Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/04/27 10:31
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 4 removed)
Details
- Page properties
-
- Content
-
... ... @@ -16,33 +16,22 @@ 16 16 == 1.1 What is LoRaWAN Pressure Sensor == 17 17 18 18 19 -((( 20 20 The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 21 -))) 22 22 23 -((( 24 24 The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 25 -))) 26 26 27 -((( 28 28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 32 PS-LB supports BLE configure and wireless OTA update which make user easy to use. 33 -))) 34 34 35 -((( 36 36 PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 -))) 38 38 39 -((( 40 40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 41 -))) 42 42 43 43 [[image:1675071321348-194.png]] 44 44 45 45 34 + 46 46 == 1.2 Features == 47 47 48 48 ... ... @@ -58,10 +58,7 @@ 58 58 * Uplink on periodically 59 59 * Downlink to change configure 60 60 * 8500mAh Battery for long term use 61 -* Controllable 3.3v,5v and 12v output to power external sensor 62 62 63 - 64 - 65 65 == 1.3 Specification == 66 66 67 67 ... ... @@ -108,8 +108,6 @@ 108 108 * Sleep Mode: 5uA @ 3.3v 109 109 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 110 110 111 - 112 - 113 113 == 1.4 Probe Types == 114 114 115 115 === 1.4.1 Thread Installation Type === ... ... @@ -128,8 +128,6 @@ 128 128 * Operating temperature: -20℃~~60℃ 129 129 * Connector Type: Various Types, see order info 130 130 131 - 132 - 133 133 === 1.4.2 Immersion Type === 134 134 135 135 ... ... @@ -139,16 +139,18 @@ 139 139 * Measuring Range: Measure range can be customized, up to 100m. 140 140 * Accuracy: 0.2% F.S 141 141 * Long-Term Stability: ±0.2% F.S / Year 124 +* Overload 200% F.S 125 +* Zero Temperature Drift: ±2% F.S) 126 +* FS Temperature Drift: ±2% F.S 142 142 * Storage temperature: -30℃~~80℃ 143 -* Operating temperature: 0℃~~5 0℃128 +* Operating temperature: -40℃~~85℃ 144 144 * Material: 316 stainless steels 145 145 146 - 147 - 148 148 == 1.5 Probe Dimension == 149 149 150 150 151 151 135 + 152 152 == 1.6 Application and Installation == 153 153 154 154 === 1.6.1 Thread Installation Type === ... ... @@ -203,20 +203,21 @@ 203 203 204 204 205 205 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 206 -| =(% style="width:67px;" %)**Behavior on ACT**|=(% style="width:17px;" %)**Function**|=(% style="width: 225px;" %)**Action**207 -|(% style="width:1 67px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((190 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action** 191 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|((( 208 208 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 193 + 209 209 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 210 210 ))) 211 -|(% style="width:1 67px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((196 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|((( 212 212 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 198 + 213 213 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 200 + 214 214 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 215 215 ))) 216 -|(% style="width:1 67px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red"%)**Redled**(%%)will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.203 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 217 217 218 - 219 - 220 220 == 1.9 Pin Mapping == 221 221 222 222 ... ... @@ -241,6 +241,8 @@ 241 241 == 1.11 Mechanical == 242 242 243 243 229 + 230 + 244 244 [[image:1675143884058-338.png]] 245 245 246 246 ... ... @@ -258,6 +258,7 @@ 258 258 The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 259 259 260 260 248 + 261 261 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 262 262 263 263 ... ... @@ -311,8 +311,18 @@ 311 311 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 312 312 313 313 302 + 314 314 == 2.3 Uplink Payload == 315 315 305 + 306 +Uplink payloads have two types: 307 + 308 +* Distance Value: Use FPORT=2 309 +* Other control commands: Use other FPORT fields. 310 + 311 +The application server should parse the correct value based on FPORT settings. 312 + 313 + 316 316 === 2.3.1 Device Status, FPORT~=5 === 317 317 318 318 ... ... @@ -323,8 +323,8 @@ 323 323 324 324 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 325 325 |(% colspan="6" %)**Device Status (FPORT=5)** 326 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**| (% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**327 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version| (% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT324 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2** 325 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT 328 328 329 329 Example parse in TTNv3 330 330 ... ... @@ -393,12 +393,13 @@ 393 393 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 394 394 |(% style="width:97px" %)((( 395 395 **Size(bytes)** 396 -)))|(% style="width:48px" %)**2**|(% style="width: 71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**397 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3. 4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.8IN126IN226INTpin"]]394 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1** 395 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] 398 398 399 399 [[image:1675144608950-310.png]] 400 400 401 401 400 + 402 402 === 2.3.3 Battery Info === 403 403 404 404 ... ... @@ -412,24 +412,23 @@ 412 412 === 2.3.4 Probe Model === 413 413 414 414 415 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe.414 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 416 416 417 417 418 418 For example. 419 419 420 420 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 421 -|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning** 422 -|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 423 -|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 424 -|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure 420 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning** 421 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 422 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 425 425 426 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.424 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value. 427 427 428 428 429 429 === 2.3.5 0~~20mA value (IDC_IN) === 430 430 431 431 432 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.430 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level. 433 433 434 434 (% style="color:#037691" %)**Example**: 435 435 ... ... @@ -436,11 +436,6 @@ 436 436 27AE(H) = 10158 (D)/1000 = 10.158mA. 437 437 438 438 439 -Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example: 440 - 441 -[[image:image-20230225154759-1.png||height="408" width="741"]] 442 - 443 - 444 444 === 2.3.6 0~~30V value ( pin VDC_IN) === 445 445 446 446 ... ... @@ -474,27 +474,9 @@ 474 474 0x01: Interrupt Uplink Packet. 475 475 476 476 477 -=== (%id="cke_bm_109176S"style="display:none"%) (%%)2.3.8 Sensorvalue, FPORT~=7===470 +=== 2.3.8 Decode payload in The Things Network === 478 478 479 479 480 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %) 481 -|(% style="width:94px" %)((( 482 -**Size(bytes)** 483 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n 484 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)((( 485 -Voltage value, each 2 bytes is a set of voltage values. 486 -))) 487 - 488 -[[image:image-20230220171300-1.png||height="207" width="863"]] 489 - 490 -Multiple sets of data collected are displayed in this form: 491 - 492 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2] 493 - 494 - 495 -=== 2.3.9 Decode payload in The Things Network === 496 - 497 - 498 498 While using TTN network, you can add the payload format to decode the payload. 499 499 500 500 ... ... @@ -550,6 +550,7 @@ 550 550 [[image:1675145060812-420.png]] 551 551 552 552 528 + 553 553 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 554 554 555 555 ... ... @@ -572,6 +572,7 @@ 572 572 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]] 573 573 574 574 551 + 575 575 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink = 576 576 577 577 ... ... @@ -582,7 +582,7 @@ 582 582 583 583 There are two kinds of commands to configure PS-LB, they are: 584 584 585 -* (% style="color:#037691" %)**General Commands** 562 +* (% style="color:#037691" %)**General Commands**. 586 586 587 587 These commands are to configure: 588 588 ... ... @@ -607,14 +607,17 @@ 607 607 (% style="color:blue" %)**AT Command: AT+TDC** 608 608 609 609 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 610 -| =(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**611 -| (% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((587 +|**Command Example**|**Function**|**Response** 588 +|AT+TDC=?|Show current transmit Interval|((( 612 612 30000 590 + 613 613 OK 592 + 614 614 the interval is 30000ms = 30s 615 615 ))) 616 -| (% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((595 +|AT+TDC=60000|Set Transmit Interval|((( 617 617 OK 597 + 618 618 Set transmit interval to 60000ms = 60 seconds 619 619 ))) 620 620 ... ... @@ -622,11 +622,12 @@ 622 622 623 623 Format: Command Code (0x01) followed by 3 bytes time value. 624 624 625 -If the downlink payload=0100003C, it means set the END Node 's Transmit Interval to 0x00003C=60(S), while type code is 01.605 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 626 626 627 -* Example 1: Downlink Payload: 0100001E 628 -* Example 2: Downlink Payload: 0100003C 607 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 608 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 629 629 610 + 630 630 == 3.2 Set Interrupt Mode == 631 631 632 632 ... ... @@ -635,20 +635,26 @@ 635 635 (% style="color:blue" %)**AT Command: AT+INTMOD** 636 636 637 637 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 638 -| =(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**639 -| (% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((619 +|**Command Example**|**Function**|**Response** 620 +|AT+INTMOD=?|Show current interrupt mode|((( 640 640 0 622 + 641 641 OK 642 -the mode is 0 =Disable Interrupt 624 + 625 +the mode is 0 = No interruption 643 643 ))) 644 -| (% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((627 +|AT+INTMOD=2|((( 645 645 Set Transmit Interval 646 -0. (Disable Interrupt), 647 -~1. (Trigger by rising and falling edge) 648 -2. (Trigger by falling edge) 649 -3. (Trigger by rising edge) 650 -)))|(% style="width:157px" %)OK 651 651 630 +~1. (Disable Interrupt), 631 + 632 +2. (Trigger by rising and falling edge), 633 + 634 +3. (Trigger by falling edge) 635 + 636 +4. (Trigger by rising edge) 637 +)))|OK 638 + 652 652 (% style="color:blue" %)**Downlink Command: 0x06** 653 653 654 654 Format: Command Code (0x06) followed by 3 bytes. ... ... @@ -655,11 +655,9 @@ 655 655 656 656 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 657 657 658 -* Example 1: Downlink Payload: 06000000 659 -* Example 2: Downlink Payload: 06000003 645 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 646 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 660 660 661 - 662 - 663 663 == 3.3 Set the output time == 664 664 665 665 ... ... @@ -667,53 +667,68 @@ 667 667 668 668 (% style="color:blue" %)**AT Command: AT+3V3T** 669 669 670 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 474px" %)671 -| =(% style="width:4px;" %)**Command Example**|=(% style="width:01px;" %)**Function**|=(% style="width:6px;" %)**Response**672 -|(% style="width:15 4px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((655 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 656 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response** 657 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)((( 673 673 0 659 + 674 674 OK 675 675 ))) 676 -|(% style="width:15 4px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((662 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)((( 677 677 OK 664 + 678 678 default setting 679 679 ))) 680 -|(% style="width:15 4px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((667 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)((( 681 681 OK 669 + 670 + 682 682 ))) 683 -|(% style="width:15 4px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((672 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)((( 684 684 OK 674 + 675 + 685 685 ))) 686 686 687 687 (% style="color:blue" %)**AT Command: AT+5VT** 688 688 689 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 470px" %)690 -| =(% style="width:5px;" %)**Command Example**|=(% style="width:196px;" %)**Function**|=(% style="width:4px;" %)**Response**691 -|(% style="width:15 5px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((680 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 681 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response** 682 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)((( 692 692 0 684 + 693 693 OK 694 694 ))) 695 -|(% style="width:15 5px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((687 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)((( 696 696 OK 689 + 697 697 default setting 698 698 ))) 699 -|(% style="width:15 5px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((692 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)((( 700 700 OK 694 + 695 + 701 701 ))) 702 -|(% style="width:15 5px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((697 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)((( 703 703 OK 699 + 700 + 704 704 ))) 705 705 706 706 (% style="color:blue" %)**AT Command: AT+12VT** 707 707 708 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 443px" %)709 -| =(% style="width:;" %)**Command Example**|=(% style="width:199px;" %)**Function**|=(% style="width: 83px;" %)**Response**710 -|(% style="width:156px" %)AT+12VT=?|(% style="width: 199px" %)Show 12V open time.|(% style="width:83px" %)(((705 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 706 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response** 707 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|((( 711 711 0 709 + 712 712 OK 713 713 ))) 714 -|(% style="width:156px" %)AT+12VT=0|(% style="width: 199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK715 -|(% style="width:156px" %)AT+12VT=500|(% style="width: 199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((712 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK 713 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|((( 716 716 OK 715 + 716 + 717 717 ))) 718 718 719 719 (% style="color:blue" %)**Downlink Command: 0x07** ... ... @@ -722,96 +722,44 @@ 722 722 723 723 The first byte is which power, the second and third bytes are the time to turn on. 724 724 725 -* Example 1: Downlink Payload: 070101F4 **~-~-->**726 -* Example 2: Downlink Payload: 0701FFFF **~-~-->**AT+3V3T=65535727 -* Example 3: Downlink Payload: 070203E8 **~-~-->**AT+5VT=1000728 -* Example 4: Downlink Payload: 07020000 **~-~-->**AT+5VT=0729 -* Example 5: Downlink Payload: 070301F4 **~-~-->**AT+12VT=500730 -* Example 6: Downlink Payload: 07030000 **~-~-->**AT+12VT=0725 +* Example 1: Downlink Payload: 070101F4 -> AT+3V3T=500 726 +* Example 2: Downlink Payload: 0701FFFF -> AT+3V3T=65535 727 +* Example 3: Downlink Payload: 070203E8 -> AT+5VT=1000 728 +* Example 4: Downlink Payload: 07020000 -> AT+5VT=0 729 +* Example 5: Downlink Payload: 070301F4 -> AT+12VT=500 730 +* Example 6: Downlink Payload: 07030000 -> AT+12VT=0 731 731 732 - 733 - 734 734 == 3.4 Set the Probe Model == 735 735 736 736 737 - Usersneed to configure thisparameter according to the type of externalprobe. In this way, the servercan decode according to this value, and convert the current valueoutputby the sensor into waterdepthorpressure value.735 +(% style="color:blue" %)**AT Command: AT** **+PROBE** 738 738 739 -**AT Command: AT** **+PROBE** 740 - 741 -AT+PROBE=aabb 742 - 743 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters. 744 - 745 -When aa=01, it is the pressure mode, which converts the current into a pressure value; 746 - 747 -bb represents which type of pressure sensor it is. 748 - 749 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C) 750 - 751 751 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 752 -|**Command Example**|**Function**|**Response** 753 -|AT +PROBE =?|Get or Set the probe model.|0 754 -OK 755 -|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK 756 -|((( 757 -AT +PROBE =000A 738 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response** 739 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|((( 740 +0 758 758 759 - 760 -)))|Set water depth sensor mode, 10m type.|OK 761 -|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK 762 -|AT +PROBE =0000|Initial state, no settings.|OK 763 - 764 -**Downlink Command: 0x08** 765 - 766 -Format: Command Code (0x08) followed by 2 bytes. 767 - 768 -* Example 1: Downlink Payload: 080003 **~-~-->** AT+PROBE=0003 769 -* Example 2: Downlink Payload: 080101 **~-~-->** AT+PROBE=0101 770 - 771 - 772 - 773 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) == 774 - 775 - 776 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time. 777 - 778 -(% style="color:blue" %)**AT Command: AT** **+STDC** 779 - 780 -AT+STDC=aa,bb,bb 781 - 782 -(% style="color:#037691" %)**aa:**(%%) 783 -**0:** means disable this function and use TDC to send packets. 784 -**1:** means enable this function, use the method of multiple acquisitions to send packets. 785 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535 786 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120 787 - 788 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 789 -|**Command Example**|**Function**|**Response** 790 -|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18 791 791 OK 792 -|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|((( 793 -Attention:Take effect after ATZ 794 - 795 -OK 796 796 ))) 797 -|AT+STDC=0, 0,0|((( 798 -Use the TDC interval to send packets.(default) 744 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK 745 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|((( 746 +OK 799 799 800 800 801 -)))|((( 802 -Attention:Take effect after ATZ 803 - 749 +))) 750 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|((( 804 804 OK 752 + 753 + 805 805 ))) 806 806 807 -(% style="color:blue" %)**Downlink Command: 0x AE**756 +(% style="color:blue" %)**Downlink Command: 0x08** 808 808 809 -Format: Command Code (0x08) followed by 5bytes.758 +Format: Command Code (0x08) followed by 2 bytes. 810 810 811 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->** AT+STDC=1,600,18 760 +* Example 1: Downlink Payload: 080003 -> AT+PROBE=0003 761 +* Example 2: Downlink Payload: 080101 -> AT+PROBE=0101 812 812 813 - 814 - 815 815 = 4. Battery & how to replace = 816 816 817 817 == 4.1 Battery Type == ... ... @@ -819,6 +819,7 @@ 819 819 820 820 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 821 821 770 + 822 822 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 823 823 824 824 [[image:1675146710956-626.png]] ... ... @@ -842,10 +842,15 @@ 842 842 843 843 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 844 844 794 + 845 845 Instruction to use as below: 846 846 847 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 848 848 798 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 799 + 800 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 801 + 802 + 849 849 (% style="color:blue" %)**Step 2:**(%%) Open it and choose 850 850 851 851 * Product Model ... ... @@ -939,8 +939,6 @@ 939 939 * Package Size / pcs : cm 940 940 * Weight / pcs : g 941 941 942 - 943 - 944 944 = 10. Support = 945 945 946 946
- image-20230201090514-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -560.9 KB - Content
- image-20230220171300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.0 KB - Content
- image-20230222174559-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -19.4 KB - Content
- image-20230225154759-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -468.9 KB - Content