = 571 571 572 572 ... ... @@ -577,7 +577,7 @@ 577 577 578 578 There are two kinds of commands to configure PS-LB, they are: 579 579 580 -* (% style="color:#037691" %)**General Commands** 559 +* (% style="color:#037691" %)**General Commands**. 581 581 582 582 These commands are to configure: 583 583 ... ... @@ -602,14 +602,17 @@ 602 602 (% style="color:blue" %)**AT Command: AT+TDC** 603 603 604 604 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 605 -| =(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**606 -| (% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((584 +|**Command Example**|**Function**|**Response** 585 +|AT+TDC=?|Show current transmit Interval|((( 607 607 30000 587 + 608 608 OK 589 + 609 609 the interval is 30000ms = 30s 610 610 ))) 611 -| (% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((592 +|AT+TDC=60000|Set Transmit Interval|((( 612 612 OK 594 + 613 613 Set transmit interval to 60000ms = 60 seconds 614 614 ))) 615 615 ... ... @@ -617,10 +617,10 @@ 617 617 618 618 Format: Command Code (0x01) followed by 3 bytes time value. 619 619 620 -If the downlink payload=0100003C, it means set the END Node 's Transmit Interval to 0x00003C=60(S), while type code is 01.602 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 621 621 622 -* Example 1: Downlink Payload: 0100001E 623 -* Example 2: Downlink Payload: 0100003C 604 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 605 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 624 624 625 625 == 3.2 Set Interrupt Mode == 626 626 ... ... @@ -630,20 +630,26 @@ 630 630 (% style="color:blue" %)**AT Command: AT+INTMOD** 631 631 632 632 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 633 -| =(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**634 -| (% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((615 +|**Command Example**|**Function**|**Response** 616 +|AT+INTMOD=?|Show current interrupt mode|((( 635 635 0 618 + 636 636 OK 637 -the mode is 0 =Disable Interrupt 620 + 621 +the mode is 0 = No interruption 638 638 ))) 639 -| (% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((623 +|AT+INTMOD=2|((( 640 640 Set Transmit Interval 641 -0. (Disable Interrupt), 642 -~1. (Trigger by rising and falling edge) 643 -2. (Trigger by falling edge) 644 -3. (Trigger by rising edge) 645 -)))|(% style="width:157px" %)OK 646 646 626 +~1. (Disable Interrupt), 627 + 628 +2. (Trigger by rising and falling edge), 629 + 630 +3. (Trigger by falling edge) 631 + 632 +4. (Trigger by rising edge) 633 +)))|OK 634 + 647 647 (% style="color:blue" %)**Downlink Command: 0x06** 648 648 649 649 Format: Command Code (0x06) followed by 3 bytes. ... ... @@ -650,10 +650,9 @@ 650 650 651 651 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 652 652 653 -* Example 1: Downlink Payload: 06000000 654 -* Example 2: Downlink Payload: 06000003 641 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 642 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 655 655 656 - 657 657 == 3.3 Set the output time == 658 658 659 659 ... ... @@ -661,53 +661,68 @@ 661 661 662 662 (% style="color:blue" %)**AT Command: AT+3V3T** 663 663 664 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 474px" %)665 -| =(% style="width:4px;" %)**Command Example**|=(% style="width:01px;" %)**Function**|=(% style="width:6px;" %)**Response**666 -|(% style="width:15 4px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((651 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 652 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response** 653 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)((( 667 667 0 655 + 668 668 OK 669 669 ))) 670 -|(% style="width:15 4px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((658 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)((( 671 671 OK 660 + 672 672 default setting 673 673 ))) 674 -|(% style="width:15 4px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((663 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)((( 675 675 OK 665 + 666 + 676 676 ))) 677 -|(% style="width:15 4px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((668 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)((( 678 678 OK 670 + 671 + 679 679 ))) 680 680 681 681 (% style="color:blue" %)**AT Command: AT+5VT** 682 682 683 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 470px" %)684 -| =(% style="width:5px;" %)**Command Example**|=(% style="width:196px;" %)**Function**|=(% style="width:4px;" %)**Response**685 -|(% style="width:15 5px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((676 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 677 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response** 678 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)((( 686 686 0 680 + 687 687 OK 688 688 ))) 689 -|(% style="width:15 5px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((683 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)((( 690 690 OK 685 + 691 691 default setting 692 692 ))) 693 -|(% style="width:15 5px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((688 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)((( 694 694 OK 690 + 691 + 695 695 ))) 696 -|(% style="width:15 5px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((693 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)((( 697 697 OK 695 + 696 + 698 698 ))) 699 699 700 700 (% style="color:blue" %)**AT Command: AT+12VT** 701 701 702 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 443px" %)703 -| =(% style="width:;" %)**Command Example**|=(% style="width:199px;" %)**Function**|=(% style="width: 83px;" %)**Response**704 -|(% style="width:156px" %)AT+12VT=?|(% style="width: 199px" %)Show 12V open time.|(% style="width:83px" %)(((701 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 702 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response** 703 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|((( 705 705 0 705 + 706 706 OK 707 707 ))) 708 -|(% style="width:156px" %)AT+12VT=0|(% style="width: 199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK709 -|(% style="width:156px" %)AT+12VT=500|(% style="width: 199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((708 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK 709 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|((( 710 710 OK 711 + 712 + 711 711 ))) 712 712 713 713 (% style="color:blue" %)**Downlink Command: 0x07** ... ... @@ -716,93 +716,44 @@ 716 716 717 717 The first byte is which power, the second and third bytes are the time to turn on. 718 718 719 -* Example 1: Downlink Payload: 070101F4 **~-~-->**720 -* Example 2: Downlink Payload: 0701FFFF **~-~-->**AT+3V3T=65535721 -* Example 3: Downlink Payload: 070203E8 **~-~-->**AT+5VT=1000722 -* Example 4: Downlink Payload: 07020000 **~-~-->**AT+5VT=0723 -* Example 5: Downlink Payload: 070301F4 **~-~-->**AT+12VT=500724 -* Example 6: Downlink Payload: 07030000 **~-~-->**AT+12VT=0721 +* Example 1: Downlink Payload: 070101F4 -> AT+3V3T=500 722 +* Example 2: Downlink Payload: 0701FFFF -> AT+3V3T=65535 723 +* Example 3: Downlink Payload: 070203E8 -> AT+5VT=1000 724 +* Example 4: Downlink Payload: 07020000 -> AT+5VT=0 725 +* Example 5: Downlink Payload: 070301F4 -> AT+12VT=500 726 +* Example 6: Downlink Payload: 07030000 -> AT+12VT=0 725 725 726 - 727 727 == 3.4 Set the Probe Model == 728 728 729 729 730 - Usersneed to configure thisparameter according to the type of externalprobe. In this way, the servercan decode according to this value, and convert the current valueoutputby the sensor into waterdepthorpressure value.731 +(% style="color:blue" %)**AT Command: AT** **+PROBE** 731 731 732 -**AT Command: AT** **+PROBE** 733 - 734 -AT+PROBE=aabb 735 - 736 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters. 737 - 738 -When aa=01, it is the pressure mode, which converts the current into a pressure value; 739 - 740 -bb represents which type of pressure sensor it is. 741 - 742 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C) 743 - 744 744 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 745 -|**Command Example**|**Function**|**Response** 746 -|AT +PROBE =?|Get or Set the probe model.|0 747 -OK 748 -|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK 749 -|((( 750 -AT +PROBE =000A 734 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response** 735 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|((( 736 +0 751 751 752 - 753 -)))|Set water depth sensor mode, 10m type.|OK 754 -|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK 755 -|AT +PROBE =0000|Initial state, no settings.|OK 756 - 757 -**Downlink Command: 0x08** 758 - 759 -Format: Command Code (0x08) followed by 2 bytes. 760 - 761 -* Example 1: Downlink Payload: 080003 **~-~-->** AT+PROBE=0003 762 -* Example 2: Downlink Payload: 080101 **~-~-->** AT+PROBE=0101 763 - 764 - 765 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) == 766 - 767 - 768 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time. 769 - 770 -(% style="color:blue" %)**AT Command: AT** **+STDC** 771 - 772 -AT+STDC=aa,bb,bb 773 - 774 -(% style="color:#037691" %)**aa:**(%%) 775 -**0:** means disable this function and use TDC to send packets. 776 -**1:** means enable this function, use the method of multiple acquisitions to send packets. 777 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535 778 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120 779 - 780 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 781 -|**Command Example**|**Function**|**Response** 782 -|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18 783 783 OK 784 -|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|((( 785 -Attention:Take effect after ATZ 786 - 787 -OK 788 788 ))) 789 -|AT+STDC=0, 0,0|((( 790 -Use the TDC interval to send packets.(default) 740 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK 741 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|((( 742 +OK 791 791 792 792 793 -)))|((( 794 -Attention:Take effect after ATZ 795 - 745 +))) 746 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|((( 796 796 OK 748 + 749 + 797 797 ))) 798 798 799 -(% style="color:blue" %)**Downlink Command: 0x AE**752 +(% style="color:blue" %)**Downlink Command: 0x08** 800 800 801 -Format: Command Code (0x08) followed by 5bytes.754 +Format: Command Code (0x08) followed by 2 bytes. 802 802 803 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->** AT+STDC=1,600,18 756 +* Example 1: Downlink Payload: 080003 -> AT+PROBE=0003 757 +* Example 2: Downlink Payload: 080101 -> AT+PROBE=0101 804 804 805 - 806 806 = 4. Battery & how to replace = 807 807 808 808 == 4.1 Battery Type == ... ... @@ -810,6 +810,7 @@ 810 810 811 811 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 812 812 766 + 813 813 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 814 814 815 815 [[image:1675146710956-626.png]] ... ... @@ -833,10 +833,15 @@ 833 833 834 834 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 835 835 790 + 836 836 Instruction to use as below: 837 837 838 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 839 839 794 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 795 + 796 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 797 + 798 + 840 840 (% style="color:blue" %)**Step 2:**(%%) Open it and choose 841 841 842 842 * Product Model ... ... @@ -891,7 +891,7 @@ 891 891 892 892 = 7. FAQ = 893 893 894 -== 7.1 How to use AT Command via UARTto access device? ==853 +== 7.1 How to use AT Command to access device? == 895 895 896 896 897 897 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]] ... ... @@ -930,7 +930,6 @@ 930 930 * Package Size / pcs : cm 931 931 * Weight / pcs : g 932 932 933 - 934 934 = 10. Support = 935 935 936 936
- image-20230201090514-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -560.9 KB - Content
- image-20230220171300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.0 KB - Content
- image-20230222174559-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -19.4 KB - Content
- image-20230225154759-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -468.9 KB - Content